Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 5608 | 49.04% | 81 | 20.82% |
Ofir Bitton | 1251 | 10.94% | 75 | 19.28% |
Ohad Sharabi | 872 | 7.63% | 46 | 11.83% |
Yuri Nudelman | 810 | 7.08% | 21 | 5.40% |
Omer Shpigelman | 753 | 6.59% | 24 | 6.17% |
Moti Haimovski | 580 | 5.07% | 10 | 2.57% |
farah kassabri | 419 | 3.66% | 20 | 5.14% |
Tomer Tayar | 292 | 2.55% | 37 | 9.51% |
Dani Liberman | 198 | 1.73% | 14 | 3.60% |
Dafna Hirschfeld | 188 | 1.64% | 12 | 3.08% |
Tal Cohen | 140 | 1.22% | 8 | 2.06% |
Koby Elbaz | 108 | 0.94% | 13 | 3.34% |
Bharat Jauhari | 46 | 0.40% | 5 | 1.29% |
Sagiv Ozeri | 40 | 0.35% | 4 | 1.03% |
Arnd Bergmann | 28 | 0.24% | 2 | 0.51% |
Adam Aharon | 27 | 0.24% | 1 | 0.26% |
Alon Mizrahi | 26 | 0.23% | 5 | 1.29% |
Rajaravi Krishna Katta | 17 | 0.15% | 3 | 0.77% |
Daniel Vetter | 7 | 0.06% | 1 | 0.26% |
Paweł Piskorski | 6 | 0.05% | 1 | 0.26% |
Hillf Danton | 6 | 0.05% | 1 | 0.26% |
Dalit Ben Zoor | 6 | 0.05% | 1 | 0.26% |
Christine Gharzuzi | 3 | 0.03% | 1 | 0.26% |
Greg Kroah-Hartman | 2 | 0.02% | 1 | 0.26% |
Ben Segal | 1 | 0.01% | 1 | 0.26% |
Zvika Yehudai | 1 | 0.01% | 1 | 0.26% |
Total | 11435 | 389 |
/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef HABANALABSP_H_ #define HABANALABSP_H_ #include "../include/common/cpucp_if.h" #include "../include/common/qman_if.h" #include "../include/hw_ip/mmu/mmu_general.h" #include <uapi/drm/habanalabs_accel.h> #include <linux/cdev.h> #include <linux/iopoll.h> #include <linux/irqreturn.h> #include <linux/dma-direction.h> #include <linux/scatterlist.h> #include <linux/hashtable.h> #include <linux/debugfs.h> #include <linux/rwsem.h> #include <linux/eventfd.h> #include <linux/bitfield.h> #include <linux/genalloc.h> #include <linux/sched/signal.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/coresight.h> #include <linux/dma-buf.h> #include "security.h" #define HL_NAME "habanalabs" struct hl_device; struct hl_fpriv; #define PCI_VENDOR_ID_HABANALABS 0x1da3 /* Use upper bits of mmap offset to store habana driver specific information. * bits[63:59] - Encode mmap type * bits[45:0] - mmap offset value * * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these * defines are w.r.t to PAGE_SIZE */ #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) #define HL_PENDING_RESET_PER_SEC 10 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ #define HL_PENDING_RESET_LONG_SEC 60 /* * In device fini, wait 10 minutes for user processes to be terminated after we kill them. * This is needed to prevent situation of clearing resources while user processes are still alive. */ #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 #define HL_HARD_RESET_MAX_TIMEOUT 120 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ #define HL_INVALID_QUEUE UINT_MAX #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE #define HL_STATE_DUMP_HIST_LEN 5 /* Default value for device reset trigger , an invalid value */ #define HL_RESET_TRIGGER_DEFAULT 0xFF #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* Memory */ #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* MMU */ #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /** * enum hl_mmu_page_table_location - mmu page table location * @MMU_DR_PGT: page-table is located on device DRAM. * @MMU_HR_PGT: page-table is located on host memory. * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. */ enum hl_mmu_page_table_location { MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ MMU_HR_PGT, /* host resident MMU PGT */ MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ }; /* * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream */ #define HL_RSVD_SOBS 2 #define HL_RSVD_MONS 1 /* * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream */ #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 #define HL_MAX_SOB_VAL (1 << 15) #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) #define HL_PCI_NUM_BARS 6 /* Completion queue entry relates to completed job */ #define HL_COMPLETION_MODE_JOB 0 /* Completion queue entry relates to completed command submission */ #define HL_COMPLETION_MODE_CS 1 #define HL_MAX_DCORES 8 /* DMA alloc/free wrappers */ #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) /* * Reset Flags * * - HL_DRV_RESET_HARD * If set do hard reset to all engines. If not set reset just * compute/DMA engines. * * - HL_DRV_RESET_FROM_RESET_THR * Set if the caller is the hard-reset thread * * - HL_DRV_RESET_HEARTBEAT * Set if reset is due to heartbeat * * - HL_DRV_RESET_TDR * Set if reset is due to TDR * * - HL_DRV_RESET_DEV_RELEASE * Set if reset is due to device release * * - HL_DRV_RESET_BYPASS_REQ_TO_FW * F/W will perform the reset. No need to ask it to reset the device. This is relevant * only when running with secured f/w * * - HL_DRV_RESET_FW_FATAL_ERR * Set if reset is due to a fatal error from FW * * - HL_DRV_RESET_DELAY * Set if a delay should be added before the reset * * - HL_DRV_RESET_FROM_WD_THR * Set if the caller is the device release watchdog thread */ #define HL_DRV_RESET_HARD (1 << 0) #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) #define HL_DRV_RESET_HEARTBEAT (1 << 2) #define HL_DRV_RESET_TDR (1 << 3) #define HL_DRV_RESET_DEV_RELEASE (1 << 4) #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) #define HL_DRV_RESET_DELAY (1 << 7) #define HL_DRV_RESET_FROM_WD_THR (1 << 8) /* * Security */ #define HL_PB_SHARED 1 #define HL_PB_NA 0 #define HL_PB_SINGLE_INSTANCE 1 #define HL_BLOCK_SIZE 0x1000 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) enum hl_protection_levels { SECURED_LVL, PRIVILEGED_LVL, NON_SECURED_LVL }; /** * struct iterate_module_ctx - HW module iterator * @fn: function to apply to each HW module instance * @data: optional internal data to the function iterator * @rc: return code for optional use of iterator/iterator-caller */ struct iterate_module_ctx { /* * callback for the HW module iterator * @hdev: pointer to the habanalabs device structure * @block: block (ASIC specific definition can be dcore/hdcore) * @inst: HW module instance within the block * @offset: current HW module instance offset from the 1-st HW module instance * in the 1-st block * @ctx: the iterator context. */ void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, struct iterate_module_ctx *ctx); void *data; int rc; }; struct hl_block_glbl_sec { u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; }; #define HL_MAX_SOBS_PER_MONITOR 8 /** * struct hl_gen_wait_properties - properties for generating a wait CB * @data: command buffer * @q_idx: queue id is used to extract fence register address * @size: offset in command buffer * @sob_base: SOB base to use in this wait CB * @sob_val: SOB value to wait for * @mon_id: monitor to use in this wait CB * @sob_mask: each bit represents a SOB offset from sob_base to be used */ struct hl_gen_wait_properties { void *data; u32 q_idx; u32 size; u16 sob_base; u16 sob_val; u16 mon_id; u8 sob_mask; }; /** * struct pgt_info - MMU hop page info. * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and * actual pgts for host resident MMU). * @phys_addr: physical address of the pgt. * @virt_addr: host virtual address of the pgt (see above device/host resident). * @shadow_addr: shadow hop in the host for device resident MMU. * @ctx: pointer to the owner ctx. * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically * allocated HOPs (all HOPs but HOP0) * * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow * pgts will be stored on host memory) or on host memory (in which case no shadow is required). * * When a new level (hop) is needed during mapping this structure will be used to describe * the newly allocated hop as well as to track number of PTEs in it. * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is * freed with its pgt_info structure. */ struct pgt_info { struct hlist_node node; u64 phys_addr; u64 virt_addr; u64 shadow_addr; struct hl_ctx *ctx; int num_of_ptes; }; /** * enum hl_pci_match_mode - pci match mode per region * @PCI_ADDRESS_MATCH_MODE: address match mode * @PCI_BAR_MATCH_MODE: bar match mode */ enum hl_pci_match_mode { PCI_ADDRESS_MATCH_MODE, PCI_BAR_MATCH_MODE }; /** * enum hl_fw_component - F/W components to read version through registers. * @FW_COMP_BOOT_FIT: boot fit. * @FW_COMP_PREBOOT: preboot. * @FW_COMP_LINUX: linux. */ enum hl_fw_component { FW_COMP_BOOT_FIT, FW_COMP_PREBOOT, FW_COMP_LINUX, }; /** * enum hl_fw_types - F/W types present in the system * @FW_TYPE_NONE: no FW component indication * @FW_TYPE_LINUX: Linux image for device CPU * @FW_TYPE_BOOT_CPU: Boot image for device CPU * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system * (preboot, ppboot etc...) * @FW_TYPE_ALL_TYPES: Mask for all types */ enum hl_fw_types { FW_TYPE_NONE = 0x0, FW_TYPE_LINUX = 0x1, FW_TYPE_BOOT_CPU = 0x2, FW_TYPE_PREBOOT_CPU = 0x4, FW_TYPE_ALL_TYPES = (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) }; /** * enum hl_queue_type - Supported QUEUE types. * @QUEUE_TYPE_NA: queue is not available. * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the * host. * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's * memories and/or operates the compute engines. * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion * notifications are sent by H/W. */ enum hl_queue_type { QUEUE_TYPE_NA, QUEUE_TYPE_EXT, QUEUE_TYPE_INT, QUEUE_TYPE_CPU, QUEUE_TYPE_HW }; enum hl_cs_type { CS_TYPE_DEFAULT, CS_TYPE_SIGNAL, CS_TYPE_WAIT, CS_TYPE_COLLECTIVE_WAIT, CS_RESERVE_SIGNALS, CS_UNRESERVE_SIGNALS, CS_TYPE_ENGINE_CORE, CS_TYPE_ENGINES, CS_TYPE_FLUSH_PCI_HBW_WRITES, }; /* * struct hl_inbound_pci_region - inbound region descriptor * @mode: pci match mode for this region * @addr: region target address * @size: region size in bytes * @offset_in_bar: offset within bar (address match mode) * @bar: bar id */ struct hl_inbound_pci_region { enum hl_pci_match_mode mode; u64 addr; u64 size; u64 offset_in_bar; u8 bar; }; /* * struct hl_outbound_pci_region - outbound region descriptor * @addr: region target address * @size: region size in bytes */ struct hl_outbound_pci_region { u64 addr; u64 size; }; /* * enum queue_cb_alloc_flags - Indicates queue support for CBs that * allocated by Kernel or by User * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel * @CB_ALLOC_USER: support only CBs that allocated by User */ enum queue_cb_alloc_flags { CB_ALLOC_KERNEL = 0x1, CB_ALLOC_USER = 0x2 }; /* * struct hl_hw_sob - H/W SOB info. * @hdev: habanalabs device structure. * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. * @sob_id: id of this SOB. * @sob_addr: the sob offset from the base address. * @q_idx: the H/W queue that uses this SOB. * @need_reset: reset indication set when switching to the other sob. */ struct hl_hw_sob { struct hl_device *hdev; struct kref kref; u32 sob_id; u32 sob_addr; u32 q_idx; bool need_reset; }; enum hl_collective_mode { HL_COLLECTIVE_NOT_SUPPORTED = 0x0, HL_COLLECTIVE_MASTER = 0x1, HL_COLLECTIVE_SLAVE = 0x2 }; /** * struct hw_queue_properties - queue information. * @type: queue type. * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB * that allocated by the Kernel driver and therefore, * a CB handle can be provided for jobs on this queue. * Otherwise, a CB address must be provided. * @collective_mode: collective mode of current queue * @driver_only: true if only the driver is allowed to send a job to this queue, * false otherwise. * @binned: True if the queue is binned out and should not be used * @supports_sync_stream: True if queue supports sync stream */ struct hw_queue_properties { enum hl_queue_type type; enum queue_cb_alloc_flags cb_alloc_flags; enum hl_collective_mode collective_mode; u8 driver_only; u8 binned; u8 supports_sync_stream; }; /** * enum vm_type - virtual memory mapping request information. * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. */ enum vm_type { VM_TYPE_USERPTR = 0x1, VM_TYPE_PHYS_PACK = 0x2 }; /** * enum mmu_op_flags - mmu operation relevant information. * @MMU_OP_USERPTR: operation on user memory (host resident). * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. */ enum mmu_op_flags { MMU_OP_USERPTR = 0x1, MMU_OP_PHYS_PACK = 0x2, MMU_OP_CLEAR_MEMCACHE = 0x4, MMU_OP_SKIP_LOW_CACHE_INV = 0x8, }; /** * enum hl_device_hw_state - H/W device state. use this to understand whether * to do reset before hw_init or not * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute * hw_init */ enum hl_device_hw_state { HL_DEVICE_HW_STATE_CLEAN = 0, HL_DEVICE_HW_STATE_DIRTY }; #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 /** * struct hl_mmu_properties - ASIC specific MMU address translation properties. * @start_addr: virtual start address of the memory region. * @end_addr: virtual end address of the memory region. * @hop_shifts: array holds HOPs shifts. * @hop_masks: array holds HOPs masks. * @last_mask: mask to get the bit indicating this is the last hop. * @pgt_size: size for page tables. * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs * supporting multiple page size). * @page_size: default page size used to allocate memory. * @num_hops: The amount of hops supported by the translation table. * @hop_table_size: HOP table size. * @hop0_tables_total_size: total size for all HOP0 tables. * @host_resident: Should the MMU page table reside in host memory or in the * device DRAM. */ struct hl_mmu_properties { u64 start_addr; u64 end_addr; u64 hop_shifts[MMU_HOP_MAX]; u64 hop_masks[MMU_HOP_MAX]; u64 last_mask; u64 pgt_size; u64 supported_pages_mask; u32 page_size; u32 num_hops; u32 hop_table_size; u32 hop0_tables_total_size; u8 host_resident; }; /** * struct hl_hints_range - hint addresses reserved va range. * @start_addr: start address of the va range. * @end_addr: end address of the va range. */ struct hl_hints_range { u64 start_addr; u64 end_addr; }; /** * struct asic_fixed_properties - ASIC specific immutable properties. * @hw_queues_props: H/W queues properties. * @special_blocks: points to an array containing special blocks info. * @skip_special_blocks_cfg: special blocks skip configs. * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. * available sensors. * @uboot_ver: F/W U-boot version. * @preboot_ver: F/W Preboot version. * @dmmu: DRAM MMU address translation properties. * @pmmu: PCI (host) MMU address translation properties. * @pmmu_huge: PCI (host) MMU address translation properties for memory * allocated with huge pages. * @hints_dram_reserved_va_range: dram hint addresses reserved range. * @hints_host_reserved_va_range: host hint addresses reserved range. * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved * range. * @sram_base_address: SRAM physical start address. * @sram_end_address: SRAM physical end address. * @sram_user_base_address - SRAM physical start address for user access. * @dram_base_address: DRAM physical start address. * @dram_end_address: DRAM physical end address. * @dram_user_base_address: DRAM physical start address for user access. * @dram_size: DRAM total size. * @dram_pci_bar_size: size of PCI bar towards DRAM. * @max_power_default: max power of the device after reset. * @dc_power_default: power consumed by the device in mode idle. * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page * fault. * @pcie_dbi_base_address: Base address of the PCIE_DBI block. * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. * @mmu_dram_default_page_addr: DRAM default page physical address. * @tpc_enabled_mask: which TPCs are enabled. * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. * @dram_enabled_mask: which DRAMs are enabled. * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. * @dram_hints_align_mask: dram va hint addresses alignment mask which is used * for hints validity check. * @cfg_base_address: config space base address. * @mmu_cache_mng_addr: address of the MMU cache. * @mmu_cache_mng_size: size of the MMU cache. * @device_dma_offset_for_host_access: the offset to add to host DMA addresses * to enable the device to access them. * @host_base_address: host physical start address for host DMA from device * @host_end_address: host physical end address for host DMA from device * @max_freq_value: current max clk frequency. * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use * in order to raise events toward FW. * @clk_pll_index: clock PLL index that specify which PLL determines the clock * we display to the user * @mmu_pgt_size: MMU page tables total size. * @mmu_pte_size: PTE size in MMU page tables. * @mmu_hop_table_size: MMU hop table size. * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. * @dram_page_size: page size for MMU DRAM allocation. * @cfg_size: configuration space size on SRAM. * @sram_size: total size of SRAM. * @max_asid: maximum number of open contexts (ASIDs). * @num_of_events: number of possible internal H/W IRQs. * @psoc_pci_pll_nr: PCI PLL NR value. * @psoc_pci_pll_nf: PCI PLL NF value. * @psoc_pci_pll_od: PCI PLL OD value. * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. * @high_pll: high PLL frequency used by the device. * @cb_pool_cb_cnt: number of CBs in the CB pool. * @cb_pool_cb_size: size of each CB in the CB pool. * @decoder_enabled_mask: which decoders are enabled. * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. * @rotator_enabled_mask: which rotators are enabled. * @edma_enabled_mask: which EDMAs are enabled. * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means * binned (at most one binned DMA). * @max_pending_cs: maximum of concurrent pending command submissions * @max_queues: maximum amount of queues in the system * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu * capabilities reported by FW, bit description * can be found in CPU_BOOT_DEV_STS0 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu * capabilities reported by FW, bit description * can be found in CPU_BOOT_DEV_STS1 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS0 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS1 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS0 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS1 * @max_dec: maximum number of decoders * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) * 1- enabled, 0- isolated. * @faulty_dram_cluster_map: mask of faulty DRAM cluster. * 1- faulty cluster, 0- good cluster. * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) * 1- enabled, 0- isolated. * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for * which the property supports_user_set_page_size is true * (i.e. the DRAM supports multiple page sizes), otherwise * it will shall be equal to dram_page_size. * @num_engine_cores: number of engine cpu cores. * @max_num_of_engines: maximum number of all engines in the ASIC. * @num_of_special_blocks: special_blocks array size. * @glbl_err_cause_num: global err cause number. * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is * not supported. * @collective_first_sob: first sync object available for collective use * @collective_first_mon: first monitor available for collective use * @sync_stream_first_sob: first sync object available for sync stream use * @sync_stream_first_mon: first monitor available for sync stream use * @first_available_user_sob: first sob available for the user * @first_available_user_mon: first monitor available for the user * @first_available_user_interrupt: first available interrupt reserved for the user * @first_available_cq: first available CQ for the user. * @user_interrupt_count: number of user interrupts. * @user_dec_intr_count: number of decoder interrupts exposed to user. * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. * @cache_line_size: device cache line size. * @server_type: Server type that the ASIC is currently installed in. * The value is according to enum hl_server_type in uapi file. * @completion_queues_count: number of completion queues. * @completion_mode: 0 - job based completion, 1 - cs based completion * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works * in Master/Slave mode * @fw_security_enabled: true if security measures are enabled in firmware, * false otherwise * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from * BOOT_DEV_STS0 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from * BOOT_DEV_STS1 * @dram_supports_virtual_memory: is there an MMU towards the DRAM * @hard_reset_done_by_fw: true if firmware is handling hard reset flow * @num_functional_hbms: number of functional HBMs in each DCORE. * @hints_range_reservation: device support hint addresses range reservation. * @iatu_done_by_fw: true if iATU configuration is being done by FW. * @dynamic_fw_load: is dynamic FW load is supported. * @gic_interrupts_enable: true if FW is not blocking GIC controller, * false otherwise. * @use_get_power_for_reset_history: To support backward compatibility for Goya * and Gaudi * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. * @allow_inference_soft_reset: true if the ASIC supports soft reset that is * initiated by user or TDR. This is only true * in inference ASICs, as there is no real-world * use-case of doing soft-reset in training (due * to the fact that training runs on multiple * devices) * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. * @set_max_power_on_device_init: true if need to set max power in F/W on device init. * @supports_user_set_page_size: true if user can set the allocation page size. * @dma_mask: the dma mask to be set for this device * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. * @supports_engine_modes: true if changing engines/engine_cores modes is supported. */ struct asic_fixed_properties { struct hw_queue_properties *hw_queues_props; struct hl_special_block_info *special_blocks; struct hl_skip_blocks_cfg skip_special_blocks_cfg; struct cpucp_info cpucp_info; char uboot_ver[VERSION_MAX_LEN]; char preboot_ver[VERSION_MAX_LEN]; struct hl_mmu_properties dmmu; struct hl_mmu_properties pmmu; struct hl_mmu_properties pmmu_huge; struct hl_hints_range hints_dram_reserved_va_range; struct hl_hints_range hints_host_reserved_va_range; struct hl_hints_range hints_host_hpage_reserved_va_range; u64 sram_base_address; u64 sram_end_address; u64 sram_user_base_address; u64 dram_base_address; u64 dram_end_address; u64 dram_user_base_address; u64 dram_size; u64 dram_pci_bar_size; u64 max_power_default; u64 dc_power_default; u64 dram_size_for_default_page_mapping; u64 pcie_dbi_base_address; u64 pcie_aux_dbi_reg_addr; u64 mmu_pgt_addr; u64 mmu_dram_default_page_addr; u64 tpc_enabled_mask; u64 tpc_binning_mask; u64 dram_enabled_mask; u64 dram_binning_mask; u64 dram_hints_align_mask; u64 cfg_base_address; u64 mmu_cache_mng_addr; u64 mmu_cache_mng_size; u64 device_dma_offset_for_host_access; u64 host_base_address; u64 host_end_address; u64 max_freq_value; u64 engine_core_interrupt_reg_addr; u32 clk_pll_index; u32 mmu_pgt_size; u32 mmu_pte_size; u32 mmu_hop_table_size; u32 mmu_hop0_tables_total_size; u32 dram_page_size; u32 cfg_size; u32 sram_size; u32 max_asid; u32 num_of_events; u32 psoc_pci_pll_nr; u32 psoc_pci_pll_nf; u32 psoc_pci_pll_od; u32 psoc_pci_pll_div_factor; u32 psoc_timestamp_frequency; u32 high_pll; u32 cb_pool_cb_cnt; u32 cb_pool_cb_size; u32 decoder_enabled_mask; u32 decoder_binning_mask; u32 rotator_enabled_mask; u32 edma_enabled_mask; u32 edma_binning_mask; u32 max_pending_cs; u32 max_queues; u32 fw_preboot_cpu_boot_dev_sts0; u32 fw_preboot_cpu_boot_dev_sts1; u32 fw_bootfit_cpu_boot_dev_sts0; u32 fw_bootfit_cpu_boot_dev_sts1; u32 fw_app_cpu_boot_dev_sts0; u32 fw_app_cpu_boot_dev_sts1; u32 max_dec; u32 hmmu_hif_enabled_mask; u32 faulty_dram_cluster_map; u32 xbar_edge_enabled_mask; u32 device_mem_alloc_default_page_size; u32 num_engine_cores; u32 max_num_of_engines; u32 num_of_special_blocks; u32 glbl_err_cause_num; u32 hbw_flush_reg; u16 collective_first_sob; u16 collective_first_mon; u16 sync_stream_first_sob; u16 sync_stream_first_mon; u16 first_available_user_sob[HL_MAX_DCORES]; u16 first_available_user_mon[HL_MAX_DCORES]; u16 first_available_user_interrupt; u16 first_available_cq[HL_MAX_DCORES]; u16 user_interrupt_count; u16 user_dec_intr_count; u16 tpc_interrupt_id; u16 eq_interrupt_id; u16 cache_line_size; u16 server_type; u8 completion_queues_count; u8 completion_mode; u8 mme_master_slave_mode; u8 fw_security_enabled; u8 fw_cpu_boot_dev_sts0_valid; u8 fw_cpu_boot_dev_sts1_valid; u8 dram_supports_virtual_memory; u8 hard_reset_done_by_fw; u8 num_functional_hbms; u8 hints_range_reservation; u8 iatu_done_by_fw; u8 dynamic_fw_load; u8 gic_interrupts_enable; u8 use_get_power_for_reset_history; u8 supports_compute_reset; u8 allow_inference_soft_reset; u8 configurable_stop_on_err; u8 set_max_power_on_device_init; u8 supports_user_set_page_size; u8 dma_mask; u8 supports_advanced_cpucp_rc; u8 supports_engine_modes; }; /** * struct hl_fence - software synchronization primitive * @completion: fence is implemented using completion * @refcount: refcount for this fence * @cs_sequence: sequence of the corresponding command submission * @stream_master_qid_map: streams masters QID bitmap to represent all streams * masters QIDs that multi cs is waiting on * @error: mark this fence with error * @timestamp: timestamp upon completion * @mcs_handling_done: indicates that corresponding command submission has * finished msc handling, this does not mean it was part * of the mcs */ struct hl_fence { struct completion completion; struct kref refcount; u64 cs_sequence; u32 stream_master_qid_map; int error; ktime_t timestamp; u8 mcs_handling_done; }; /** * struct hl_cs_compl - command submission completion object. * @base_fence: hl fence object. * @lock: spinlock to protect fence. * @hdev: habanalabs device structure. * @hw_sob: the H/W SOB used in this signal/wait CS. * @encaps_sig_hdl: encaps signals handler. * @cs_seq: command submission sequence number. * @type: type of the CS - signal/wait. * @sob_val: the SOB value that is used in this signal/wait CS. * @sob_group: the SOB group that is used in this collective wait CS. * @encaps_signals: indication whether it's a completion object of cs with * encaps signals or not. */ struct hl_cs_compl { struct hl_fence base_fence; spinlock_t lock; struct hl_device *hdev; struct hl_hw_sob *hw_sob; struct hl_cs_encaps_sig_handle *encaps_sig_hdl; u64 cs_seq; enum hl_cs_type type; u16 sob_val; u16 sob_group; bool encaps_signals; }; /* * Command Buffers */ /** * struct hl_ts_buff - describes a timestamp buffer. * @kernel_buff_address: Holds the internal buffer's kernel virtual address. * @user_buff_address: Holds the user buffer's kernel virtual address. * @kernel_buff_size: Holds the internal kernel buffer size. */ struct hl_ts_buff { void *kernel_buff_address; void *user_buff_address; u32 kernel_buff_size; }; struct hl_mmap_mem_buf; /** * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. * @dev: back pointer to the owning device * @lock: protects handles * @handles: an idr holding all active handles to the memory buffers in the system. */ struct hl_mem_mgr { struct device *dev; spinlock_t lock; struct idr handles; }; /** * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior * @topic: string identifier used for logging * @mem_id: memory type identifier, embedded in the handle and used to identify * the memory type by handle. * @alloc: callback executed on buffer allocation, shall allocate the memory, * set it under buffer private, and set mappable size. * @mmap: callback executed on mmap, must map the buffer to vma * @release: callback executed on release, must free the resources used by the buffer */ struct hl_mmap_mem_buf_behavior { const char *topic; u64 mem_id; int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); void (*release)(struct hl_mmap_mem_buf *buf); }; /** * struct hl_mmap_mem_buf - describes a single unified memory buffer * @behavior: buffer behavior * @mmg: back pointer to the unified memory manager * @refcount: reference counter for buffer users * @private: pointer to buffer behavior private data * @mmap: atomic boolean indicating whether or not the buffer is mapped right now * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, * may change at runtime. * @mappable_size: the original mappable size of the buffer, does not change after * the allocation. * @handle: the buffer id in mmg handles store */ struct hl_mmap_mem_buf { struct hl_mmap_mem_buf_behavior *behavior; struct hl_mem_mgr *mmg; struct kref refcount; void *private; atomic_t mmap; u64 real_mapped_size; u64 mappable_size; u64 handle; }; /** * struct hl_cb - describes a Command Buffer. * @hdev: pointer to device this CB belongs to. * @ctx: pointer to the CB owner's context. * @buf: back pointer to the parent mappable memory buffer * @debugfs_list: node in debugfs list of command buffers. * @pool_list: node in pool list of command buffers. * @kernel_address: Holds the CB's kernel virtual address. * @virtual_addr: Holds the CB's virtual address. * @bus_address: Holds the CB's DMA address. * @size: holds the CB's size. * @roundup_size: holds the cb size after roundup to page size. * @cs_cnt: holds number of CS that this CB participates in. * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. * @is_pool: true if CB was acquired from the pool, false otherwise. * @is_internal: internally allocated * @is_mmu_mapped: true if the CB is mapped to the device's MMU. */ struct hl_cb { struct hl_device *hdev; struct hl_ctx *ctx; struct hl_mmap_mem_buf *buf; struct list_head debugfs_list; struct list_head pool_list; void *kernel_address; u64 virtual_addr; dma_addr_t bus_address; u32 size; u32 roundup_size; atomic_t cs_cnt; atomic_t is_handle_destroyed; u8 is_pool; u8 is_internal; u8 is_mmu_mapped; }; /* * QUEUES */ struct hl_cs_job; /* Queue length of external and HW queues */ #define HL_QUEUE_LENGTH 4096 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" #endif /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ #define HL_CQ_LENGTH HL_QUEUE_LENGTH #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) /* Must be power of 2 */ #define HL_EQ_LENGTH 64 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) /* Host <-> CPU-CP shared memory size */ #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M /** * struct hl_sync_stream_properties - * describes a H/W queue sync stream properties * @hw_sob: array of the used H/W SOBs by this H/W queue. * @next_sob_val: the next value to use for the currently used SOB. * @base_sob_id: the base SOB id of the SOBs used by this queue. * @base_mon_id: the base MON id of the MONs used by this queue. * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue * in order to sync with all slave queues. * @collective_slave_mon_id: the MON id used by this slave queue in order to * sync with its master queue. * @collective_sob_id: current SOB id used by this collective slave queue * to signal its collective master queue upon completion. * @curr_sob_offset: the id offset to the currently used SOB from the * HL_RSVD_SOBS that are being used by this queue. */ struct hl_sync_stream_properties { struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; u16 next_sob_val; u16 base_sob_id; u16 base_mon_id; u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; u16 collective_slave_mon_id; u16 collective_sob_id; u8 curr_sob_offset; }; /** * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals * handlers manager * @lock: protects handles. * @handles: an idr to hold all encapsulated signals handles. */ struct hl_encaps_signals_mgr { spinlock_t lock; struct idr handles; }; /** * struct hl_hw_queue - describes a H/W transport queue. * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. * @sync_stream_prop: sync stream queue properties * @queue_type: type of queue. * @collective_mode: collective mode of current queue * @kernel_address: holds the queue's kernel virtual address. * @bus_address: holds the queue's DMA address. * @pi: holds the queue's pi value. * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). * @hw_queue_id: the id of the H/W queue. * @cq_id: the id for the corresponding CQ for this H/W queue. * @msi_vec: the IRQ number of the H/W queue. * @int_queue_len: length of internal queue (number of entries). * @valid: is the queue valid (we have array of 32 queues, not all of them * exist). * @supports_sync_stream: True if queue supports sync stream */ struct hl_hw_queue { struct hl_cs_job **shadow_queue; struct hl_sync_stream_properties sync_stream_prop; enum hl_queue_type queue_type; enum hl_collective_mode collective_mode; void *kernel_address; dma_addr_t bus_address; u32 pi; atomic_t ci; u32 hw_queue_id; u32 cq_id; u32 msi_vec; u16 int_queue_len; u8 valid; u8 supports_sync_stream; }; /** * struct hl_cq - describes a completion queue * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @cq_idx: completion queue index in array * @hw_queue_id: the id of the matching H/W queue * @ci: ci inside the queue * @pi: pi inside the queue * @free_slots_cnt: counter of free slots in queue */ struct hl_cq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 cq_idx; u32 hw_queue_id; u32 ci; u32 pi; atomic_t free_slots_cnt; }; enum hl_user_interrupt_type { HL_USR_INTERRUPT_CQ = 0, HL_USR_INTERRUPT_DECODER, HL_USR_INTERRUPT_TPC, HL_USR_INTERRUPT_UNEXPECTED }; /** * struct hl_user_interrupt - holds user interrupt information * @hdev: pointer to the device structure * @type: user interrupt type * @wait_list_head: head to the list of user threads pending on this interrupt * @wait_list_lock: protects wait_list_head * @timestamp: last timestamp taken upon interrupt * @interrupt_id: msix interrupt id */ struct hl_user_interrupt { struct hl_device *hdev; enum hl_user_interrupt_type type; struct list_head wait_list_head; spinlock_t wait_list_lock; ktime_t timestamp; u32 interrupt_id; }; /** * struct timestamp_reg_free_node - holds the timestamp registration free objects node * @free_objects_node: node in the list free_obj_jobs * @cq_cb: pointer to cq command buffer to be freed * @buf: pointer to timestamp buffer to be freed */ struct timestamp_reg_free_node { struct list_head free_objects_node; struct hl_cb *cq_cb; struct hl_mmap_mem_buf *buf; }; /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job * the job will be to pass over the free_obj_jobs list and put refcount to objects * in each node of the list * @free_obj: workqueue object to free timestamp registration node objects * @hdev: pointer to the device structure * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) */ struct timestamp_reg_work_obj { struct work_struct free_obj; struct hl_device *hdev; struct list_head *free_obj_head; }; /* struct timestamp_reg_info - holds the timestamp registration related data. * @buf: pointer to the timestamp buffer which include both user/kernel buffers. * relevant only when doing timestamps records registration. * @cq_cb: pointer to CQ counter CB. * @timestamp_kernel_addr: timestamp handle address, where to set timestamp * relevant only when doing timestamps records * registration. * @in_use: indicates if the node already in use. relevant only when doing * timestamps records registration, since in this case the driver * will have it's own buffer which serve as a records pool instead of * allocating records dynamically. */ struct timestamp_reg_info { struct hl_mmap_mem_buf *buf; struct hl_cb *cq_cb; u64 *timestamp_kernel_addr; u8 in_use; }; /** * struct hl_user_pending_interrupt - holds a context to a user thread * pending on an interrupt * @ts_reg_info: holds the timestamps registration nodes info * @wait_list_node: node in the list of user threads pending on an interrupt * @fence: hl fence object for interrupt completion * @cq_target_value: CQ target value * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt * handler for target value comparison */ struct hl_user_pending_interrupt { struct timestamp_reg_info ts_reg_info; struct list_head wait_list_node; struct hl_fence fence; u64 cq_target_value; u64 *cq_kernel_addr; }; /** * struct hl_eq - describes the event queue (single one per device) * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @ci: ci inside the queue * @prev_eqe_index: the index of the previous event queue entry. The index of * the current entry's index must be +1 of the previous one. * @check_eqe_index: do we need to check the index of the current entry vs. the * previous one. This is for backward compatibility with older * firmwares */ struct hl_eq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 ci; u32 prev_eqe_index; bool check_eqe_index; }; /** * struct hl_dec - describes a decoder sw instance. * @hdev: pointer to the device structure. * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. * @core_id: ID of the decoder. * @base_addr: base address of the decoder. */ struct hl_dec { struct hl_device *hdev; struct work_struct abnrm_intr_work; u32 core_id; u32 base_addr; }; /** * enum hl_asic_type - supported ASIC types. * @ASIC_INVALID: Invalid ASIC type. * @ASIC_GOYA: Goya device (HL-1000). * @ASIC_GAUDI: Gaudi device (HL-2000). * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). * @ASIC_GAUDI2: Gaudi2 device. * @ASIC_GAUDI2B: Gaudi2B device. */ enum hl_asic_type { ASIC_INVALID, ASIC_GOYA, ASIC_GAUDI, ASIC_GAUDI_SEC, ASIC_GAUDI2, ASIC_GAUDI2B, }; struct hl_cs_parser; /** * enum hl_pm_mng_profile - power management profile. * @PM_AUTO: internal clock is set by the Linux driver. * @PM_MANUAL: internal clock is set by the user. * @PM_LAST: last power management type. */ enum hl_pm_mng_profile { PM_AUTO = 1, PM_MANUAL, PM_LAST }; /** * enum hl_pll_frequency - PLL frequency. * @PLL_HIGH: high frequency. * @PLL_LOW: low frequency. * @PLL_LAST: last frequency values that were configured by the user. */ enum hl_pll_frequency { PLL_HIGH = 1, PLL_LOW, PLL_LAST }; #define PLL_REF_CLK 50 enum div_select_defs { DIV_SEL_REF_CLK = 0, DIV_SEL_PLL_CLK = 1, DIV_SEL_DIVIDED_REF = 2, DIV_SEL_DIVIDED_PLL = 3, }; enum debugfs_access_type { DEBUGFS_READ8, DEBUGFS_WRITE8, DEBUGFS_READ32, DEBUGFS_WRITE32, DEBUGFS_READ64, DEBUGFS_WRITE64, }; enum pci_region { PCI_REGION_CFG, PCI_REGION_SRAM, PCI_REGION_DRAM, PCI_REGION_SP_SRAM, PCI_REGION_NUMBER, }; /** * struct pci_mem_region - describe memory region in a PCI bar * @region_base: region base address * @region_size: region size * @bar_size: size of the BAR * @offset_in_bar: region offset into the bar * @bar_id: bar ID of the region * @used: if used 1, otherwise 0 */ struct pci_mem_region { u64 region_base; u64 region_size; u64 bar_size; u64 offset_in_bar; u8 bar_id; u8 used; }; /** * struct static_fw_load_mgr - static FW load manager * @preboot_version_max_off: max offset to preboot version * @boot_fit_version_max_off: max offset to boot fit version * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages * @cpu_cmd_status_to_host_reg: register address for CPU command status response * @cpu_boot_status_reg: boot status register * @cpu_boot_dev_status0_reg: boot device status register 0 * @cpu_boot_dev_status1_reg: boot device status register 1 * @boot_err0_reg: boot error register 0 * @boot_err1_reg: boot error register 1 * @preboot_version_offset_reg: SRAM offset to preboot version register * @boot_fit_version_offset_reg: SRAM offset to boot fit version register * @sram_offset_mask: mask for getting offset into the SRAM * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg */ struct static_fw_load_mgr { u64 preboot_version_max_off; u64 boot_fit_version_max_off; u32 kmd_msg_to_cpu_reg; u32 cpu_cmd_status_to_host_reg; u32 cpu_boot_status_reg; u32 cpu_boot_dev_status0_reg; u32 cpu_boot_dev_status1_reg; u32 boot_err0_reg; u32 boot_err1_reg; u32 preboot_version_offset_reg; u32 boot_fit_version_offset_reg; u32 sram_offset_mask; u32 cpu_reset_wait_msec; }; /** * struct fw_response - FW response to LKD command * @ram_offset: descriptor offset into the RAM * @ram_type: RAM type containing the descriptor (SRAM/DRAM) * @status: command status */ struct fw_response { u32 ram_offset; u8 ram_type; u8 status; }; /** * struct dynamic_fw_load_mgr - dynamic FW load manager * @response: FW to LKD response * @comm_desc: the communication descriptor with FW * @image_region: region to copy the FW image to * @fw_image_size: size of FW image to load * @wait_for_bl_timeout: timeout for waiting for boot loader to respond * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used */ struct dynamic_fw_load_mgr { struct fw_response response; struct lkd_fw_comms_desc comm_desc; struct pci_mem_region *image_region; size_t fw_image_size; u32 wait_for_bl_timeout; bool fw_desc_valid; }; /** * struct pre_fw_load_props - needed properties for pre-FW load * @cpu_boot_status_reg: cpu_boot_status register address * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address * @boot_err0_reg: boot_err0 register address * @boot_err1_reg: boot_err1 register address * @wait_for_preboot_timeout: timeout to poll for preboot ready */ struct pre_fw_load_props { u32 cpu_boot_status_reg; u32 sts_boot_dev_sts0_reg; u32 sts_boot_dev_sts1_reg; u32 boot_err0_reg; u32 boot_err1_reg; u32 wait_for_preboot_timeout; }; /** * struct fw_image_props - properties of FW image * @image_name: name of the image * @src_off: offset in src FW to copy from * @copy_size: amount of bytes to copy (0 to copy the whole binary) */ struct fw_image_props { char *image_name; u32 src_off; u32 copy_size; }; /** * struct fw_load_mgr - manager FW loading process * @dynamic_loader: specific structure for dynamic load * @static_loader: specific structure for static load * @pre_fw_load_props: parameter for pre FW load * @boot_fit_img: boot fit image properties * @linux_img: linux image properties * @cpu_timeout: CPU response timeout in usec * @boot_fit_timeout: Boot fit load timeout in usec * @skip_bmc: should BMC be skipped * @sram_bar_id: SRAM bar ID * @dram_bar_id: DRAM bar ID * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded * component. values are set according to enum hl_fw_types. */ struct fw_load_mgr { union { struct dynamic_fw_load_mgr dynamic_loader; struct static_fw_load_mgr static_loader; }; struct pre_fw_load_props pre_fw_load; struct fw_image_props boot_fit_img; struct fw_image_props linux_img; u32 cpu_timeout; u32 boot_fit_timeout; u8 skip_bmc; u8 sram_bar_id; u8 dram_bar_id; u8 fw_comp_loaded; }; struct hl_cs; /** * struct engines_data - asic engines data * @buf: buffer for engines data in ascii * @actual_size: actual size of data that was written by the driver to the allocated buffer * @allocated_buf_size: total size of allocated buffer */ struct engines_data { char *buf; int actual_size; u32 allocated_buf_size; }; /** * struct hl_asic_funcs - ASIC specific functions that are can be called from * common code. * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. * @early_fini: tears down what was done in early_init. * @late_init: sets up late driver/hw state (post hw_init) - Optional. * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. * @sw_init: sets up driver state, does not configure H/W. * @sw_fini: tears down driver state, does not configure H/W. * @hw_init: sets up the H/W state. * @hw_fini: tears down the H/W state. * @halt_engines: halt engines, needed for reset sequence. This also disables * interrupts from the device. Should be called before * hw_fini and before CS rollback. * @suspend: handles IP specific H/W or SW changes for suspend. * @resume: handles IP specific H/W or SW changes for resume. * @mmap: maps a memory. * @ring_doorbell: increment PI on a given QMAN. * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific * function because the PQs are located in different memory areas * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of * writing the PQE must match the destination memory area * properties. * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling * dma_alloc_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @asic_dma_free_coherent: Free coherent DMA memory by calling * dma_free_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @scrub_device_mem: Scrub the entire SRAM and DRAM. * @scrub_device_dram: Scrub the dram memory of the device. * @get_int_queue_base: get the internal queue base address. * @test_queues: run simple test on all queues for sanity check. * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. * size of allocation is HL_DMA_POOL_BLK_SIZE. * @asic_dma_pool_free: free small DMA allocation from pool. * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. * @asic_dma_unmap_single: unmap a single DMA buffer * @asic_dma_map_single: map a single buffer to a DMA * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. * @cs_parser: parse Command Submission. * @asic_dma_map_sgtable: DMA map scatter-gather table. * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. * @update_eq_ci: update event queue CI. * @context_switch: called upon ASID context switch. * @restore_phase_topology: clear all SOBs amd MONs. * @debugfs_read_dma: debug interface for reading up to 2MB from the device's * internal memory via DMA engine. * @add_device_attr: add ASIC specific device attributes. * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. * @get_events_stat: retrieve event queue entries histogram. * @read_pte: read MMU page table entry from DRAM. * @write_pte: write MMU page table entry to DRAM. * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft * (L1 only) or hard (L0 & L1) flush. * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. * @send_heartbeat: send is-alive packet to CPU-CP and verify response. * @debug_coresight: perform certain actions on Coresight for debugging. * @is_device_idle: return true if device is idle, false otherwise. * @compute_reset_late_init: perform certain actions needed after a compute reset * @hw_queues_lock: acquire H/W queues lock. * @hw_queues_unlock: release H/W queues lock. * @get_pci_id: retrieve PCI ID. * @get_eeprom_data: retrieve EEPROM data from F/W. * @get_monitor_dump: retrieve monitor registers dump from F/W. * @send_cpu_message: send message to F/W. If the message is timedout, the * driver will eventually reset the device. The timeout can * be determined by the calling function or it can be 0 and * then the timeout is the default timeout for the specific * ASIC * @get_hw_state: retrieve the H/W state * @pci_bars_map: Map PCI BARs. * @init_iatu: Initialize the iATU unit inside the PCI controller. * @rreg: Read a register. Needed for simulator support. * @wreg: Write a register. Needed for simulator support. * @halt_coresight: stop the ETF and ETR traces. * @ctx_init: context dependent initialization. * @ctx_fini: context dependent cleanup. * @pre_schedule_cs: Perform pre-CS-scheduling operations. * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. * @load_firmware_to_device: load the firmware to the device's memory * @load_boot_fit_to_device: load boot fit to device's memory * @get_signal_cb_size: Get signal CB size. * @get_wait_cb_size: Get wait CB size. * @gen_signal_cb: Generate a signal CB. * @gen_wait_cb: Generate a wait CB. * @reset_sob: Reset a SOB. * @reset_sob_group: Reset SOB group * @get_device_time: Get the device time. * @pb_print_security_errors: print security errors according block and cause * @collective_wait_init_cs: Generate collective master/slave packets * and place them in the relevant cs jobs * @collective_wait_create_jobs: allocate collective wait cs jobs * @get_dec_base_addr: get the base address of a given decoder. * @scramble_addr: Routine to scramble the address prior of mapping it * in the MMU. * @descramble_addr: Routine to de-scramble the address prior of * showing it to users. * @ack_protection_bits_errors: ack and dump all security violations * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. * also returns the size of the block if caller supplies * a valid pointer for it * @hw_block_mmap: mmap a HW block with a given id. * @enable_events_from_fw: send interrupt to firmware to notify them the * driver is ready to receive asynchronous events. This * function should be called during the first init and * after every hard-reset of the device * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to * generic f/w compatible PLL Indexes * @init_firmware_preload_params: initialize pre FW-load parameters. * @init_firmware_loader: initialize data for FW loader. * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling * @state_dump_init: initialize constants required for state dump * @get_sob_addr: get SOB base address offset. * @set_pci_memory_regions: setting properties of PCI memory regions * @get_stream_master_qid_arr: get pointer to stream masters QID array * @check_if_razwi_happened: check if there was a razwi due to RR violation. * @access_dev_mem: access device memory * @set_dram_bar_base: set the base of the DRAM BAR * @set_engine_cores: set a config command to engine cores * @set_engines: set a config command to user engines * @send_device_activity: indication to FW about device availability * @set_dram_properties: set DRAM related properties. * @set_binning_masks: set binning/enable masks for all relevant components. */ struct hl_asic_funcs { int (*early_init)(struct hl_device *hdev); int (*early_fini)(struct hl_device *hdev); int (*late_init)(struct hl_device *hdev); void (*late_fini)(struct hl_device *hdev); int (*sw_init)(struct hl_device *hdev); int (*sw_fini)(struct hl_device *hdev); int (*hw_init)(struct hl_device *hdev); int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); int (*suspend)(struct hl_device *hdev); int (*resume)(struct hl_device *hdev); int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd); void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag); void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle); int (*scrub_device_mem)(struct hl_device *hdev); int (*scrub_device_dram)(struct hl_device *hdev, u64 val); void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, dma_addr_t *dma_handle, u16 *queue_len); int (*test_queues)(struct hl_device *hdev); void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle); void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr); void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, size_t size, void *vaddr); void (*asic_dma_unmap_single)(struct hl_device *hdev, dma_addr_t dma_addr, int len, enum dma_data_direction dir); dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, void *addr, int len, enum dma_data_direction dir); void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); void (*add_end_of_cb_packets)(struct hl_device *hdev, void *kernel_address, u32 len, u32 original_len, u64 cq_addr, u32 cq_val, u32 msix_num, bool eb); void (*update_eq_ci)(struct hl_device *hdev, u32 val); int (*context_switch)(struct hl_device *hdev, u32 asid); void (*restore_phase_topology)(struct hl_device *hdev); int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr); void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, struct attribute_group *dev_vrm_attr_grp); void (*handle_eqe)(struct hl_device *hdev, struct hl_eq_entry *eq_entry); void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, u32 *size); u64 (*read_pte)(struct hl_device *hdev, u64 addr); void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, u32 flags); int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size); int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); int (*send_heartbeat)(struct hl_device *hdev); int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, struct engines_data *e); int (*compute_reset_late_init)(struct hl_device *hdev); void (*hw_queues_lock)(struct hl_device *hdev); void (*hw_queues_unlock)(struct hl_device *hdev); u32 (*get_pci_id)(struct hl_device *hdev); int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); int (*get_monitor_dump)(struct hl_device *hdev, void *data); int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, u16 len, u32 timeout, u64 *result); int (*pci_bars_map)(struct hl_device *hdev); int (*init_iatu)(struct hl_device *hdev); u32 (*rreg)(struct hl_device *hdev, u32 reg); void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*pre_schedule_cs)(struct hl_cs *cs); u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); int (*load_firmware_to_device)(struct hl_device *hdev); int (*load_boot_fit_to_device)(struct hl_device *hdev); u32 (*get_signal_cb_size)(struct hl_device *hdev); u32 (*get_wait_cb_size)(struct hl_device *hdev); u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb); u32 (*gen_wait_cb)(struct hl_device *hdev, struct hl_gen_wait_properties *prop); void (*reset_sob)(struct hl_device *hdev, void *data); void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); u64 (*get_device_time)(struct hl_device *hdev); void (*pb_print_security_errors)(struct hl_device *hdev, u32 block_addr, u32 cause, u32 offended_addr); int (*collective_wait_init_cs)(struct hl_cs *cs); int (*collective_wait_create_jobs)(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id, u32 collective_engine_id, u32 encaps_signal_offset); u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); void (*ack_protection_bits_errors)(struct hl_device *hdev); int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, u32 *block_size, u32 *block_id); int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, u32 block_id, u32 block_size); void (*enable_events_from_fw)(struct hl_device *hdev); int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); void (*get_msi_info)(__le32 *table); int (*map_pll_idx_to_fw_idx)(u32 pll_idx); void (*init_firmware_preload_params)(struct hl_device *hdev); void (*init_firmware_loader)(struct hl_device *hdev); void (*init_cpu_scrambler_dram)(struct hl_device *hdev); void (*state_dump_init)(struct hl_device *hdev); u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); void (*set_pci_memory_regions)(struct hl_device *hdev); u32* (*get_stream_master_qid_arr)(void); void (*check_if_razwi_happened)(struct hl_device *hdev); int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr); int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type); u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, u32 num_cores, u32 core_command); int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, u32 num_engines, u32 engine_command); int (*send_device_activity)(struct hl_device *hdev, bool open); int (*set_dram_properties)(struct hl_device *hdev); int (*set_binning_masks)(struct hl_device *hdev); }; /* * CONTEXTS */ #define HL_KERNEL_ASID_ID 0 /** * enum hl_va_range_type - virtual address range type. * @HL_VA_RANGE_TYPE_HOST: range type of host pages * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages */ enum hl_va_range_type { HL_VA_RANGE_TYPE_HOST, HL_VA_RANGE_TYPE_HOST_HUGE, HL_VA_RANGE_TYPE_DRAM, HL_VA_RANGE_TYPE_MAX }; /** * struct hl_va_range - virtual addresses range. * @lock: protects the virtual addresses list. * @list: list of virtual addresses blocks available for mappings. * @start_addr: range start address. * @end_addr: range end address. * @page_size: page size of this va range. */ struct hl_va_range { struct mutex lock; struct list_head list; u64 start_addr; u64 end_addr; u32 page_size; }; /** * struct hl_cs_counters_atomic - command submission counters * @out_of_mem_drop_cnt: dropped due to memory allocation issue * @parsing_drop_cnt: dropped due to error in packet parsing * @queue_full_drop_cnt: dropped due to queue full * @device_in_reset_drop_cnt: dropped due to device in reset * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight * @validation_drop_cnt: dropped due to error in validation */ struct hl_cs_counters_atomic { atomic64_t out_of_mem_drop_cnt; atomic64_t parsing_drop_cnt; atomic64_t queue_full_drop_cnt; atomic64_t device_in_reset_drop_cnt; atomic64_t max_cs_in_flight_drop_cnt; atomic64_t validation_drop_cnt; }; /** * struct hl_dmabuf_priv - a dma-buf private object. * @dmabuf: pointer to dma-buf object. * @ctx: pointer to the dma-buf owner's context. * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported * where virtual memory is supported. * @memhash_hnode: pointer to the memhash node. this object holds the export count. * @device_address: physical address of the device's memory. Relevant only * if phys_pg_pack is NULL (dma-buf was exported from address). * The total size can be taken from the dmabuf object. */ struct hl_dmabuf_priv { struct dma_buf *dmabuf; struct hl_ctx *ctx; struct hl_vm_phys_pg_pack *phys_pg_pack; struct hl_vm_hash_node *memhash_hnode; uint64_t device_address; }; #define HL_CS_OUTCOME_HISTORY_LEN 256 /** * struct hl_cs_outcome - represents a single completed CS outcome * @list_link: link to either container's used list or free list * @map_link: list to the container hash map * @ts: completion ts * @seq: the original cs sequence * @error: error code cs completed with, if any */ struct hl_cs_outcome { struct list_head list_link; struct hlist_node map_link; ktime_t ts; u64 seq; int error; }; /** * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes * @outcome_map: index of completed CS searchable by sequence number * @used_list: list of outcome objects currently in use * @free_list: list of outcome objects currently not in use * @nodes_pool: a static pool of pre-allocated outcome objects * @db_lock: any operation on the store must take this lock */ struct hl_cs_outcome_store { DECLARE_HASHTABLE(outcome_map, 8); struct list_head used_list; struct list_head free_list; struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; spinlock_t db_lock; }; /** * struct hl_ctx - user/kernel context. * @mem_hash: holds mapping from virtual address to virtual memory area * descriptor (hl_vm_phys_pg_list or hl_userptr). * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from * MMU-hop-page physical address to its host-resident * pgt_info structure. * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). * @hdev: pointer to the device structure. * @refcount: reference counter for the context. Context is released only when * this hits 0. It is incremented on CS and CS_WAIT. * @cs_pending: array of hl fence objects representing pending CS. * @outcome_store: storage data structure used to remember outcomes of completed * command submissions for a long time after CS id wraparound. * @va_range: holds available virtual addresses for host and dram mappings. * @mem_hash_lock: protects the mem_hash. * @hw_block_list_lock: protects the HW block memory list. * @debugfs_list: node in debugfs list of contexts. * @hw_block_mem_list: list of HW block virtual mapped addresses. * @cs_counters: context command submission counters. * @cb_va_pool: device VA pool for command buffers which are mapped to the * device's MMU. * @sig_mgr: encaps signals handle manager. * @cb_va_pool_base: the base address for the device VA pool * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed * to user so user could inquire about CS. It is used as * index to cs_pending array. * @dram_default_hops: array that holds all hops addresses needed for default * DRAM mapping. * @cs_lock: spinlock to protect cs_sequence. * @dram_phys_mem: amount of used physical DRAM memory by this context. * @thread_ctx_switch_token: token to prevent multiple threads of the same * context from running the context switch phase. * Only a single thread should run it. * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run * the context switch phase from moving to their * execution phase before the context switch phase * has finished. * @asid: context's unique address space ID in the device's MMU. * @handle: context's opaque handle for user */ struct hl_ctx { DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); struct hl_fpriv *hpriv; struct hl_device *hdev; struct kref refcount; struct hl_fence **cs_pending; struct hl_cs_outcome_store outcome_store; struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; struct mutex mem_hash_lock; struct mutex hw_block_list_lock; struct list_head debugfs_list; struct list_head hw_block_mem_list; struct hl_cs_counters_atomic cs_counters; struct gen_pool *cb_va_pool; struct hl_encaps_signals_mgr sig_mgr; u64 cb_va_pool_base; u64 cs_sequence; u64 *dram_default_hops; spinlock_t cs_lock; atomic64_t dram_phys_mem; atomic_t thread_ctx_switch_token; u32 thread_ctx_switch_wait_token; u32 asid; u32 handle; }; /** * struct hl_ctx_mgr - for handling multiple contexts. * @lock: protects ctx_handles. * @handles: idr to hold all ctx handles. */ struct hl_ctx_mgr { struct mutex lock; struct idr handles; }; /* * COMMAND SUBMISSIONS */ /** * struct hl_userptr - memory mapping chunk information * @vm_type: type of the VM. * @job_node: linked-list node for hanging the object on the Job's list. * @pages: pointer to struct page array * @npages: size of @pages array * @sgt: pointer to the scatter-gather table that holds the pages. * @dir: for DMA unmapping, the direction must be supplied, so save it. * @debugfs_list: node in debugfs list of command submissions. * @pid: the pid of the user process owning the memory * @addr: user-space virtual address of the start of the memory area. * @size: size of the memory area to pin & map. * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. */ struct hl_userptr { enum vm_type vm_type; /* must be first */ struct list_head job_node; struct page **pages; unsigned int npages; struct sg_table *sgt; enum dma_data_direction dir; struct list_head debugfs_list; pid_t pid; u64 addr; u64 size; u8 dma_mapped; }; /** * struct hl_cs - command submission. * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. * @ctx: the context this CS belongs to. * @job_list: list of the CS's jobs in the various queues. * @job_lock: spinlock for the CS's jobs list. Needed for free_job. * @refcount: reference counter for usage of the CS. * @fence: pointer to the fence object of this CS. * @signal_fence: pointer to the fence object of the signal CS (used by wait * CS only). * @finish_work: workqueue object to run when CS is completed by H/W. * @work_tdr: delayed work node for TDR. * @mirror_node : node in device mirror list of command submissions. * @staged_cs_node: node in the staged cs list. * @debugfs_list: node in debugfs list of command submissions. * @encaps_sig_hdl: holds the encaps signals handle. * @sequence: the sequence number of this CS. * @staged_sequence: the sequence of the staged submission this CS is part of, * relevant only if staged_cs is set. * @timeout_jiffies: cs timeout in jiffies. * @submission_time_jiffies: submission time of the cs * @type: CS_TYPE_*. * @jobs_cnt: counter of submitted jobs on all queues. * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. * @completion_timestamp: timestamp of the last completed cs job. * @sob_addr_offset: sob offset from the configuration base address. * @initial_sob_count: count of completed signals in SOB before current submission of signal or * cs with encaps signals. * @submitted: true if CS was submitted to H/W. * @completed: true if CS was completed by device. * @timedout : true if CS was timedout. * @tdr_active: true if TDR was activated for this CS (to prevent * double TDR activation). * @aborted: true if CS was aborted due to some device error. * @timestamp: true if a timestamp must be captured upon completion. * @staged_last: true if this is the last staged CS and needs completion. * @staged_first: true if this is the first staged CS and we need to receive * timeout for this CS. * @staged_cs: true if this CS is part of a staged submission. * @skip_reset_on_timeout: true if we shall not reset the device in case * timeout occurs (debug scenario). * @encaps_signals: true if this CS has encaps reserved signals. */ struct hl_cs { u16 *jobs_in_queue_cnt; struct hl_ctx *ctx; struct list_head job_list; spinlock_t job_lock; struct kref refcount; struct hl_fence *fence; struct hl_fence *signal_fence; struct work_struct finish_work; struct delayed_work work_tdr; struct list_head mirror_node; struct list_head staged_cs_node; struct list_head debugfs_list; struct hl_cs_encaps_sig_handle *encaps_sig_hdl; ktime_t completion_timestamp; u64 sequence; u64 staged_sequence; u64 timeout_jiffies; u64 submission_time_jiffies; enum hl_cs_type type; u32 jobs_cnt; u32 encaps_sig_hdl_id; u32 sob_addr_offset; u16 initial_sob_count; u8 submitted; u8 completed; u8 timedout; u8 tdr_active; u8 aborted; u8 timestamp; u8 staged_last; u8 staged_first; u8 staged_cs; u8 skip_reset_on_timeout; u8 encaps_signals; }; /** * struct hl_cs_job - command submission job. * @cs_node: the node to hang on the CS jobs list. * @cs: the CS this job belongs to. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @finish_work: workqueue object to run when job is completed. * @userptr_list: linked-list of userptr mappings that belong to this job and * wait for completion. * @debugfs_list: node in debugfs list of command submission jobs. * @refcount: reference counter for usage of the CS job. * @queue_type: the type of the H/W queue this job is submitted to. * @timestamp: timestamp upon job completion * @id: the id of this job inside a CS. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @job_cb_size: the actual size of the CB that we put on the queue. * @encaps_sig_wait_offset: encapsulated signals offset, which allow user * to wait on part of the reserved signals. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. */ struct hl_cs_job { struct list_head cs_node; struct hl_cs *cs; struct hl_cb *user_cb; struct hl_cb *patched_cb; struct work_struct finish_work; struct list_head userptr_list; struct list_head debugfs_list; struct kref refcount; enum hl_queue_type queue_type; ktime_t timestamp; u32 id; u32 hw_queue_id; u32 user_cb_size; u32 job_cb_size; u32 encaps_sig_wait_offset; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; }; /** * struct hl_cs_parser - command submission parser properties. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @job_userptr_list: linked-list of userptr mappings that belong to the related * job and wait for completion. * @cs_sequence: the sequence number of the related CS. * @queue_type: the type of the H/W queue this job is submitted to. * @ctx_id: the ID of the context the related CS belongs to. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @patched_cb_size: the size of the CB after parsing. * @job_id: the id of the related job inside the related CS. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. * @completion: true if we need completion for this CS. */ struct hl_cs_parser { struct hl_cb *user_cb; struct hl_cb *patched_cb; struct list_head *job_userptr_list; u64 cs_sequence; enum hl_queue_type queue_type; u32 ctx_id; u32 hw_queue_id; u32 user_cb_size; u32 patched_cb_size; u8 job_id; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; u8 completion; }; /* * MEMORY STRUCTURE */ /** * struct hl_vm_hash_node - hash element from virtual address to virtual * memory area descriptor (hl_vm_phys_pg_list or * hl_userptr). * @node: node to hang on the hash table in context object. * @vaddr: key virtual address. * @handle: memory handle for device memory allocation. * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). * @export_cnt: number of exports from within the VA block. */ struct hl_vm_hash_node { struct hlist_node node; u64 vaddr; u64 handle; void *ptr; int export_cnt; }; /** * struct hl_vm_hw_block_list_node - list element from user virtual address to * HW block id. * @node: node to hang on the list in context object. * @ctx: the context this node belongs to. * @vaddr: virtual address of the HW block. * @block_size: size of the block. * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. * @id: HW block id (handle). */ struct hl_vm_hw_block_list_node { struct list_head node; struct hl_ctx *ctx; unsigned long vaddr; u32 block_size; u32 mapped_size; u32 id; }; /** * struct hl_vm_phys_pg_pack - physical page pack. * @vm_type: describes the type of the virtual area descriptor. * @pages: the physical page array. * @npages: num physical pages in the pack. * @total_size: total size of all the pages in this list. * @exported_size: buffer exported size. * @node: used to attach to deletion list that is used when all the allocations are cleared * at the teardown of the context. * @mapping_cnt: number of shared mappings. * @asid: the context related to this list. * @page_size: size of each page in the pack. * @flags: HL_MEM_* flags related to this list. * @handle: the provided handle related to this list. * @offset: offset from the first page. * @contiguous: is contiguous physical memory. * @created_from_userptr: is product of host virtual address. */ struct hl_vm_phys_pg_pack { enum vm_type vm_type; /* must be first */ u64 *pages; u64 npages; u64 total_size; u64 exported_size; struct list_head node; atomic_t mapping_cnt; u32 asid; u32 page_size; u32 flags; u32 handle; u32 offset; u8 contiguous; u8 created_from_userptr; }; /** * struct hl_vm_va_block - virtual range block information. * @node: node to hang on the virtual range list in context object. * @start: virtual range start address. * @end: virtual range end address. * @size: virtual range size. */ struct hl_vm_va_block { struct list_head node; u64 start; u64 end; u64 size; }; /** * struct hl_vm - virtual memory manager for MMU. * @dram_pg_pool: pool for DRAM physical pages of 2MB. * @dram_pg_pool_refcount: reference counter for the pool usage. * @idr_lock: protects the phys_pg_list_handles. * @phys_pg_pack_handles: idr to hold all device allocations handles. * @init_done: whether initialization was done. We need this because VM * initialization might be skipped during device initialization. */ struct hl_vm { struct gen_pool *dram_pg_pool; struct kref dram_pg_pool_refcount; spinlock_t idr_lock; struct idr phys_pg_pack_handles; u8 init_done; }; /* * DEBUG, PROFILING STRUCTURE */ /** * struct hl_debug_params - Coresight debug parameters. * @input: pointer to component specific input parameters. * @output: pointer to component specific output parameters. * @output_size: size of output buffer. * @reg_idx: relevant register ID. * @op: component operation to execute. * @enable: true if to enable component debugging, false otherwise. */ struct hl_debug_params { void *input; void *output; u32 output_size; u32 reg_idx; u32 op; bool enable; }; /** * struct hl_notifier_event - holds the notifier data structure * @eventfd: the event file descriptor to raise the notifications * @lock: mutex lock to protect the notifier data flows * @events_mask: indicates the bitmap events */ struct hl_notifier_event { struct eventfd_ctx *eventfd; struct mutex lock; u64 events_mask; }; /* * FILE PRIVATE STRUCTURE */ /** * struct hl_fpriv - process information stored in FD private data. * @hdev: habanalabs device structure. * @filp: pointer to the given file structure. * @taskpid: current process ID. * @ctx: current executing context. TODO: remove for multiple ctx per process * @ctx_mgr: context manager to handle multiple context for this FD. * @mem_mgr: manager descriptor for memory exportable via mmap * @notifier_event: notifier eventfd towards user process * @debugfs_list: list of relevant ASIC debugfs. * @dev_node: node in the device list of file private data * @refcount: number of related contexts. * @restore_phase_mutex: lock for context switch and restore phase. * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple * ctx per process. */ struct hl_fpriv { struct hl_device *hdev; struct file *filp; struct pid *taskpid; struct hl_ctx *ctx; struct hl_ctx_mgr ctx_mgr; struct hl_mem_mgr mem_mgr; struct hl_notifier_event notifier_event; struct list_head debugfs_list; struct list_head dev_node; struct kref refcount; struct mutex restore_phase_mutex; struct mutex ctx_lock; }; /* * DebugFS */ /** * struct hl_info_list - debugfs file ops. * @name: file name. * @show: function to output information. * @write: function to write to the file. */ struct hl_info_list { const char *name; int (*show)(struct seq_file *s, void *data); ssize_t (*write)(struct file *file, const char __user *buf, size_t count, loff_t *f_pos); }; /** * struct hl_debugfs_entry - debugfs dentry wrapper. * @info_ent: dentry related ops. * @dev_entry: ASIC specific debugfs manager. */ struct hl_debugfs_entry { const struct hl_info_list *info_ent; struct hl_dbg_device_entry *dev_entry; }; /** * struct hl_dbg_device_entry - ASIC specific debugfs manager. * @root: root dentry. * @hdev: habanalabs device structure. * @entry_arr: array of available hl_debugfs_entry. * @file_list: list of available debugfs files. * @file_mutex: protects file_list. * @cb_list: list of available CBs. * @cb_spinlock: protects cb_list. * @cs_list: list of available CSs. * @cs_spinlock: protects cs_list. * @cs_job_list: list of available CB jobs. * @cs_job_spinlock: protects cs_job_list. * @userptr_list: list of available userptrs (virtual memory chunk descriptor). * @userptr_spinlock: protects userptr_list. * @ctx_mem_hash_list: list of available contexts with MMU mappings. * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. * @data_dma_blob_desc: data DMA descriptor of blob. * @mon_dump_blob_desc: monitor dump descriptor of blob. * @state_dump: data of the system states in case of a bad cs. * @state_dump_sem: protects state_dump. * @addr: next address to read/write from/to in read/write32. * @mmu_addr: next virtual address to translate to physical address in mmu_show. * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. * @userptr_lookup: the target user ptr to look up for on demand. * @mmu_asid: ASID to use while translating in mmu_show. * @state_dump_head: index of the latest state dump * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. */ struct hl_dbg_device_entry { struct dentry *root; struct hl_device *hdev; struct hl_debugfs_entry *entry_arr; struct list_head file_list; struct mutex file_mutex; struct list_head cb_list; spinlock_t cb_spinlock; struct list_head cs_list; spinlock_t cs_spinlock; struct list_head cs_job_list; spinlock_t cs_job_spinlock; struct list_head userptr_list; spinlock_t userptr_spinlock; struct list_head ctx_mem_hash_list; struct mutex ctx_mem_hash_mutex; struct debugfs_blob_wrapper data_dma_blob_desc; struct debugfs_blob_wrapper mon_dump_blob_desc; char *state_dump[HL_STATE_DUMP_HIST_LEN]; struct rw_semaphore state_dump_sem; u64 addr; u64 mmu_addr; u64 mmu_cap_mask; u64 userptr_lookup; u32 mmu_asid; u32 state_dump_head; u8 i2c_bus; u8 i2c_addr; u8 i2c_reg; u8 i2c_len; }; /** * struct hl_hw_obj_name_entry - single hw object name, member of * hl_state_dump_specs * @node: link to the containing hash table * @name: hw object name * @id: object identifier */ struct hl_hw_obj_name_entry { struct hlist_node node; const char *name; u32 id; }; enum hl_state_dump_specs_props { SP_SYNC_OBJ_BASE_ADDR, SP_NEXT_SYNC_OBJ_ADDR, SP_SYNC_OBJ_AMOUNT, SP_MON_OBJ_WR_ADDR_LOW, SP_MON_OBJ_WR_ADDR_HIGH, SP_MON_OBJ_WR_DATA, SP_MON_OBJ_ARM_DATA, SP_MON_OBJ_STATUS, SP_MONITORS_AMOUNT, SP_TPC0_CMDQ, SP_TPC0_CFG_SO, SP_NEXT_TPC, SP_MME_CMDQ, SP_MME_CFG_SO, SP_NEXT_MME, SP_DMA_CMDQ, SP_DMA_CFG_SO, SP_DMA_QUEUES_OFFSET, SP_NUM_OF_MME_ENGINES, SP_SUB_MME_ENG_NUM, SP_NUM_OF_DMA_ENGINES, SP_NUM_OF_TPC_ENGINES, SP_ENGINE_NUM_OF_QUEUES, SP_ENGINE_NUM_OF_STREAMS, SP_ENGINE_NUM_OF_FENCES, SP_FENCE0_CNT_OFFSET, SP_FENCE0_RDATA_OFFSET, SP_CP_STS_OFFSET, SP_NUM_CORES, SP_MAX }; enum hl_sync_engine_type { ENGINE_TPC, ENGINE_DMA, ENGINE_MME, }; /** * struct hl_mon_state_dump - represents a state dump of a single monitor * @id: monitor id * @wr_addr_low: address monitor will write to, low bits * @wr_addr_high: address monitor will write to, high bits * @wr_data: data monitor will write * @arm_data: register value containing monitor configuration * @status: monitor status */ struct hl_mon_state_dump { u32 id; u32 wr_addr_low; u32 wr_addr_high; u32 wr_data; u32 arm_data; u32 status; }; /** * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry * @engine_type: type of the engine * @engine_id: id of the engine * @sync_id: id of the sync object */ struct hl_sync_to_engine_map_entry { struct hlist_node node; enum hl_sync_engine_type engine_type; u32 engine_id; u32 sync_id; }; /** * struct hl_sync_to_engine_map - maps sync object id to associated engine id * @tb: hash table containing the mapping, each element is of type * struct hl_sync_to_engine_map_entry */ struct hl_sync_to_engine_map { DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); }; /** * struct hl_state_dump_specs_funcs - virtual functions used by the state dump * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine * @print_single_monitor: format monitor data as string * @monitor_valid: return true if given monitor dump is valid * @print_fences_single_engine: format fences data as string */ struct hl_state_dump_specs_funcs { int (*gen_sync_to_engine_map)(struct hl_device *hdev, struct hl_sync_to_engine_map *map); int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, struct hl_device *hdev, struct hl_mon_state_dump *mon); int (*monitor_valid)(struct hl_mon_state_dump *mon); int (*print_fences_single_engine)(struct hl_device *hdev, u64 base_offset, u64 status_base_offset, enum hl_sync_engine_type engine_type, u32 engine_id, char **buf, size_t *size, size_t *offset); }; /** * struct hl_state_dump_specs - defines ASIC known hw objects names * @so_id_to_str_tb: sync objects names index table * @monitor_id_to_str_tb: monitors names index table * @funcs: virtual functions used for state dump * @sync_namager_names: readable names for sync manager if available (ex: N_E) * @props: pointer to a per asic const props array required for state dump */ struct hl_state_dump_specs { DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); struct hl_state_dump_specs_funcs funcs; const char * const *sync_namager_names; s64 *props; }; /* * DEVICES */ #define HL_STR_MAX 32 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. */ #define HL_MAX_MINORS 256 /* * Registers read & write functions. */ u32 hl_rreg(struct hl_device *hdev, u32 reg); void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ hdev->asic_funcs->rreg(hdev, (reg))) #define WREG32_P(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= (mask); \ tmp_ |= ((val) & ~(mask)); \ WREG32(reg, tmp_); \ } while (0) #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK #define WREG32_FIELD(reg, offset, field, val) \ WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ ~REG_FIELD_MASK(reg, field)) | \ (val) << REG_FIELD_SHIFT(reg, field)) /* Timeout should be longer when working with simulator but cap the * increased timeout to some maximum */ #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ ({ \ ktime_t __timeout; \ u32 __elbi_read; \ int __rc = 0; \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ might_sleep_if(sleep_us); \ for (;;) { \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ if (__rc) \ break; \ (val) = __elbi_read; \ } else {\ (val) = RREG32(lower_32_bits(addr)); \ } \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ if (__rc) \ break; \ (val) = __elbi_read; \ } else {\ (val) = RREG32(lower_32_bits(addr)); \ } \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ }) #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) /* * poll array of register addresses. * condition is satisfied if all registers values match the expected value. * once some register in the array satisfies the condition it will not be polled again, * this is done both for efficiency and due to some registers are "clear on read". * TODO: use read from PCI bar in other places in the code (SW-91406) */ #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, elbi) \ ({ \ ktime_t __timeout; \ u64 __elem_bitmask; \ u32 __read_val; \ u8 __arr_idx; \ int __rc = 0; \ \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ might_sleep_if(sleep_us); \ if (arr_size >= 64) \ __rc = -EINVAL; \ else \ __elem_bitmask = BIT_ULL(arr_size) - 1; \ for (;;) { \ if (__rc) \ break; \ for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ continue; \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ if (__rc) \ break; \ } else { \ __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ } \ if (__read_val == (expected_val)) \ __elem_bitmask &= ~BIT_ULL(__arr_idx); \ } \ if (__rc || (__elem_bitmask == 0)) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ break; \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ }) #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us) \ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, false) #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us) \ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, true) /* * address in this macro points always to a memory location in the * host's (server's) memory. That location is updated asynchronously * either by the direct access of the device or by another core. * * To work both in LE and BE architectures, we need to distinguish between the * two states (device or another core updates the memory location). Therefore, * if mem_written_by_device is true, the host memory being polled will be * updated directly by the device. If false, the host memory being polled will * be updated by host CPU. Required so host knows whether or not the memory * might need to be byte-swapped before returning value to caller. */ #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ mem_written_by_device) \ ({ \ ktime_t __timeout; \ \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ might_sleep_if(sleep_us); \ for (;;) { \ /* Verify we read updates done by other cores or by device */ \ mb(); \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ ({ \ struct user_mapped_block *p = blk; \ \ p->address = base; \ p->size = sz; \ }) #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ ({ \ usr_intr.hdev = hdev; \ usr_intr.interrupt_id = intr_id; \ usr_intr.type = intr_type; \ INIT_LIST_HEAD(&usr_intr.wait_list_head); \ spin_lock_init(&usr_intr.wait_list_lock); \ }) struct hwmon_chip_info; /** * struct hl_device_reset_work - reset work wrapper. * @reset_work: reset work to be done. * @hdev: habanalabs device structure. * @flags: reset flags. */ struct hl_device_reset_work { struct delayed_work reset_work; struct hl_device *hdev; u32 flags; }; /** * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for * allocating hops. * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. */ struct hl_mmu_hr_priv { struct gen_pool *mmu_pgt_pool; struct pgt_info *mmu_asid_hop0; }; /** * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. * @mmu_shadow_hop0: shadow array of hop0 tables. */ struct hl_mmu_dr_priv { struct gen_pool *mmu_pgt_pool; void *mmu_shadow_hop0; }; /** * struct hl_mmu_priv - used for holding per-device mmu internal information. * @dr: information on the device-resident MMU, when exists. * @hr: information on the host-resident MMU, when exists. */ struct hl_mmu_priv { struct hl_mmu_dr_priv dr; struct hl_mmu_hr_priv hr; }; /** * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry * that was created in order to translate a virtual address to a * physical one. * @hop_addr: The address of the hop. * @hop_pte_addr: The address of the hop entry. * @hop_pte_val: The value in the hop entry. */ struct hl_mmu_per_hop_info { u64 hop_addr; u64 hop_pte_addr; u64 hop_pte_val; }; /** * struct hl_mmu_hop_info - A structure describing the TLB hops and their * hop-entries that were created in order to translate a virtual address to a * physical one. * @scrambled_vaddr: The value of the virtual address after scrambling. This * address replaces the original virtual-address when mapped * in the MMU tables. * @unscrambled_paddr: The un-scrambled physical address. * @hop_info: Array holding the per-hop information used for the translation. * @used_hops: The number of hops used for the translation. * @range_type: virtual address range type. */ struct hl_mmu_hop_info { u64 scrambled_vaddr; u64 unscrambled_paddr; struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; u32 used_hops; enum hl_va_range_type range_type; }; /** * struct hl_hr_mmu_funcs - Device related host resident MMU functions. * @get_hop0_pgt_info: get page table info structure for HOP0. * @get_pgt_info: get page table info structure for HOP other than HOP0. * @add_pgt_info: add page table info structure to hash. * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. */ struct hl_hr_mmu_funcs { struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, struct hl_mmu_hop_info *hops, u64 virt_addr, bool *is_huge); }; /** * struct hl_mmu_funcs - Device related MMU functions. * @init: initialize the MMU module. * @fini: release the MMU module. * @ctx_init: Initialize a context for using the MMU module. * @ctx_fini: disable a ctx from using the mmu module. * @map: maps a virtual address to physical address for a context. * @unmap: unmap a virtual address of a context. * @flush: flush all writes from all cores to reach device MMU. * @swap_out: marks all mapping of the given context as swapped out. * @swap_in: marks all mapping of the given context as swapped in. * @get_tlb_info: returns the list of hops and hop-entries used that were * created in order to translate the giver virtual address to a * physical one. * @hr_funcs: functions specific to host resident MMU. */ struct hl_mmu_funcs { int (*init)(struct hl_device *hdev); void (*fini)(struct hl_device *hdev); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr); int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); void (*flush)(struct hl_ctx *ctx); void (*swap_out)(struct hl_ctx *ctx); void (*swap_in)(struct hl_ctx *ctx); int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); struct hl_hr_mmu_funcs hr_funcs; }; /** * struct hl_prefetch_work - prefetch work structure handler * @prefetch_work: actual work struct. * @ctx: compute context. * @va: virtual address to pre-fetch. * @size: pre-fetch size. * @flags: operation flags. * @asid: ASID for maintenance operation. */ struct hl_prefetch_work { struct work_struct prefetch_work; struct hl_ctx *ctx; u64 va; u64 size; u32 flags; u32 asid; }; /* * number of user contexts allowed to call wait_for_multi_cs ioctl in * parallel */ #define MULTI_CS_MAX_USER_CTX 2 /** * struct multi_cs_completion - multi CS wait completion. * @completion: completion of any of the CS in the list * @lock: spinlock for the completion structure * @timestamp: timestamp for the multi-CS completion * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS * is waiting * @used: 1 if in use, otherwise 0 */ struct multi_cs_completion { struct completion completion; spinlock_t lock; s64 timestamp; u32 stream_master_qid_map; u8 used; }; /** * struct multi_cs_data - internal data for multi CS call * @ctx: pointer to the context structure * @fence_arr: array of fences of all CSs * @seq_arr: array of CS sequence numbers * @timeout_jiffies: timeout in jiffies for waiting for CS to complete * @timestamp: timestamp of first completed CS * @wait_status: wait for CS status * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) * @arr_len: fence_arr and seq_arr array length * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. */ struct multi_cs_data { struct hl_ctx *ctx; struct hl_fence **fence_arr; u64 *seq_arr; s64 timeout_jiffies; s64 timestamp; long wait_status; u32 completion_bitmap; u8 arr_len; u8 gone_cs; u8 update_ts; }; /** * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp * @start: timestamp taken when 'start' event is received in driver * @end: timestamp taken when 'end' event is received in driver */ struct hl_clk_throttle_timestamp { ktime_t start; ktime_t end; }; /** * struct hl_clk_throttle - keeps current/last clock throttling timestamps * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER * index 1 refers to THERMAL * @lock: protects this structure as it can be accessed from both event queue * context and info_ioctl context * @current_reason: bitmask represents the current clk throttling reasons * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load */ struct hl_clk_throttle { struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; struct mutex lock; u32 current_reason; u32 aggregated_reason; }; /** * struct user_mapped_block - describes a hw block allowed to be mmapped by user * @address: physical HW block address * @size: allowed size for mmap */ struct user_mapped_block { u32 address; u32 size; }; /** * struct cs_timeout_info - info of last CS timeout occurred. * @timestamp: CS timeout timestamp. * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, * so the first (root cause) CS timeout will not be overwritten. * @seq: CS timeout sequence number. */ struct cs_timeout_info { ktime_t timestamp; atomic_t write_enable; u64 seq; }; #define MAX_QMAN_STREAMS_INFO 4 #define OPCODE_INFO_MAX_ADDR_SIZE 8 /** * struct undefined_opcode_info - info about last undefined opcode error * @timestamp: timestamp of the undefined opcode error * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ * entries. In case all streams array entries are * filled with values, it means the execution was in Lower-CP. * @cq_addr: the address of the current handled command buffer * @cq_size: the size of the current handled command buffer * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. * should be equal to 1 in case of undefined opcode * in Upper-CP (specific stream) and equal to 4 in case * of undefined opcode in Lower-CP. * @engine_id: engine-id that the error occurred on * @stream_id: the stream id the error occurred on. In case the stream equals to * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. * @write_enable: if set, writing to undefined opcode parameters in the structure * is enable so the first (root cause) undefined opcode will not be * overwritten. */ struct undefined_opcode_info { ktime_t timestamp; u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; u64 cq_addr; u32 cq_size; u32 cb_addr_streams_len; u32 engine_id; u32 stream_id; bool write_enable; }; /** * struct page_fault_info - page fault information. * @page_fault: holds information collected during a page fault. * @user_mappings: buffer containing user mappings. * @num_of_user_mappings: number of user mappings. * @page_fault_detected: if set as 1, then a page-fault was discovered for the * first time after the driver has finished booting-up. * Since we're looking for the page-fault's root cause, * we don't care of the others that might follow it- * so once changed to 1, it will remain that way. * @page_fault_info_available: indicates that a page fault info is now available. */ struct page_fault_info { struct hl_page_fault_info page_fault; struct hl_user_mapping *user_mappings; u64 num_of_user_mappings; atomic_t page_fault_detected; bool page_fault_info_available; }; /** * struct razwi_info - RAZWI information. * @razwi: holds information collected during a RAZWI * @razwi_detected: if set as 1, then a RAZWI was discovered for the * first time after the driver has finished booting-up. * Since we're looking for the RAZWI's root cause, * we don't care of the others that might follow it- * so once changed to 1, it will remain that way. * @razwi_info_available: indicates that a RAZWI info is now available. */ struct razwi_info { struct hl_info_razwi_event razwi; atomic_t razwi_detected; bool razwi_info_available; }; /** * struct hw_err_info - HW error information. * @event: holds information on the event. * @event_detected: if set as 1, then a HW event was discovered for the * first time after the driver has finished booting-up. * currently we assume that only fatal events (that require hard-reset) are * reported so we don't care of the others that might follow it. * so once changed to 1, it will remain that way. * TODO: support multiple events. * @event_info_available: indicates that a HW event info is now available. */ struct hw_err_info { struct hl_info_hw_err_event event; atomic_t event_detected; bool event_info_available; }; /** * struct fw_err_info - FW error information. * @event: holds information on the event. * @event_detected: if set as 1, then a FW event was discovered for the * first time after the driver has finished booting-up. * currently we assume that only fatal events (that require hard-reset) are * reported so we don't care of the others that might follow it. * so once changed to 1, it will remain that way. * TODO: support multiple events. * @event_info_available: indicates that a HW event info is now available. */ struct fw_err_info { struct hl_info_fw_err_event event; atomic_t event_detected; bool event_info_available; }; /** * struct hl_error_info - holds information collected during an error. * @cs_timeout: CS timeout error information. * @razwi_info: RAZWI information. * @undef_opcode: undefined opcode information. * @page_fault_info: page fault information. * @hw_err: (fatal) hardware error information. * @fw_err: firmware error information. */ struct hl_error_info { struct cs_timeout_info cs_timeout; struct razwi_info razwi_info; struct undefined_opcode_info undef_opcode; struct page_fault_info page_fault_info; struct hw_err_info hw_err; struct fw_err_info fw_err; }; /** * struct hl_reset_info - holds current device reset information. * @lock: lock to protect critical reset flows. * @compute_reset_cnt: number of compute resets since the driver was loaded. * @hard_reset_cnt: number of hard resets since the driver was loaded. * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, * here we hold the hard reset flags. * @in_reset: is device in reset flow. * @in_compute_reset: Device is currently in reset but not in hard-reset. * @needs_reset: true if reset_on_lockup is false and device should be reset * due to lockup. * @hard_reset_pending: is there a hard reset work pending. * @curr_reset_cause: saves an enumerated reset cause when a hard reset is * triggered, and cleared after it is shared with preboot. * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden * with a new value on next reset * @reset_trigger_repeated: set if device reset is triggered more than once with * same cause. * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to * complete instead. * @watchdog_active: true if a device release watchdog work is scheduled. */ struct hl_reset_info { spinlock_t lock; u32 compute_reset_cnt; u32 hard_reset_cnt; u32 hard_reset_schedule_flags; u8 in_reset; u8 in_compute_reset; u8 needs_reset; u8 hard_reset_pending; u8 curr_reset_cause; u8 prev_reset_trigger; u8 reset_trigger_repeated; u8 skip_reset_on_timeout; u8 watchdog_active; }; /** * struct hl_device - habanalabs device structure. * @pdev: pointer to PCI device, can be NULL in case of simulator device. * @pcie_bar_phys: array of available PCIe bars physical addresses. * (required only for PCI address match mode) * @pcie_bar: array of available PCIe bars virtual addresses. * @rmmio: configuration area address on SRAM. * @hclass: pointer to the habanalabs class. * @cdev: related char device. * @cdev_ctrl: char device for control operations only (INFO IOCTL) * @dev: related kernel basic device structure. * @dev_ctrl: related kernel device structure for the control device * @work_heartbeat: delayed work for CPU-CP is-alive check. * @device_reset_work: delayed work which performs hard reset * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release * device upon certain error cases. * @asic_name: ASIC specific name. * @asic_type: ASIC specific type. * @completion_queue: array of hl_cq. * @user_interrupt: array of hl_user_interrupt. upon the corresponding user * interrupt, driver will monitor the list of fences * registered to this interrupt. * @tpc_interrupt: single TPC interrupt for all TPCs. * @unexpected_error_interrupt: single interrupt for unexpected user error indication. * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. * upon any user CQ interrupt, driver will monitor the * list of fences registered to this common structure. * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. * @shadow_cs_queue: pointer to a shadow queue that holds pointers to * outstanding command submissions. * @cq_wq: work queues of completion queues for executing work in process * context. * @eq_wq: work queue of event queue for executing work in process context. * @cs_cmplt_wq: work queue of CS completions for executing work in process * context. * @ts_free_obj_wq: work queue for timestamp registration objects release. * @prefetch_wq: work queue for MMU pre-fetch operations. * @reset_wq: work queue for device reset procedure. * @kernel_ctx: Kernel driver context structure. * @kernel_queues: array of hl_hw_queue. * @cs_mirror_list: CS mirror list for TDR. * @cs_mirror_lock: protects cs_mirror_list. * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. * @event_queue: event queue for IRQ from CPU-CP. * @dma_pool: DMA pool for small allocations. * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. * @asid_bitmap: holds used/available ASIDs. * @asid_mutex: protects asid_bitmap. * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. * @debug_lock: protects critical section of setting debug mode for device * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the * page tables are per context, the invalidation h/w is per MMU. * Therefore, we can't allow multiple contexts (we only have two, * user and kernel) to access the invalidation h/w at the same time. * In addition, any change to the PGT, modifying the MMU hash or * walking the PGT requires talking this lock. * @asic_prop: ASIC specific immutable properties. * @asic_funcs: ASIC specific functions. * @asic_specific: ASIC specific information to use only from ASIC files. * @vm: virtual memory manager for MMU. * @hwmon_dev: H/W monitor device. * @hl_chip_info: ASIC's sensors information. * @device_status_description: device status description. * @hl_debugfs: device's debugfs manager. * @cb_pool: list of pre allocated CBs. * @cb_pool_lock: protects the CB pool. * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. * @internal_cb_pool_dma_addr: internal command buffer pool dma address. * @internal_cb_pool: internal command buffer memory pool. * @internal_cb_va_base: internal cb pool mmu virtual address base * @fpriv_list: list of file private data structures. Each structure is created * when a user opens the device * @fpriv_ctrl_list: list of file private data structures. Each structure is created * when a user opens the control device * @fpriv_list_lock: protects the fpriv_list * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list * @aggregated_cs_counters: aggregated cs counters among all contexts * @mmu_priv: device-specific MMU data. * @mmu_func: device-related MMU functions. * @dec: list of decoder sw instance * @fw_loader: FW loader manager. * @pci_mem_region: array of memory regions in the PCI * @state_dump_specs: constants and dictionaries needed to dump system state. * @multi_cs_completion: array of multi-CS completion. * @clk_throttling: holds information about current/previous clock throttling events * @captured_err_info: holds information about errors. * @reset_info: holds current device reset information. * @stream_master_qid_arr: pointer to array with QIDs of master streams. * @fw_inner_major_ver: the major of current loaded preboot inner version. * @fw_inner_minor_ver: the minor of current loaded preboot inner version. * @fw_sw_major_ver: the major of current loaded preboot SW version. * @fw_sw_minor_ver: the minor of current loaded preboot SW version. * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. * @dram_used_mem: current DRAM memory consumption. * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram * @timeout_jiffies: device CS timeout value. * @max_power: the max power of the device, as configured by the sysadmin. This * value is saved so in case of hard-reset, the driver will restore * this value and update the F/W after the re-initialization * @boot_error_status_mask: contains a mask of the device boot error status. * Each bit represents a different error, according to * the defines in hl_boot_if.h. If the bit is cleared, * the error will be ignored by the driver during * device initialization. Mainly used to debug and * workaround firmware bugs * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. * @last_successful_open_jif: timestamp (jiffies) of the last successful * device open. * @last_open_session_duration_jif: duration (jiffies) of the last device open * session. * @open_counter: number of successful device open operations. * @fw_poll_interval_usec: FW status poll interval in usec. * used for CPU boot status * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. * used for COMMs protocols cmds(COMMS_STS_*) * @dram_binning: contains mask of drams that is received from the f/w which indicates which * drams are binned-out * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which * tpc engines are binned-out * @dmabuf_export_cnt: number of dma-buf exporting. * @card_type: Various ASICs have several card types. This indicates the card * type of the current device. * @major: habanalabs kernel driver major. * @high_pll: high PLL profile frequency. * @decoder_binning: contains mask of decoder engines that is received from the f/w which * indicates which decoder engines are binned-out * @edma_binning: contains mask of edma engines that is received from the f/w which * indicates which edma engines are binned-out * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. * @rotator_binning: contains mask of rotators engines that is received from the f/w * which indicates which rotator engines are binned-out(Gaudi3 and above). * @id: device minor. * @id_control: minor of the control device. * @cdev_idx: char device index. Used for setting its name. * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit * addresses. * @is_in_dram_scrub: true if dram scrub operation is on going. * @disabled: is device disabled. * @late_init_done: is late init stage was done during initialization. * @hwmon_initialized: is H/W monitor sensors was initialized. * @reset_on_lockup: true if a reset should be done in case of stuck CS, false * otherwise. * @dram_default_page_mapping: is DRAM default page mapping enabled. * @memory_scrub: true to perform device memory scrub in various locations, * such as context-switch, context close, page free, etc. * @pmmu_huge_range: is a different virtual addresses range used for PMMU with * huge pages. * @init_done: is the initialization of the device done. * @device_cpu_disabled: is the device CPU disabled (due to timeouts) * @in_debug: whether the device is in a state where the profiling/tracing infrastructure * can be used. This indication is needed because in some ASICs we need to do * specific operations to enable that infrastructure. * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. * @stop_on_err: true if engines should stop on error. * @supports_sync_stream: is sync stream supported. * @sync_stream_queue_idx: helper index for sync stream queues initialization. * @collective_mon_idx: helper index for collective initialization * @supports_coresight: is CoreSight supported. * @supports_cb_mapping: is mapping a CB to the device's MMU supported. * @process_kill_trial_cnt: number of trials reset thread tried killing * user processes * @device_fini_pending: true if device_fini was called and might be * waiting for the reset thread to finish * @supports_staged_submission: true if staged submissions are supported * @device_cpu_is_halted: Flag to indicate whether the device CPU was already * halted. We can't halt it again because the COMMS * protocol will throw an error. Relevant only for * cases where Linux was not loaded to device CPU * @supports_wait_for_multi_cs: true if wait for multi CS is supported * @is_compute_ctx_active: Whether there is an active compute context executing. * @compute_ctx_in_release: true if the current compute context is being released. * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. * @reset_upon_device_release: reset the device when the user closes the file descriptor of the * device. * @supports_ctx_switch: true if a ctx switch is required upon first submission. * @support_preboot_binning: true if we support read binning info from preboot. * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. * @fw_components: Controls which f/w components to load to the device. There are multiple f/w * stages and sometimes we want to stop at a certain stage. Used only for testing. * @mmu_disable: Disable the device MMU(s). Used only for testing. * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. * @pldm: Whether we are running in Palladium environment. Used only for testing. * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from * the f/w. Used only for testing. * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. * Used only for testing. * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies * that the f/w is always alive. Used only for testing. */ struct hl_device { struct pci_dev *pdev; u64 pcie_bar_phys[HL_PCI_NUM_BARS]; void __iomem *pcie_bar[HL_PCI_NUM_BARS]; void __iomem *rmmio; struct class *hclass; struct cdev cdev; struct cdev cdev_ctrl; struct device *dev; struct device *dev_ctrl; struct delayed_work work_heartbeat; struct hl_device_reset_work device_reset_work; struct hl_device_reset_work device_release_watchdog_work; char asic_name[HL_STR_MAX]; char status[HL_DEV_STS_MAX][HL_STR_MAX]; enum hl_asic_type asic_type; struct hl_cq *completion_queue; struct hl_user_interrupt *user_interrupt; struct hl_user_interrupt tpc_interrupt; struct hl_user_interrupt unexpected_error_interrupt; struct hl_user_interrupt common_user_cq_interrupt; struct hl_user_interrupt common_decoder_interrupt; struct hl_cs **shadow_cs_queue; struct workqueue_struct **cq_wq; struct workqueue_struct *eq_wq; struct workqueue_struct *cs_cmplt_wq; struct workqueue_struct *ts_free_obj_wq; struct workqueue_struct *prefetch_wq; struct workqueue_struct *reset_wq; struct hl_ctx *kernel_ctx; struct hl_hw_queue *kernel_queues; struct list_head cs_mirror_list; spinlock_t cs_mirror_lock; struct hl_mem_mgr kernel_mem_mgr; struct hl_eq event_queue; struct dma_pool *dma_pool; void *cpu_accessible_dma_mem; dma_addr_t cpu_accessible_dma_address; struct gen_pool *cpu_accessible_dma_pool; unsigned long *asid_bitmap; struct mutex asid_mutex; struct mutex send_cpu_message_lock; struct mutex debug_lock; struct mutex mmu_lock; struct asic_fixed_properties asic_prop; const struct hl_asic_funcs *asic_funcs; void *asic_specific; struct hl_vm vm; struct device *hwmon_dev; struct hwmon_chip_info *hl_chip_info; struct hl_dbg_device_entry hl_debugfs; struct list_head cb_pool; spinlock_t cb_pool_lock; void *internal_cb_pool_virt_addr; dma_addr_t internal_cb_pool_dma_addr; struct gen_pool *internal_cb_pool; u64 internal_cb_va_base; struct list_head fpriv_list; struct list_head fpriv_ctrl_list; struct mutex fpriv_list_lock; struct mutex fpriv_ctrl_list_lock; struct hl_cs_counters_atomic aggregated_cs_counters; struct hl_mmu_priv mmu_priv; struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; struct hl_dec *dec; struct fw_load_mgr fw_loader; struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; struct hl_state_dump_specs state_dump_specs; struct multi_cs_completion multi_cs_completion[ MULTI_CS_MAX_USER_CTX]; struct hl_clk_throttle clk_throttling; struct hl_error_info captured_err_info; struct hl_reset_info reset_info; u32 *stream_master_qid_arr; u32 fw_inner_major_ver; u32 fw_inner_minor_ver; u32 fw_sw_major_ver; u32 fw_sw_minor_ver; u32 fw_sw_sub_minor_ver; atomic64_t dram_used_mem; u64 memory_scrub_val; u64 timeout_jiffies; u64 max_power; u64 boot_error_status_mask; u64 dram_pci_bar_start; u64 last_successful_open_jif; u64 last_open_session_duration_jif; u64 open_counter; u64 fw_poll_interval_usec; ktime_t last_successful_open_ktime; u64 fw_comms_poll_interval_usec; u64 dram_binning; u64 tpc_binning; atomic_t dmabuf_export_cnt; enum cpucp_card_types card_type; u32 major; u32 high_pll; u32 decoder_binning; u32 edma_binning; u32 device_release_watchdog_timeout_sec; u32 rotator_binning; u16 id; u16 id_control; u16 cdev_idx; u16 cpu_pci_msb_addr; u8 is_in_dram_scrub; u8 disabled; u8 late_init_done; u8 hwmon_initialized; u8 reset_on_lockup; u8 dram_default_page_mapping; u8 memory_scrub; u8 pmmu_huge_range; u8 init_done; u8 device_cpu_disabled; u8 in_debug; u8 cdev_sysfs_debugfs_created; u8 stop_on_err; u8 supports_sync_stream; u8 sync_stream_queue_idx; u8 collective_mon_idx; u8 supports_coresight; u8 supports_cb_mapping; u8 process_kill_trial_cnt; u8 device_fini_pending; u8 supports_staged_submission; u8 device_cpu_is_halted; u8 supports_wait_for_multi_cs; u8 stream_master_qid_arr_size; u8 is_compute_ctx_active; u8 compute_ctx_in_release; u8 supports_mmu_prefetch; u8 reset_upon_device_release; u8 supports_ctx_switch; u8 support_preboot_binning; /* Parameters for bring-up to be upstreamed */ u64 nic_ports_mask; u64 fw_components; u8 mmu_disable; u8 cpu_queues_enable; u8 pldm; u8 hard_reset_on_fw_events; u8 bmc_enable; u8 reset_on_preboot_fail; u8 heartbeat; }; /** * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure * @refcount: refcount used to protect removing this id when several * wait cs are used to wait of the reserved encaps signals. * @hdev: pointer to habanalabs device structure. * @hw_sob: pointer to H/W SOB used in the reservation. * @ctx: pointer to the user's context data structure * @cs_seq: staged cs sequence which contains encapsulated signals * @id: idr handler id to be used to fetch the handler info * @q_idx: stream queue index * @pre_sob_val: current SOB value before reservation * @count: signals number */ struct hl_cs_encaps_sig_handle { struct kref refcount; struct hl_device *hdev; struct hl_hw_sob *hw_sob; struct hl_ctx *ctx; u64 cs_seq; u32 id; u32 q_idx; u32 pre_sob_val; u32 count; }; /** * struct hl_info_fw_err_info - firmware error information structure * @err_type: The type of error detected (or reported). * @event_mask: Pointer to the event mask to be modified with the detected error flag * (can be NULL) * @event_id: The id of the event that reported the error * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). */ struct hl_info_fw_err_info { enum hl_info_fw_err_type err_type; u64 *event_mask; u16 event_id; }; /* * IOCTLs */ /** * typedef hl_ioctl_t - typedef for ioctl function in the driver * @hpriv: pointer to the FD's private data, which contains state of * user process * @data: pointer to the input/output arguments structure of the IOCTL * * Return: 0 for success, negative value for error */ typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); /** * struct hl_ioctl_desc - describes an IOCTL entry of the driver. * @cmd: the IOCTL code as created by the kernel macros. * @func: pointer to the driver's function that should be called for this IOCTL. */ struct hl_ioctl_desc { unsigned int cmd; hl_ioctl_t *func; }; static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor) { if (hdev->fw_sw_major_ver < fw_sw_major) return true; if (hdev->fw_sw_major_ver > fw_sw_major) return false; if (hdev->fw_sw_minor_ver < fw_sw_minor) return true; return false; } /* * Kernel module functions that can be accessed by entire module */ /** * hl_get_sg_info() - get number of pages and the DMA address from SG list. * @sg: the SG list. * @dma_addr: pointer to DMA address to return. * * Calculate the number of consecutive pages described by the SG list. Take the * offset of the address in the first page, add to it the length and round it up * to the number of needed pages. */ static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) { *dma_addr = sg_dma_address(sg); return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + (PAGE_SIZE - 1)) >> PAGE_SHIFT; } /** * hl_mem_area_inside_range() - Checks whether address+size are inside a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area is inside the valid range, false otherwise. */ static inline bool hl_mem_area_inside_range(u64 address, u64 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (end_address <= range_end_address) && (end_address > address)) return true; return false; } /** * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area overlaps part or all of the valid range, * false otherwise. */ static inline bool hl_mem_area_crosses_range(u64 address, u32 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size - 1; return ((address <= range_end_address) && (range_start_address <= end_address)); } uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag, const char *caller); void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle, const char *caller); void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle, const char *caller); void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, const char *caller); int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type); int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type); int hl_device_open(struct inode *inode, struct file *filp); int hl_device_open_ctrl(struct inode *inode, struct file *filp); bool hl_device_operational(struct hl_device *hdev, enum hl_device_status *status); bool hl_ctrl_device_operational(struct hl_device *hdev, enum hl_device_status *status); enum hl_device_status hl_device_status(struct hl_device *hdev); int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); int hl_hw_queues_create(struct hl_device *hdev); void hl_hw_queues_destroy(struct hl_device *hdev); int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr); void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr); int hl_hw_queue_schedule_cs(struct hl_cs *cs); u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); void hl_hw_queue_update_ci(struct hl_cs *cs); void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); irqreturn_t hl_irq_handler_cq(int irq, void *arg); irqreturn_t hl_irq_handler_eq(int irq, void *arg); irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); u32 hl_cq_inc_ptr(u32 ptr); int hl_asid_init(struct hl_device *hdev); void hl_asid_fini(struct hl_device *hdev); unsigned long hl_asid_alloc(struct hl_device *hdev); void hl_asid_free(struct hl_device *hdev, unsigned long asid); int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); void hl_ctx_do_release(struct kref *ref); void hl_ctx_get(struct hl_ctx *ctx); int hl_ctx_put(struct hl_ctx *ctx); struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, struct hl_fence **fence, u32 arr_len); void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); int hl_device_init(struct hl_device *hdev); void hl_device_fini(struct hl_device *hdev); int hl_device_suspend(struct hl_device *hdev); int hl_device_resume(struct hl_device *hdev); int hl_device_reset(struct hl_device *hdev, u32 flags); int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); void hl_hpriv_get(struct hl_fpriv *hpriv); int hl_hpriv_put(struct hl_fpriv *hpriv); int hl_device_utilization(struct hl_device *hdev, u32 *utilization); int hl_build_hwmon_channel_info(struct hl_device *hdev, struct cpucp_sensor *sensors_arr); void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); int hl_sysfs_init(struct hl_device *hdev); void hl_sysfs_fini(struct hl_device *hdev); int hl_hwmon_init(struct hl_device *hdev); void hl_hwmon_fini(struct hl_device *hdev); void hl_hwmon_release_resources(struct hl_device *hdev); int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, struct hl_ctx *ctx, u32 cb_size, bool internal_cb, bool map_cb, u64 *handle); int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); void hl_cb_put(struct hl_cb *cb); struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, bool internal_cb); int hl_cb_pool_init(struct hl_device *hdev); int hl_cb_pool_fini(struct hl_device *hdev); int hl_cb_va_pool_init(struct hl_ctx *ctx); void hl_cb_va_pool_fini(struct hl_ctx *ctx); void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, enum hl_queue_type queue_type, bool is_kernel_allocated_cb); void hl_sob_reset_error(struct kref *ref); int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); void hl_fence_put(struct hl_fence *fence); void hl_fences_put(struct hl_fence **fence, int len); void hl_fence_get(struct hl_fence *fence); void cs_get(struct hl_cs *cs); bool cs_needs_completion(struct hl_cs *cs); bool cs_needs_timeout(struct hl_cs *cs); bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); void hl_multi_cs_completion_init(struct hl_device *hdev); u32 hl_get_active_cs_num(struct hl_device *hdev); void goya_set_asic_funcs(struct hl_device *hdev); void gaudi_set_asic_funcs(struct hl_device *hdev); void gaudi2_set_asic_funcs(struct hl_device *hdev); int hl_vm_ctx_init(struct hl_ctx *ctx); void hl_vm_ctx_fini(struct hl_ctx *ctx); int hl_vm_init(struct hl_device *hdev); void hl_vm_fini(struct hl_device *hdev); void hl_hw_block_mem_init(struct hl_ctx *ctx); void hl_hw_block_mem_fini(struct hl_ctx *ctx); u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, enum hl_va_range_type type, u64 size, u32 alignment); int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, u64 start_addr, u64 size); int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr *userptr); void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); void hl_userptr_delete_list(struct hl_device *hdev, struct list_head *userptr_list); bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, struct list_head *userptr_list, struct hl_userptr **userptr); int hl_mmu_init(struct hl_device *hdev); void hl_mmu_fini(struct hl_device *hdev); int hl_mmu_ctx_init(struct hl_ctx *ctx); void hl_mmu_ctx_fini(struct hl_ctx *ctx); int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte); int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr); int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte); int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size); int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size); int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u8 hop_idx, u64 hop_addr, u64 virt_addr); void hl_mmu_hr_flush(struct hl_ctx *ctx); int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, u64 pgt_size); void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, u32 hop_table_size); void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u64 val, u32 hop_table_size); void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u32 hop_table_size); int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 curr_pte); struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop); struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop, u64 curr_pte, bool *is_new_hop); int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, struct hl_hr_mmu_funcs *hr_func); int hl_mmu_if_set_funcs(struct hl_device *hdev); void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, void __iomem *dst, u32 src_offset, u32 size); int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, u64 *result); int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, size_t irq_arr_size); int hl_fw_test_cpu_queue(struct hl_device *hdev); void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); int hl_fw_send_heartbeat(struct hl_device *hdev); int hl_fw_cpucp_info_get(struct hl_device *hdev, u32 sts_boot_dev_sts0_reg, u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, u32 boot_err1_reg); int hl_fw_cpucp_handshake(struct hl_device *hdev, u32 sts_boot_dev_sts0_reg, u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, u32 boot_err1_reg); int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, struct hl_info_pci_counters *counters); int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy); int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, enum pll_index *pll_index); int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, u16 *pll_freq_arr); int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); int hl_fw_init_cpu(struct hl_device *hdev); int hl_fw_wait_preboot_ready(struct hl_device *hdev); int hl_fw_read_preboot_status(struct hl_device *hdev); int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, struct fw_load_mgr *fw_loader, enum comms_cmd cmd, unsigned int size, bool wait_ok, u32 timeout); int hl_fw_dram_replaced_row_get(struct hl_device *hdev, struct cpucp_hbm_row_info *info); int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); int hl_fw_send_device_activity(struct hl_device *hdev, bool open); int hl_fw_send_soft_reset(struct hl_device *hdev); int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], bool is_wc[3]); int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, struct hl_inbound_pci_region *pci_region); int hl_pci_set_outbound_region(struct hl_device *hdev, struct hl_outbound_pci_region *pci_region); enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); int hl_pci_init(struct hl_device *hdev); void hl_pci_fini(struct hl_device *hdev); long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); long hl_fw_get_max_power(struct hl_device *hdev); void hl_fw_set_max_power(struct hl_device *hdev); int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, u32 nonce); int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); void hl_fw_set_pll_profile(struct hl_device *hdev); void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, dma_addr_t buff, u32 *size); void hw_sob_get(struct hl_hw_sob *hw_sob); void hw_sob_put(struct hl_hw_sob *hw_sob); void hl_encaps_release_handle_and_put_ctx(struct kref *ref); void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, struct hl_cs *cs, struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl); int hl_dec_init(struct hl_device *hdev); void hl_dec_fini(struct hl_device *hdev); void hl_dec_ctx_fini(struct hl_ctx *ctx); void hl_release_pending_user_interrupts(struct hl_device *hdev); void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); int hl_state_dump(struct hl_device *hdev); const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, struct hl_mon_state_dump *mon); void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, const char *format, ...); char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, void *args); struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, u64 handle); int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); struct hl_mmap_mem_buf * hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, void *args); __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, u8 flags); void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, u8 flags, u64 *event_mask); void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, u64 *event_mask); void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); #ifdef CONFIG_DEBUG_FS void hl_debugfs_init(void); void hl_debugfs_fini(void); int hl_debugfs_device_init(struct hl_device *hdev); void hl_debugfs_device_fini(struct hl_device *hdev); void hl_debugfs_add_device(struct hl_device *hdev); void hl_debugfs_remove_device(struct hl_device *hdev); void hl_debugfs_add_file(struct hl_fpriv *hpriv); void hl_debugfs_remove_file(struct hl_fpriv *hpriv); void hl_debugfs_add_cb(struct hl_cb *cb); void hl_debugfs_remove_cb(struct hl_cb *cb); void hl_debugfs_add_cs(struct hl_cs *cs); void hl_debugfs_remove_cs(struct hl_cs *cs); void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, unsigned long length); #else static inline void __init hl_debugfs_init(void) { } static inline void hl_debugfs_fini(void) { } static inline int hl_debugfs_device_init(struct hl_device *hdev) { return 0; } static inline void hl_debugfs_device_fini(struct hl_device *hdev) { } static inline void hl_debugfs_add_device(struct hl_device *hdev) { } static inline void hl_debugfs_remove_device(struct hl_device *hdev) { } static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_add_cb(struct hl_cb *cb) { } static inline void hl_debugfs_remove_cb(struct hl_cb *cb) { } static inline void hl_debugfs_add_cs(struct hl_cs *cs) { } static inline void hl_debugfs_remove_cs(struct hl_cs *cs) { } static inline void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, unsigned long length) { } #endif /* Security */ int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], int array_size); int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], int mm_array_size, int offset, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], int blocks_array_size); void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], u32 block_offset, int array_size); void hl_secure_block(struct hl_device *hdev, struct hl_block_glbl_sec sgs_array[], int array_size); int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size, u64 mask); int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size); int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size, u64 mask); int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size); int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size); int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size); void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size); void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, u64 mask); void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size); /* IOCTLs */ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); #endif /* HABANALABSP_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1