Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeffrey Hugo | 8942 | 97.73% | 2 | 22.22% |
Pranjal Ramajor Asha Kanojiya | 206 | 2.25% | 6 | 66.67% |
Tom Rix | 2 | 0.02% | 1 | 11.11% |
Total | 9150 | 9 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-buf.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/math64.h> #include <linux/mm.h> #include <linux/moduleparam.h> #include <linux/scatterlist.h> #include <linux/spinlock.h> #include <linux/srcu.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/wait.h> #include <drm/drm_file.h> #include <drm/drm_gem.h> #include <drm/drm_prime.h> #include <drm/drm_print.h> #include <uapi/drm/qaic_accel.h> #include "qaic.h" #define SEM_VAL_MASK GENMASK_ULL(11, 0) #define SEM_INDEX_MASK GENMASK_ULL(4, 0) #define BULK_XFER BIT(3) #define GEN_COMPLETION BIT(4) #define INBOUND_XFER 1 #define OUTBOUND_XFER 2 #define REQHP_OFF 0x0 /* we read this */ #define REQTP_OFF 0x4 /* we write this */ #define RSPHP_OFF 0x8 /* we write this */ #define RSPTP_OFF 0xc /* we read this */ #define ENCODE_SEM(val, index, sync, cmd, flags) \ ({ \ FIELD_PREP(GENMASK(11, 0), (val)) | \ FIELD_PREP(GENMASK(20, 16), (index)) | \ FIELD_PREP(BIT(22), (sync)) | \ FIELD_PREP(GENMASK(26, 24), (cmd)) | \ FIELD_PREP(GENMASK(30, 29), (flags)) | \ FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ }) #define NUM_EVENTS 128 #define NUM_DELAYS 10 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ module_param(wait_exec_default_timeout_ms, uint, 0600); MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ module_param(datapath_poll_interval_us, uint, 0600); MODULE_PARM_DESC(datapath_poll_interval_us, "Amount of time to sleep between activity when datapath polling is enabled"); struct dbc_req { /* * A request ID is assigned to each memory handle going in DMA queue. * As a single memory handle can enqueue multiple elements in DMA queue * all of them will have the same request ID. */ __le16 req_id; /* Future use */ __u8 seq_id; /* * Special encoded variable * 7 0 - Do not force to generate MSI after DMA is completed * 1 - Force to generate MSI after DMA is completed * 6:5 Reserved * 4 1 - Generate completion element in the response queue * 0 - No Completion Code * 3 0 - DMA request is a Link list transfer * 1 - DMA request is a Bulk transfer * 2 Reserved * 1:0 00 - No DMA transfer involved * 01 - DMA transfer is part of inbound transfer * 10 - DMA transfer has outbound transfer * 11 - NA */ __u8 cmd; __le32 resv; /* Source address for the transfer */ __le64 src_addr; /* Destination address for the transfer */ __le64 dest_addr; /* Length of transfer request */ __le32 len; __le32 resv2; /* Doorbell address */ __le64 db_addr; /* * Special encoded variable * 7 1 - Doorbell(db) write * 0 - No doorbell write * 6:2 Reserved * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary * 01 - 16 bit access, db address must be aligned to 16bit-boundary * 10 - 8 bit access, db address must be aligned to 8bit-boundary * 11 - Reserved */ __u8 db_len; __u8 resv3; __le16 resv4; /* 32 bit data written to doorbell address */ __le32 db_data; /* * Special encoded variable * All the fields of sem_cmdX are passed from user and all are ORed * together to form sem_cmd. * 0:11 Semaphore value * 15:12 Reserved * 20:16 Semaphore index * 21 Reserved * 22 Semaphore Sync * 23 Reserved * 26:24 Semaphore command * 28:27 Reserved * 29 Semaphore DMA out bound sync fence * 30 Semaphore DMA in bound sync fence * 31 Enable semaphore command */ __le32 sem_cmd0; __le32 sem_cmd1; __le32 sem_cmd2; __le32 sem_cmd3; } __packed; struct dbc_rsp { /* Request ID of the memory handle whose DMA transaction is completed */ __le16 req_id; /* Status of the DMA transaction. 0 : Success otherwise failure */ __le16 status; } __packed; inline int get_dbc_req_elem_size(void) { return sizeof(struct dbc_req); } inline int get_dbc_rsp_elem_size(void) { return sizeof(struct dbc_rsp); } static void free_slice(struct kref *kref) { struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); list_del(&slice->slice); drm_gem_object_put(&slice->bo->base); sg_free_table(slice->sgt); kfree(slice->sgt); kfree(slice->reqs); kfree(slice); } static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, struct sg_table *sgt_in, u64 size, u64 offset) { int total_len, len, nents, offf = 0, offl = 0; struct scatterlist *sg, *sgn, *sgf, *sgl; struct sg_table *sgt; int ret, j; /* find out number of relevant nents needed for this mem */ total_len = 0; sgf = NULL; sgl = NULL; nents = 0; size = size ? size : PAGE_SIZE; for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) { len = sg_dma_len(sg); if (!len) continue; if (offset >= total_len && offset < total_len + len) { sgf = sg; offf = offset - total_len; } if (sgf) nents++; if (offset + size >= total_len && offset + size <= total_len + len) { sgl = sg; offl = offset + size - total_len; break; } total_len += len; } if (!sgf || !sgl) { ret = -EINVAL; goto out; } sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); if (!sgt) { ret = -ENOMEM; goto out; } ret = sg_alloc_table(sgt, nents, GFP_KERNEL); if (ret) goto free_sgt; /* copy relevant sg node and fix page and length */ sgn = sgf; for_each_sgtable_sg(sgt, sg, j) { memcpy(sg, sgn, sizeof(*sg)); if (sgn == sgf) { sg_dma_address(sg) += offf; sg_dma_len(sg) -= offf; sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); } else { offf = 0; } if (sgn == sgl) { sg_dma_len(sg) = offl - offf; sg_set_page(sg, sg_page(sgn), offl - offf, offf); sg_mark_end(sg); break; } sgn = sg_next(sgn); } *sgt_out = sgt; return ret; free_sgt: kfree(sgt); out: *sgt_out = NULL; return ret; } static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, struct qaic_attach_slice_entry *req) { __le64 db_addr = cpu_to_le64(req->db_addr); __le32 db_data = cpu_to_le32(req->db_data); struct scatterlist *sg; __u8 cmd = BULK_XFER; int presync_sem; u64 dev_addr; __u8 db_len; int i; if (!slice->no_xfer) cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) return -EINVAL; presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; if (presync_sem > 1) return -EINVAL; presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | req->sem2.presync << 2 | req->sem3.presync << 3; switch (req->db_len) { case 32: db_len = BIT(7); break; case 16: db_len = BIT(7) | 1; break; case 8: db_len = BIT(7) | 2; break; case 0: db_len = 0; /* doorbell is not active for this command */ break; default: return -EINVAL; /* should never hit this */ } /* * When we end up splitting up a single request (ie a buf slice) into * multiple DMA requests, we have to manage the sync data carefully. * There can only be one presync sem. That needs to be on every xfer * so that the DMA engine doesn't transfer data before the receiver is * ready. We only do the doorbell and postsync sems after the xfer. * To guarantee previous xfers for the request are complete, we use a * fence. */ dev_addr = req->dev_addr; for_each_sgtable_sg(slice->sgt, sg, i) { slice->reqs[i].cmd = cmd; slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? sg_dma_address(sg) : dev_addr); slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? dev_addr : sg_dma_address(sg)); /* * sg_dma_len(sg) returns size of a DMA segment, maximum DMA * segment size is set to UINT_MAX by qaic and hence return * values of sg_dma_len(sg) can never exceed u32 range. So, * by down sizing we are not corrupting the value. */ slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); switch (presync_sem) { case BIT(0): slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, req->sem0.presync, req->sem0.cmd, req->sem0.flags)); break; case BIT(1): slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, req->sem1.presync, req->sem1.cmd, req->sem1.flags)); break; case BIT(2): slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, req->sem2.presync, req->sem2.cmd, req->sem2.flags)); break; case BIT(3): slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, req->sem3.presync, req->sem3.cmd, req->sem3.flags)); break; } dev_addr += sg_dma_len(sg); } /* add post transfer stuff to last segment */ i--; slice->reqs[i].cmd |= GEN_COMPLETION; slice->reqs[i].db_addr = db_addr; slice->reqs[i].db_len = db_len; slice->reqs[i].db_data = db_data; /* * Add a fence if we have more than one request going to the hardware * representing the entirety of the user request, and the user request * has no presync condition. * Fences are expensive, so we try to avoid them. We rely on the * hardware behavior to avoid needing one when there is a presync * condition. When a presync exists, all requests for that same * presync will be queued into a fifo. Thus, since we queue the * post xfer activity only on the last request we queue, the hardware * will ensure that the last queued request is processed last, thus * making sure the post xfer activity happens at the right time without * a fence. */ if (i && !presync_sem) req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, req->sem0.presync, req->sem0.cmd, req->sem0.flags)); slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, req->sem1.presync, req->sem1.cmd, req->sem1.flags)); slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, req->sem2.presync, req->sem2.cmd, req->sem2.flags)); slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, req->sem3.presync, req->sem3.cmd, req->sem3.flags)); return 0; } static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, struct qaic_attach_slice_entry *slice_ent) { struct sg_table *sgt = NULL; struct bo_slice *slice; int ret; ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); if (ret) goto out; slice = kmalloc(sizeof(*slice), GFP_KERNEL); if (!slice) { ret = -ENOMEM; goto free_sgt; } slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); if (!slice->reqs) { ret = -ENOMEM; goto free_slice; } slice->no_xfer = !slice_ent->size; slice->sgt = sgt; slice->nents = sgt->nents; slice->dir = bo->dir; slice->bo = bo; slice->size = slice_ent->size; slice->offset = slice_ent->offset; ret = encode_reqs(qdev, slice, slice_ent); if (ret) goto free_req; bo->total_slice_nents += sgt->nents; kref_init(&slice->ref_count); drm_gem_object_get(&bo->base); list_add_tail(&slice->slice, &bo->slices); return 0; free_req: kfree(slice->reqs); free_slice: kfree(slice); free_sgt: sg_free_table(sgt); kfree(sgt); out: return ret; } static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) { struct scatterlist *sg; struct sg_table *sgt; struct page **pages; int *pages_order; int buf_extra; int max_order; int nr_pages; int ret = 0; int i, j, k; int order; if (size) { nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); /* * calculate how much extra we are going to allocate, to remove * later */ buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; max_order = min(MAX_ORDER - 1, get_order(size)); } else { /* allocate a single page for book keeping */ nr_pages = 1; buf_extra = 0; max_order = 0; } pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto out; } pages_order = (void *)pages + sizeof(*pages) * nr_pages; /* * Allocate requested memory using alloc_pages. It is possible to allocate * the requested memory in multiple chunks by calling alloc_pages * multiple times. Use SG table to handle multiple allocated pages. */ i = 0; while (nr_pages > 0) { order = min(get_order(nr_pages * PAGE_SIZE), max_order); while (1) { pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | __GFP_NOWARN | __GFP_ZERO | (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), order); if (pages[i]) break; if (!order--) { ret = -ENOMEM; goto free_partial_alloc; } } max_order = order; pages_order[i] = order; nr_pages -= 1 << order; if (nr_pages <= 0) /* account for over allocation */ buf_extra += abs(nr_pages) * PAGE_SIZE; i++; } sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); if (!sgt) { ret = -ENOMEM; goto free_partial_alloc; } if (sg_alloc_table(sgt, i, GFP_KERNEL)) { ret = -ENOMEM; goto free_sgt; } /* Populate the SG table with the allocated memory pages */ sg = sgt->sgl; for (k = 0; k < i; k++, sg = sg_next(sg)) { /* Last entry requires special handling */ if (k < i - 1) { sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); } else { sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); sg_mark_end(sg); } } kvfree(pages); *sgt_out = sgt; return ret; free_sgt: kfree(sgt); free_partial_alloc: for (j = 0; j < i; j++) __free_pages(pages[j], pages_order[j]); kvfree(pages); out: *sgt_out = NULL; return ret; } static bool invalid_sem(struct qaic_sem *sem) { if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || !(sem->presync == 0 || sem->presync == 1) || sem->pad || sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || sem->cmd > QAIC_SEM_WAIT_GT_0) return true; return false; } static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, u32 count, u64 total_size) { int i; for (i = 0; i < count; i++) { if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) return -EINVAL; if (slice_ent[i].offset + slice_ent[i].size > total_size) return -EINVAL; } return 0; } static void qaic_free_sgt(struct sg_table *sgt) { struct scatterlist *sg; for (sg = sgt->sgl; sg; sg = sg_next(sg)) if (sg_page(sg)) __free_pages(sg_page(sg), get_order(sg->length)); sg_free_table(sgt); kfree(sgt); } static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, const struct drm_gem_object *obj) { struct qaic_bo *bo = to_qaic_bo(obj); drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size); } static const struct vm_operations_struct drm_vm_ops = { .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) { struct qaic_bo *bo = to_qaic_bo(obj); unsigned long offset = 0; struct scatterlist *sg; int ret = 0; if (obj->import_attach) return -EINVAL; for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { if (sg_page(sg)) { ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), sg->length, vma->vm_page_prot); if (ret) goto out; offset += sg->length; } } out: return ret; } static void qaic_free_object(struct drm_gem_object *obj) { struct qaic_bo *bo = to_qaic_bo(obj); if (obj->import_attach) { /* DMABUF/PRIME Path */ drm_prime_gem_destroy(obj, NULL); } else { /* Private buffer allocation path */ qaic_free_sgt(bo->sgt); } drm_gem_object_release(obj); kfree(bo); } static const struct drm_gem_object_funcs qaic_gem_funcs = { .free = qaic_free_object, .print_info = qaic_gem_print_info, .mmap = qaic_gem_object_mmap, .vm_ops = &drm_vm_ops, }; static struct qaic_bo *qaic_alloc_init_bo(void) { struct qaic_bo *bo; bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (!bo) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&bo->slices); init_completion(&bo->xfer_done); complete_all(&bo->xfer_done); return bo; } int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct qaic_create_bo *args = data; int usr_rcu_id, qdev_rcu_id; struct drm_gem_object *obj; struct qaic_device *qdev; struct qaic_user *usr; struct qaic_bo *bo; size_t size; int ret; if (args->pad) return -EINVAL; size = PAGE_ALIGN(args->size); if (size == 0) return -EINVAL; usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } bo = qaic_alloc_init_bo(); if (IS_ERR(bo)) { ret = PTR_ERR(bo); goto unlock_dev_srcu; } obj = &bo->base; drm_gem_private_object_init(dev, obj, size); obj->funcs = &qaic_gem_funcs; ret = create_sgt(qdev, &bo->sgt, size); if (ret) goto free_bo; bo->size = args->size; ret = drm_gem_handle_create(file_priv, obj, &args->handle); if (ret) goto free_sgt; bo->handle = args->handle; drm_gem_object_put(obj); srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return 0; free_sgt: qaic_free_sgt(bo->sgt); free_bo: kfree(bo); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return ret; } int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct qaic_mmap_bo *args = data; int usr_rcu_id, qdev_rcu_id; struct drm_gem_object *obj; struct qaic_device *qdev; struct qaic_user *usr; int ret; usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } obj = drm_gem_object_lookup(file_priv, args->handle); if (!obj) { ret = -ENOENT; goto unlock_dev_srcu; } ret = drm_gem_create_mmap_offset(obj); if (ret == 0) args->offset = drm_vma_node_offset_addr(&obj->vma_node); drm_gem_object_put(obj); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return ret; } struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) { struct dma_buf_attachment *attach; struct drm_gem_object *obj; struct qaic_bo *bo; size_t size; int ret; bo = qaic_alloc_init_bo(); if (IS_ERR(bo)) { ret = PTR_ERR(bo); goto out; } obj = &bo->base; get_dma_buf(dma_buf); attach = dma_buf_attach(dma_buf, dev->dev); if (IS_ERR(attach)) { ret = PTR_ERR(attach); goto attach_fail; } size = PAGE_ALIGN(attach->dmabuf->size); if (size == 0) { ret = -EINVAL; goto size_align_fail; } drm_gem_private_object_init(dev, obj, size); /* * skipping dma_buf_map_attachment() as we do not know the direction * just yet. Once the direction is known in the subsequent IOCTL to * attach slicing, we can do it then. */ obj->funcs = &qaic_gem_funcs; obj->import_attach = attach; obj->resv = dma_buf->resv; return obj; size_align_fail: dma_buf_detach(dma_buf, attach); attach_fail: dma_buf_put(dma_buf); kfree(bo); out: return ERR_PTR(ret); } static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) { struct drm_gem_object *obj = &bo->base; struct sg_table *sgt; int ret; if (obj->import_attach->dmabuf->size < hdr->size) return -EINVAL; sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); if (IS_ERR(sgt)) { ret = PTR_ERR(sgt); return ret; } bo->sgt = sgt; bo->size = hdr->size; return 0; } static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) { int ret; if (bo->size != hdr->size) return -EINVAL; ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); if (ret) return -EFAULT; return 0; } static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) { int ret; if (bo->base.import_attach) ret = qaic_prepare_import_bo(bo, hdr); else ret = qaic_prepare_export_bo(qdev, bo, hdr); if (ret == 0) bo->dir = hdr->dir; return ret; } static void qaic_unprepare_import_bo(struct qaic_bo *bo) { dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); bo->sgt = NULL; bo->size = 0; } static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) { dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); } static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) { if (bo->base.import_attach) qaic_unprepare_import_bo(bo); else qaic_unprepare_export_bo(qdev, bo); bo->dir = 0; } static void qaic_free_slices_bo(struct qaic_bo *bo) { struct bo_slice *slice, *temp; list_for_each_entry_safe(slice, temp, &bo->slices, slice) kref_put(&slice->ref_count, free_slice); } static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr, struct qaic_attach_slice_entry *slice_ent) { int ret, i; for (i = 0; i < hdr->count; i++) { ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); if (ret) { qaic_free_slices_bo(bo); return ret; } } if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) { qaic_free_slices_bo(bo); return -ENOSPC; } bo->sliced = true; bo->nr_slice = hdr->count; list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists); return 0; } int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct qaic_attach_slice_entry *slice_ent; struct qaic_attach_slice *args = data; int rcu_id, usr_rcu_id, qdev_rcu_id; struct dma_bridge_chan *dbc; struct drm_gem_object *obj; struct qaic_device *qdev; unsigned long arg_size; struct qaic_user *usr; u8 __user *user_data; struct qaic_bo *bo; int ret; if (args->hdr.count == 0) return -EINVAL; arg_size = args->hdr.count * sizeof(*slice_ent); if (arg_size / args->hdr.count != sizeof(*slice_ent)) return -EINVAL; if (args->hdr.size == 0) return -EINVAL; if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) return -EINVAL; if (args->data == 0) return -EINVAL; usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } if (args->hdr.dbc_id >= qdev->num_dbc) { ret = -EINVAL; goto unlock_dev_srcu; } user_data = u64_to_user_ptr(args->data); slice_ent = kzalloc(arg_size, GFP_KERNEL); if (!slice_ent) { ret = -EINVAL; goto unlock_dev_srcu; } ret = copy_from_user(slice_ent, user_data, arg_size); if (ret) { ret = -EFAULT; goto free_slice_ent; } ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size); if (ret) goto free_slice_ent; obj = drm_gem_object_lookup(file_priv, args->hdr.handle); if (!obj) { ret = -ENOENT; goto free_slice_ent; } bo = to_qaic_bo(obj); if (bo->sliced) { ret = -EINVAL; goto put_bo; } dbc = &qdev->dbc[args->hdr.dbc_id]; rcu_id = srcu_read_lock(&dbc->ch_lock); if (dbc->usr != usr) { ret = -EINVAL; goto unlock_ch_srcu; } ret = qaic_prepare_bo(qdev, bo, &args->hdr); if (ret) goto unlock_ch_srcu; ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); if (ret) goto unprepare_bo; if (args->hdr.dir == DMA_TO_DEVICE) dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); bo->dbc = dbc; srcu_read_unlock(&dbc->ch_lock, rcu_id); drm_gem_object_put(obj); kfree(slice_ent); srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return 0; unprepare_bo: qaic_unprepare_bo(qdev, bo); unlock_ch_srcu: srcu_read_unlock(&dbc->ch_lock, rcu_id); put_bo: drm_gem_object_put(obj); free_slice_ent: kfree(slice_ent); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return ret; } static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, u32 head, u32 *ptail) { struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; struct dbc_req *reqs = slice->reqs; u32 tail = *ptail; u32 avail; avail = head - tail; if (head <= tail) avail += dbc->nelem; --avail; if (avail < slice->nents) return -EAGAIN; if (tail + slice->nents > dbc->nelem) { avail = dbc->nelem - tail; avail = min_t(u32, avail, slice->nents); memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, sizeof(*reqs) * avail); reqs += avail; avail = slice->nents - avail; if (avail) memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); } else { memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, sizeof(*reqs) * slice->nents); } *ptail = (tail + slice->nents) % dbc->nelem; return 0; } /* * Based on the value of resize we may only need to transmit first_n * entries and the last entry, with last_bytes to send from the last entry. * Note that first_n could be 0. */ static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u64 resize, u32 dbc_id, u32 head, u32 *ptail) { struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; struct dbc_req *reqs = slice->reqs; struct dbc_req *last_req; u32 tail = *ptail; u64 total_bytes; u64 last_bytes; u32 first_n; u32 avail; int ret; int i; avail = head - tail; if (head <= tail) avail += dbc->nelem; --avail; total_bytes = 0; for (i = 0; i < slice->nents; i++) { total_bytes += le32_to_cpu(reqs[i].len); if (total_bytes >= resize) break; } if (total_bytes < resize) { /* User space should have used the full buffer path. */ ret = -EINVAL; return ret; } first_n = i; last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize; if (avail < (first_n + 1)) return -EAGAIN; if (first_n) { if (tail + first_n > dbc->nelem) { avail = dbc->nelem - tail; avail = min_t(u32, avail, first_n); memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, sizeof(*reqs) * avail); last_req = reqs + avail; avail = first_n - avail; if (avail) memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); } else { memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, sizeof(*reqs) * first_n); } } /* Copy over the last entry. Here we need to adjust len to the left over * size, and set src and dst to the entry it is copied to. */ last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size(); memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); /* * last_bytes holds size of a DMA segment, maximum DMA segment size is * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 * range. So, by down sizing we are not corrupting the value. */ last_req->len = cpu_to_le32((u32)last_bytes); last_req->src_addr = reqs[first_n].src_addr; last_req->dest_addr = reqs[first_n].dest_addr; *ptail = (tail + first_n + 1) % dbc->nelem; return 0; } static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, struct qaic_execute_entry *exec, unsigned int count, bool is_partial, struct dma_bridge_chan *dbc, u32 head, u32 *tail) { struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; struct drm_gem_object *obj; struct bo_slice *slice; unsigned long flags; struct qaic_bo *bo; bool queued; int i, j; int ret; for (i = 0; i < count; i++) { /* * ref count will be decremented when the transfer of this * buffer is complete. It is inside dbc_irq_threaded_fn(). */ obj = drm_gem_object_lookup(file_priv, is_partial ? pexec[i].handle : exec[i].handle); if (!obj) { ret = -ENOENT; goto failed_to_send_bo; } bo = to_qaic_bo(obj); if (!bo->sliced) { ret = -EINVAL; goto failed_to_send_bo; } if (is_partial && pexec[i].resize > bo->size) { ret = -EINVAL; goto failed_to_send_bo; } spin_lock_irqsave(&dbc->xfer_lock, flags); queued = bo->queued; bo->queued = true; if (queued) { spin_unlock_irqrestore(&dbc->xfer_lock, flags); ret = -EINVAL; goto failed_to_send_bo; } bo->req_id = dbc->next_req_id++; list_for_each_entry(slice, &bo->slices, slice) { /* * If this slice does not fall under the given * resize then skip this slice and continue the loop */ if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset) continue; for (j = 0; j < slice->nents; j++) slice->reqs[j].req_id = cpu_to_le16(bo->req_id); /* * If it is a partial execute ioctl call then check if * resize has cut this slice short then do a partial copy * else do complete copy */ if (is_partial && pexec[i].resize && pexec[i].resize < slice->offset + slice->size) ret = copy_partial_exec_reqs(qdev, slice, pexec[i].resize - slice->offset, dbc->id, head, tail); else ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); if (ret) { bo->queued = false; spin_unlock_irqrestore(&dbc->xfer_lock, flags); goto failed_to_send_bo; } } reinit_completion(&bo->xfer_done); list_add_tail(&bo->xfer_list, &dbc->xfer_list); spin_unlock_irqrestore(&dbc->xfer_lock, flags); dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); } return 0; failed_to_send_bo: if (likely(obj)) drm_gem_object_put(obj); for (j = 0; j < i; j++) { spin_lock_irqsave(&dbc->xfer_lock, flags); bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); obj = &bo->base; bo->queued = false; list_del(&bo->xfer_list); spin_unlock_irqrestore(&dbc->xfer_lock, flags); dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); drm_gem_object_put(obj); } return ret; } static void update_profiling_data(struct drm_file *file_priv, struct qaic_execute_entry *exec, unsigned int count, bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) { struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; struct drm_gem_object *obj; struct qaic_bo *bo; int i; for (i = 0; i < count; i++) { /* * Since we already committed the BO to hardware, the only way * this should fail is a pending signal. We can't cancel the * submit to hardware, so we have to just skip the profiling * data. In case the signal is not fatal to the process, we * return success so that the user doesn't try to resubmit. */ obj = drm_gem_object_lookup(file_priv, is_partial ? pexec[i].handle : exec[i].handle); if (!obj) break; bo = to_qaic_bo(obj); bo->perf_stats.req_received_ts = received_ts; bo->perf_stats.req_submit_ts = submit_ts; bo->perf_stats.queue_level_before = queue_level; queue_level += bo->total_slice_nents; drm_gem_object_put(obj); } } static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, bool is_partial) { struct qaic_partial_execute_entry *pexec; struct qaic_execute *args = data; struct qaic_execute_entry *exec; struct dma_bridge_chan *dbc; int usr_rcu_id, qdev_rcu_id; struct qaic_device *qdev; struct qaic_user *usr; u8 __user *user_data; unsigned long n; u64 received_ts; u32 queue_level; u64 submit_ts; int rcu_id; u32 head; u32 tail; u64 size; int ret; received_ts = ktime_get_ns(); size = is_partial ? sizeof(*pexec) : sizeof(*exec); n = (unsigned long)size * args->hdr.count; if (args->hdr.count == 0 || n / args->hdr.count != size) return -EINVAL; user_data = u64_to_user_ptr(args->data); exec = kcalloc(args->hdr.count, size, GFP_KERNEL); pexec = (struct qaic_partial_execute_entry *)exec; if (!exec) return -ENOMEM; if (copy_from_user(exec, user_data, n)) { ret = -EFAULT; goto free_exec; } usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } if (args->hdr.dbc_id >= qdev->num_dbc) { ret = -EINVAL; goto unlock_dev_srcu; } dbc = &qdev->dbc[args->hdr.dbc_id]; rcu_id = srcu_read_lock(&dbc->ch_lock); if (!dbc->usr || dbc->usr->handle != usr->handle) { ret = -EPERM; goto release_ch_rcu; } head = readl(dbc->dbc_base + REQHP_OFF); tail = readl(dbc->dbc_base + REQTP_OFF); if (head == U32_MAX || tail == U32_MAX) { /* PCI link error */ ret = -ENODEV; goto release_ch_rcu; } queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, head, &tail); if (ret) goto release_ch_rcu; /* Finalize commit to hardware */ submit_ts = ktime_get_ns(); writel(tail, dbc->dbc_base + REQTP_OFF); update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, submit_ts, queue_level); if (datapath_polling) schedule_work(&dbc->poll_work); release_ch_rcu: srcu_read_unlock(&dbc->ch_lock, rcu_id); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); free_exec: kfree(exec); return ret; } int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return __qaic_execute_bo_ioctl(dev, data, file_priv, false); } int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return __qaic_execute_bo_ioctl(dev, data, file_priv, true); } /* * Our interrupt handling is a bit more complicated than a simple ideal, but * sadly necessary. * * Each dbc has a completion queue. Entries in the queue correspond to DMA * requests which the device has processed. The hardware already has a built * in irq mitigation. When the device puts an entry into the queue, it will * only trigger an interrupt if the queue was empty. Therefore, when adding * the Nth event to a non-empty queue, the hardware doesn't trigger an * interrupt. This means the host doesn't get additional interrupts signaling * the same thing - the queue has something to process. * This behavior can be overridden in the DMA request. * This means that when the host receives an interrupt, it is required to * drain the queue. * * This behavior is what NAPI attempts to accomplish, although we can't use * NAPI as we don't have a netdev. We use threaded irqs instead. * * However, there is a situation where the host drains the queue fast enough * that every event causes an interrupt. Typically this is not a problem as * the rate of events would be low. However, that is not the case with * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of * lprnet, the host receives roughly 80k interrupts per second from the device * (per /proc/interrupts). While NAPI documentation indicates the host should * just chug along, sadly that behavior causes instability in some hosts. * * Therefore, we implement an interrupt disable scheme similar to NAPI. The * key difference is that we will delay after draining the queue for a small * time to allow additional events to come in via polling. Using the above * lprnet workload, this reduces the number of interrupts processed from * ~80k/sec to about 64 in 5 minutes and appears to solve the system * instability. */ irqreturn_t dbc_irq_handler(int irq, void *data) { struct dma_bridge_chan *dbc = data; int rcu_id; u32 head; u32 tail; rcu_id = srcu_read_lock(&dbc->ch_lock); if (!dbc->usr) { srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_HANDLED; } head = readl(dbc->dbc_base + RSPHP_OFF); if (head == U32_MAX) { /* PCI link error */ srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_NONE; } tail = readl(dbc->dbc_base + RSPTP_OFF); if (tail == U32_MAX) { /* PCI link error */ srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_NONE; } if (head == tail) { /* queue empty */ srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_NONE; } disable_irq_nosync(irq); srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_WAKE_THREAD; } void irq_polling_work(struct work_struct *work) { struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); unsigned long flags; int rcu_id; u32 head; u32 tail; rcu_id = srcu_read_lock(&dbc->ch_lock); while (1) { if (dbc->qdev->in_reset) { srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } if (!dbc->usr) { srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } spin_lock_irqsave(&dbc->xfer_lock, flags); if (list_empty(&dbc->xfer_list)) { spin_unlock_irqrestore(&dbc->xfer_lock, flags); srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } spin_unlock_irqrestore(&dbc->xfer_lock, flags); head = readl(dbc->dbc_base + RSPHP_OFF); if (head == U32_MAX) { /* PCI link error */ srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } tail = readl(dbc->dbc_base + RSPTP_OFF); if (tail == U32_MAX) { /* PCI link error */ srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } if (head != tail) { irq_wake_thread(dbc->irq, dbc); srcu_read_unlock(&dbc->ch_lock, rcu_id); return; } cond_resched(); usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); } } irqreturn_t dbc_irq_threaded_fn(int irq, void *data) { struct dma_bridge_chan *dbc = data; int event_count = NUM_EVENTS; int delay_count = NUM_DELAYS; struct qaic_device *qdev; struct qaic_bo *bo, *i; struct dbc_rsp *rsp; unsigned long flags; int rcu_id; u16 status; u16 req_id; u32 head; u32 tail; rcu_id = srcu_read_lock(&dbc->ch_lock); head = readl(dbc->dbc_base + RSPHP_OFF); if (head == U32_MAX) /* PCI link error */ goto error_out; qdev = dbc->qdev; read_fifo: if (!event_count) { event_count = NUM_EVENTS; cond_resched(); } /* * if this channel isn't assigned or gets unassigned during processing * we have nothing further to do */ if (!dbc->usr) goto error_out; tail = readl(dbc->dbc_base + RSPTP_OFF); if (tail == U32_MAX) /* PCI link error */ goto error_out; if (head == tail) { /* queue empty */ if (delay_count) { --delay_count; usleep_range(100, 200); goto read_fifo; /* check for a new event */ } goto normal_out; } delay_count = NUM_DELAYS; while (head != tail) { if (!event_count) break; --event_count; rsp = dbc->rsp_q_base + head * sizeof(*rsp); req_id = le16_to_cpu(rsp->req_id); status = le16_to_cpu(rsp->status); if (status) pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); spin_lock_irqsave(&dbc->xfer_lock, flags); /* * A BO can receive multiple interrupts, since a BO can be * divided into multiple slices and a buffer receives as many * interrupts as slices. So until it receives interrupts for * all the slices we cannot mark that buffer complete. */ list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { if (bo->req_id == req_id) bo->nr_slice_xfer_done++; else continue; if (bo->nr_slice_xfer_done < bo->nr_slice) break; /* * At this point we have received all the interrupts for * BO, which means BO execution is complete. */ dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); bo->nr_slice_xfer_done = 0; bo->queued = false; list_del(&bo->xfer_list); bo->perf_stats.req_processed_ts = ktime_get_ns(); complete_all(&bo->xfer_done); drm_gem_object_put(&bo->base); break; } spin_unlock_irqrestore(&dbc->xfer_lock, flags); head = (head + 1) % dbc->nelem; } /* * Update the head pointer of response queue and let the device know * that we have consumed elements from the queue. */ writel(head, dbc->dbc_base + RSPHP_OFF); /* elements might have been put in the queue while we were processing */ goto read_fifo; normal_out: if (likely(!datapath_polling)) enable_irq(irq); else schedule_work(&dbc->poll_work); /* checking the fifo and enabling irqs is a race, missed event check */ tail = readl(dbc->dbc_base + RSPTP_OFF); if (tail != U32_MAX && head != tail) { if (likely(!datapath_polling)) disable_irq_nosync(irq); goto read_fifo; } srcu_read_unlock(&dbc->ch_lock, rcu_id); return IRQ_HANDLED; error_out: srcu_read_unlock(&dbc->ch_lock, rcu_id); if (likely(!datapath_polling)) enable_irq(irq); else schedule_work(&dbc->poll_work); return IRQ_HANDLED; } int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct qaic_wait *args = data; int usr_rcu_id, qdev_rcu_id; struct dma_bridge_chan *dbc; struct drm_gem_object *obj; struct qaic_device *qdev; unsigned long timeout; struct qaic_user *usr; struct qaic_bo *bo; int rcu_id; int ret; if (args->pad != 0) return -EINVAL; usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } if (args->dbc_id >= qdev->num_dbc) { ret = -EINVAL; goto unlock_dev_srcu; } dbc = &qdev->dbc[args->dbc_id]; rcu_id = srcu_read_lock(&dbc->ch_lock); if (dbc->usr != usr) { ret = -EPERM; goto unlock_ch_srcu; } obj = drm_gem_object_lookup(file_priv, args->handle); if (!obj) { ret = -ENOENT; goto unlock_ch_srcu; } bo = to_qaic_bo(obj); timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; timeout = msecs_to_jiffies(timeout); ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); if (!ret) { ret = -ETIMEDOUT; goto put_obj; } if (ret > 0) ret = 0; if (!dbc->usr) ret = -EPERM; put_obj: drm_gem_object_put(obj); unlock_ch_srcu: srcu_read_unlock(&dbc->ch_lock, rcu_id); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return ret; } int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct qaic_perf_stats_entry *ent = NULL; struct qaic_perf_stats *args = data; int usr_rcu_id, qdev_rcu_id; struct drm_gem_object *obj; struct qaic_device *qdev; struct qaic_user *usr; struct qaic_bo *bo; int ret, i; usr = file_priv->driver_priv; usr_rcu_id = srcu_read_lock(&usr->qddev_lock); if (!usr->qddev) { ret = -ENODEV; goto unlock_usr_srcu; } qdev = usr->qddev->qdev; qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); if (qdev->in_reset) { ret = -ENODEV; goto unlock_dev_srcu; } if (args->hdr.dbc_id >= qdev->num_dbc) { ret = -EINVAL; goto unlock_dev_srcu; } ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); if (!ent) { ret = -EINVAL; goto unlock_dev_srcu; } ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); if (ret) { ret = -EFAULT; goto free_ent; } for (i = 0; i < args->hdr.count; i++) { obj = drm_gem_object_lookup(file_priv, ent[i].handle); if (!obj) { ret = -ENOENT; goto free_ent; } bo = to_qaic_bo(obj); /* * perf stats ioctl is called before wait ioctl is complete then * the latency information is invalid. */ if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { ent[i].device_latency_us = 0; } else { ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - bo->perf_stats.req_submit_ts), 1000); } ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - bo->perf_stats.req_received_ts), 1000); ent[i].queue_level_before = bo->perf_stats.queue_level_before; ent[i].num_queue_element = bo->total_slice_nents; drm_gem_object_put(obj); } if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) ret = -EFAULT; free_ent: kfree(ent); unlock_dev_srcu: srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); unlock_usr_srcu: srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); return ret; } static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) { unsigned long flags; struct qaic_bo *bo; spin_lock_irqsave(&dbc->xfer_lock, flags); while (!list_empty(&dbc->xfer_list)) { bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); bo->queued = false; list_del(&bo->xfer_list); spin_unlock_irqrestore(&dbc->xfer_lock, flags); dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); complete_all(&bo->xfer_done); drm_gem_object_put(&bo->base); spin_lock_irqsave(&dbc->xfer_lock, flags); } spin_unlock_irqrestore(&dbc->xfer_lock, flags); } int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) { if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) return -EPERM; qdev->dbc[dbc_id].usr = NULL; synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); return 0; } /** * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of * user. Add user context back to DBC to enable it. This function trusts the * DBC ID passed and expects the DBC to be disabled. * @qdev: Qranium device handle * @dbc_id: ID of the DBC * @usr: User context */ void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) { qdev->dbc[dbc_id].usr = usr; } void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) { struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; dbc->usr = NULL; empty_xfer_list(qdev, dbc); synchronize_srcu(&dbc->ch_lock); /* * Threads holding channel lock, may add more elements in the xfer_list. * Flush out these elements from xfer_list. */ empty_xfer_list(qdev, dbc); } void release_dbc(struct qaic_device *qdev, u32 dbc_id) { struct bo_slice *slice, *slice_temp; struct qaic_bo *bo, *bo_temp; struct dma_bridge_chan *dbc; dbc = &qdev->dbc[dbc_id]; if (!dbc->in_use) return; wakeup_dbc(qdev, dbc_id); dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); dbc->total_size = 0; dbc->req_q_base = NULL; dbc->dma_addr = 0; dbc->nelem = 0; dbc->usr = NULL; list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice) kref_put(&slice->ref_count, free_slice); bo->sliced = false; INIT_LIST_HEAD(&bo->slices); bo->total_slice_nents = 0; bo->dir = 0; bo->dbc = NULL; bo->nr_slice = 0; bo->nr_slice_xfer_done = 0; bo->queued = false; bo->req_id = 0; init_completion(&bo->xfer_done); complete_all(&bo->xfer_done); list_del(&bo->bo_list); bo->perf_stats.req_received_ts = 0; bo->perf_stats.req_submit_ts = 0; bo->perf_stats.req_processed_ts = 0; bo->perf_stats.queue_level_before = 0; } dbc->in_use = false; wake_up(&dbc->dbc_release); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1