Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Brown | 2468 | 46.20% | 20 | 21.51% |
Aidan MacDonald | 767 | 14.36% | 15 | 16.13% |
Laxman Dewangan | 457 | 8.55% | 5 | 5.38% |
Matti Vaittinen | 380 | 7.11% | 4 | 4.30% |
Stephen Warren | 196 | 3.67% | 6 | 6.45% |
Guru Das Srinagesh | 163 | 3.05% | 3 | 3.23% |
Laxminath Kasam | 144 | 2.70% | 1 | 1.08% |
William Breathitt Gray | 123 | 2.30% | 3 | 3.23% |
Guo Zeng | 106 | 1.98% | 2 | 2.15% |
Philipp Zabel | 96 | 1.80% | 1 | 1.08% |
Bartosz Golaszewski | 90 | 1.68% | 2 | 2.15% |
Michael Walle | 62 | 1.16% | 2 | 2.15% |
Maxim Kochetkov | 43 | 0.80% | 1 | 1.08% |
Yi Zhang | 39 | 0.73% | 1 | 1.08% |
Xiubo Li | 37 | 0.69% | 3 | 3.23% |
Graeme Gregory | 32 | 0.60% | 1 | 1.08% |
Xiaofan Tian | 28 | 0.52% | 1 | 1.08% |
Alexander Shiyan | 26 | 0.49% | 1 | 1.08% |
Charles Keepax | 16 | 0.30% | 3 | 3.23% |
Krzysztof Kozlowski | 11 | 0.21% | 2 | 2.15% |
Grygorii Strashko | 9 | 0.17% | 1 | 1.08% |
Colin Ian King | 8 | 0.15% | 1 | 1.08% |
Greg Kroah-Hartman | 7 | 0.13% | 1 | 1.08% |
Mark Zhang | 6 | 0.11% | 1 | 1.08% |
Prasad Kumpatla | 6 | 0.11% | 1 | 1.08% |
Yassine Oudjana | 5 | 0.09% | 1 | 1.08% |
Michael Grzeschik | 4 | 0.07% | 1 | 1.08% |
Valentin Rothberg | 2 | 0.04% | 1 | 1.08% |
Andy Shevchenko | 2 | 0.04% | 1 | 1.08% |
Paul Gortmaker | 2 | 0.04% | 1 | 1.08% |
Tom Rix | 2 | 0.04% | 1 | 1.08% |
Vladimir Zapolskiy | 1 | 0.02% | 1 | 1.08% |
dashsriram | 1 | 0.02% | 1 | 1.08% |
Isaac Manjarres | 1 | 0.02% | 1 | 1.08% |
Luca Ceresoli | 1 | 0.02% | 1 | 1.08% |
Yunfan Zhang | 1 | 0.02% | 1 | 1.08% |
Total | 5342 | 93 |
// SPDX-License-Identifier: GPL-2.0 // // regmap based irq_chip // // Copyright 2011 Wolfson Microelectronics plc // // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> #include <linux/device.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/slab.h> #include "internal.h" struct regmap_irq_chip_data { struct mutex lock; struct irq_chip irq_chip; struct regmap *map; const struct regmap_irq_chip *chip; int irq_base; struct irq_domain *domain; int irq; int wake_count; void *status_reg_buf; unsigned int *main_status_buf; unsigned int *status_buf; unsigned int *mask_buf; unsigned int *mask_buf_def; unsigned int *wake_buf; unsigned int *type_buf; unsigned int *type_buf_def; unsigned int **config_buf; unsigned int irq_reg_stride; unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, unsigned int base, int index); unsigned int clear_status:1; }; static inline const struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, int irq) { return &data->chip->irqs[irq]; } static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) { struct regmap *map = data->map; /* * While possible that a user-defined ->get_irq_reg() callback might * be linear enough to support bulk reads, most of the time it won't. * Therefore only allow them if the default callback is being used. */ return data->irq_reg_stride == 1 && map->reg_stride == 1 && data->get_irq_reg == regmap_irq_get_irq_reg_linear && !map->use_single_read; } static void regmap_irq_lock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); mutex_lock(&d->lock); } static void regmap_irq_sync_unlock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; int i, j, ret; u32 reg; u32 val; if (d->chip->runtime_pm) { ret = pm_runtime_get_sync(map->dev); if (ret < 0) dev_err(map->dev, "IRQ sync failed to resume: %d\n", ret); } if (d->clear_status) { for (i = 0; i < d->chip->num_regs; i++) { reg = d->get_irq_reg(d, d->chip->status_base, i); ret = regmap_read(map, reg, &val); if (ret) dev_err(d->map->dev, "Failed to clear the interrupt status bits\n"); } d->clear_status = false; } /* * If there's been a change in the mask write it back to the * hardware. We rely on the use of the regmap core cache to * suppress pointless writes. */ for (i = 0; i < d->chip->num_regs; i++) { if (d->chip->handle_mask_sync) d->chip->handle_mask_sync(i, d->mask_buf_def[i], d->mask_buf[i], d->chip->irq_drv_data); if (d->chip->mask_base && !d->chip->handle_mask_sync) { reg = d->get_irq_reg(d, d->chip->mask_base, i); ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->mask_buf[i]); if (ret) dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); } if (d->chip->unmask_base && !d->chip->handle_mask_sync) { reg = d->get_irq_reg(d, d->chip->unmask_base, i); ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->mask_buf[i]); if (ret) dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); } reg = d->get_irq_reg(d, d->chip->wake_base, i); if (d->wake_buf) { if (d->chip->wake_invert) ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->wake_buf[i]); else ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->wake_buf[i]); if (ret != 0) dev_err(d->map->dev, "Failed to sync wakes in %x: %d\n", reg, ret); } if (!d->chip->init_ack_masked) continue; /* * Ack all the masked interrupts unconditionally, * OR if there is masked interrupt which hasn't been Acked, * it'll be ignored in irq handler, then may introduce irq storm */ if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { reg = d->get_irq_reg(d, d->chip->ack_base, i); /* some chips ack by write 0 */ if (d->chip->ack_invert) ret = regmap_write(map, reg, ~d->mask_buf[i]); else ret = regmap_write(map, reg, d->mask_buf[i]); if (d->chip->clear_ack) { if (d->chip->ack_invert && !ret) ret = regmap_write(map, reg, UINT_MAX); else if (!ret) ret = regmap_write(map, reg, 0); } if (ret != 0) dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", reg, ret); } } for (i = 0; i < d->chip->num_config_bases; i++) { for (j = 0; j < d->chip->num_config_regs; j++) { reg = d->get_irq_reg(d, d->chip->config_base[i], j); ret = regmap_write(map, reg, d->config_buf[i][j]); if (ret) dev_err(d->map->dev, "Failed to write config %x: %d\n", reg, ret); } } if (d->chip->runtime_pm) pm_runtime_put(map->dev); /* If we've changed our wakeup count propagate it to the parent */ if (d->wake_count < 0) for (i = d->wake_count; i < 0; i++) irq_set_irq_wake(d->irq, 0); else if (d->wake_count > 0) for (i = 0; i < d->wake_count; i++) irq_set_irq_wake(d->irq, 1); d->wake_count = 0; mutex_unlock(&d->lock); } static void regmap_irq_enable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); unsigned int reg = irq_data->reg_offset / map->reg_stride; unsigned int mask; /* * The type_in_mask flag means that the underlying hardware uses * separate mask bits for each interrupt trigger type, but we want * to have a single logical interrupt with a configurable type. * * If the interrupt we're enabling defines any supported types * then instead of using the regular mask bits for this interrupt, * use the value previously written to the type buffer at the * corresponding offset in regmap_irq_set_type(). */ if (d->chip->type_in_mask && irq_data->type.types_supported) mask = d->type_buf[reg] & irq_data->mask; else mask = irq_data->mask; if (d->chip->clear_on_unmask) d->clear_status = true; d->mask_buf[reg] &= ~mask; } static void regmap_irq_disable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; } static int regmap_irq_set_type(struct irq_data *data, unsigned int type) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); int reg, ret; const struct regmap_irq_type *t = &irq_data->type; if ((t->types_supported & type) != type) return 0; reg = t->type_reg_offset / map->reg_stride; if (d->chip->type_in_mask) { ret = regmap_irq_set_type_config_simple(&d->type_buf, type, irq_data, reg, d->chip->irq_drv_data); if (ret) return ret; } if (d->chip->set_type_config) { ret = d->chip->set_type_config(d->config_buf, type, irq_data, reg, d->chip->irq_drv_data); if (ret) return ret; } return 0; } static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); if (on) { if (d->wake_buf) d->wake_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask; d->wake_count++; } else { if (d->wake_buf) d->wake_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; d->wake_count--; } return 0; } static const struct irq_chip regmap_irq_chip = { .irq_bus_lock = regmap_irq_lock, .irq_bus_sync_unlock = regmap_irq_sync_unlock, .irq_disable = regmap_irq_disable, .irq_enable = regmap_irq_enable, .irq_set_type = regmap_irq_set_type, .irq_set_wake = regmap_irq_set_wake, }; static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, unsigned int b) { const struct regmap_irq_chip *chip = data->chip; struct regmap *map = data->map; struct regmap_irq_sub_irq_map *subreg; unsigned int reg; int i, ret = 0; if (!chip->sub_reg_offsets) { reg = data->get_irq_reg(data, chip->status_base, b); ret = regmap_read(map, reg, &data->status_buf[b]); } else { /* * Note we can't use ->get_irq_reg() here because the offsets * in 'subreg' are *not* interchangeable with indices. */ subreg = &chip->sub_reg_offsets[b]; for (i = 0; i < subreg->num_regs; i++) { unsigned int offset = subreg->offset[i]; unsigned int index = offset / map->reg_stride; ret = regmap_read(map, chip->status_base + offset, &data->status_buf[index]); if (ret) break; } } return ret; } static irqreturn_t regmap_irq_thread(int irq, void *d) { struct regmap_irq_chip_data *data = d; const struct regmap_irq_chip *chip = data->chip; struct regmap *map = data->map; int ret, i; bool handled = false; u32 reg; if (chip->handle_pre_irq) chip->handle_pre_irq(chip->irq_drv_data); if (chip->runtime_pm) { ret = pm_runtime_get_sync(map->dev); if (ret < 0) { dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret); goto exit; } } /* * Read only registers with active IRQs if the chip has 'main status * register'. Else read in the statuses, using a single bulk read if * possible in order to reduce the I/O overheads. */ if (chip->no_status) { /* no status register so default to all active */ memset32(data->status_buf, GENMASK(31, 0), chip->num_regs); } else if (chip->num_main_regs) { unsigned int max_main_bits; unsigned long size; size = chip->num_regs * sizeof(unsigned int); max_main_bits = (chip->num_main_status_bits) ? chip->num_main_status_bits : chip->num_regs; /* Clear the status buf as we don't read all status regs */ memset(data->status_buf, 0, size); /* We could support bulk read for main status registers * but I don't expect to see devices with really many main * status registers so let's only support single reads for the * sake of simplicity. and add bulk reads only if needed */ for (i = 0; i < chip->num_main_regs; i++) { reg = data->get_irq_reg(data, chip->main_status, i); ret = regmap_read(map, reg, &data->main_status_buf[i]); if (ret) { dev_err(map->dev, "Failed to read IRQ status %d\n", ret); goto exit; } } /* Read sub registers with active IRQs */ for (i = 0; i < chip->num_main_regs; i++) { unsigned int b; const unsigned long mreg = data->main_status_buf[i]; for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { if (i * map->format.val_bytes * 8 + b > max_main_bits) break; ret = read_sub_irq_data(data, b); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status %d\n", ret); goto exit; } } } } else if (regmap_irq_can_bulk_read_status(data)) { u8 *buf8 = data->status_reg_buf; u16 *buf16 = data->status_reg_buf; u32 *buf32 = data->status_reg_buf; BUG_ON(!data->status_reg_buf); ret = regmap_bulk_read(map, chip->status_base, data->status_reg_buf, chip->num_regs); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); goto exit; } for (i = 0; i < data->chip->num_regs; i++) { switch (map->format.val_bytes) { case 1: data->status_buf[i] = buf8[i]; break; case 2: data->status_buf[i] = buf16[i]; break; case 4: data->status_buf[i] = buf32[i]; break; default: BUG(); goto exit; } } } else { for (i = 0; i < data->chip->num_regs; i++) { unsigned int reg = data->get_irq_reg(data, data->chip->status_base, i); ret = regmap_read(map, reg, &data->status_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); goto exit; } } } if (chip->status_invert) for (i = 0; i < data->chip->num_regs; i++) data->status_buf[i] = ~data->status_buf[i]; /* * Ignore masked IRQs and ack if we need to; we ack early so * there is no race between handling and acknowledging the * interrupt. We assume that typically few of the interrupts * will fire simultaneously so don't worry about overhead from * doing a write per register. */ for (i = 0; i < data->chip->num_regs; i++) { data->status_buf[i] &= ~data->mask_buf[i]; if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { reg = data->get_irq_reg(data, data->chip->ack_base, i); if (chip->ack_invert) ret = regmap_write(map, reg, ~data->status_buf[i]); else ret = regmap_write(map, reg, data->status_buf[i]); if (chip->clear_ack) { if (chip->ack_invert && !ret) ret = regmap_write(map, reg, UINT_MAX); else if (!ret) ret = regmap_write(map, reg, 0); } if (ret != 0) dev_err(map->dev, "Failed to ack 0x%x: %d\n", reg, ret); } } for (i = 0; i < chip->num_irqs; i++) { if (data->status_buf[chip->irqs[i].reg_offset / map->reg_stride] & chip->irqs[i].mask) { handle_nested_irq(irq_find_mapping(data->domain, i)); handled = true; } } exit: if (chip->handle_post_irq) chip->handle_post_irq(chip->irq_drv_data); if (chip->runtime_pm) pm_runtime_put(map->dev); if (handled) return IRQ_HANDLED; else return IRQ_NONE; } static int regmap_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw) { struct regmap_irq_chip_data *data = h->host_data; irq_set_chip_data(virq, data); irq_set_chip(virq, &data->irq_chip); irq_set_nested_thread(virq, 1); irq_set_parent(virq, data->irq); irq_set_noprobe(virq); return 0; } static const struct irq_domain_ops regmap_domain_ops = { .map = regmap_irq_map, .xlate = irq_domain_xlate_onetwocell, }; /** * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. * @data: Data for the &struct regmap_irq_chip * @base: Base register * @index: Register index * * Returns the register address corresponding to the given @base and @index * by the formula ``base + index * regmap_stride * irq_reg_stride``. */ unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, unsigned int base, int index) { struct regmap *map = data->map; return base + index * map->reg_stride * data->irq_reg_stride; } EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); /** * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. * @buf: Buffer containing configuration register values, this is a 2D array of * `num_config_bases` rows, each of `num_config_regs` elements. * @type: The requested IRQ type. * @irq_data: The IRQ being configured. * @idx: Index of the irq's config registers within each array `buf[i]` * @irq_drv_data: Driver specific IRQ data * * This is a &struct regmap_irq_chip->set_type_config callback suitable for * chips with one config register. Register values are updated according to * the &struct regmap_irq_type data associated with an IRQ. */ int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, const struct regmap_irq *irq_data, int idx, void *irq_drv_data) { const struct regmap_irq_type *t = &irq_data->type; if (t->type_reg_mask) buf[0][idx] &= ~t->type_reg_mask; else buf[0][idx] &= ~(t->type_falling_val | t->type_rising_val | t->type_level_low_val | t->type_level_high_val); switch (type) { case IRQ_TYPE_EDGE_FALLING: buf[0][idx] |= t->type_falling_val; break; case IRQ_TYPE_EDGE_RISING: buf[0][idx] |= t->type_rising_val; break; case IRQ_TYPE_EDGE_BOTH: buf[0][idx] |= (t->type_falling_val | t->type_rising_val); break; case IRQ_TYPE_LEVEL_HIGH: buf[0][idx] |= t->type_level_high_val; break; case IRQ_TYPE_LEVEL_LOW: buf[0][idx] |= t->type_level_low_val; break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); /** * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling * * @fwnode: The firmware node where the IRQ domain should be added to. * @map: The regmap for the device. * @irq: The IRQ the device uses to signal interrupts. * @irq_flags: The IRQF_ flags to use for the primary interrupt. * @irq_base: Allocate at specific IRQ number if irq_base > 0. * @chip: Configuration for the interrupt controller. * @data: Runtime data structure for the controller, allocated on success. * * Returns 0 on success or an errno on failure. * * In order for this to be efficient the chip really should use a * register cache. The chip driver is responsible for restoring the * register values used by the IRQ controller over suspend and resume. */ int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { struct regmap_irq_chip_data *d; int i; int ret = -ENOMEM; u32 reg; if (chip->num_regs <= 0) return -EINVAL; if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) return -EINVAL; if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted) return -EINVAL; for (i = 0; i < chip->num_irqs; i++) { if (chip->irqs[i].reg_offset % map->reg_stride) return -EINVAL; if (chip->irqs[i].reg_offset / map->reg_stride >= chip->num_regs) return -EINVAL; } if (irq_base) { irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); if (irq_base < 0) { dev_warn(map->dev, "Failed to allocate IRQs: %d\n", irq_base); return irq_base; } } d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; if (chip->num_main_regs) { d->main_status_buf = kcalloc(chip->num_main_regs, sizeof(*d->main_status_buf), GFP_KERNEL); if (!d->main_status_buf) goto err_alloc; } d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), GFP_KERNEL); if (!d->status_buf) goto err_alloc; d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), GFP_KERNEL); if (!d->mask_buf) goto err_alloc; d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), GFP_KERNEL); if (!d->mask_buf_def) goto err_alloc; if (chip->wake_base) { d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), GFP_KERNEL); if (!d->wake_buf) goto err_alloc; } if (chip->type_in_mask) { d->type_buf_def = kcalloc(chip->num_regs, sizeof(*d->type_buf_def), GFP_KERNEL); if (!d->type_buf_def) goto err_alloc; d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL); if (!d->type_buf) goto err_alloc; } if (chip->num_config_bases && chip->num_config_regs) { /* * Create config_buf[num_config_bases][num_config_regs] */ d->config_buf = kcalloc(chip->num_config_bases, sizeof(*d->config_buf), GFP_KERNEL); if (!d->config_buf) goto err_alloc; for (i = 0; i < chip->num_config_bases; i++) { d->config_buf[i] = kcalloc(chip->num_config_regs, sizeof(**d->config_buf), GFP_KERNEL); if (!d->config_buf[i]) goto err_alloc; } } d->irq_chip = regmap_irq_chip; d->irq_chip.name = chip->name; d->irq = irq; d->map = map; d->chip = chip; d->irq_base = irq_base; if (chip->irq_reg_stride) d->irq_reg_stride = chip->irq_reg_stride; else d->irq_reg_stride = 1; if (chip->get_irq_reg) d->get_irq_reg = chip->get_irq_reg; else d->get_irq_reg = regmap_irq_get_irq_reg_linear; if (regmap_irq_can_bulk_read_status(d)) { d->status_reg_buf = kmalloc_array(chip->num_regs, map->format.val_bytes, GFP_KERNEL); if (!d->status_reg_buf) goto err_alloc; } mutex_init(&d->lock); for (i = 0; i < chip->num_irqs; i++) d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] |= chip->irqs[i].mask; /* Mask all the interrupts by default */ for (i = 0; i < chip->num_regs; i++) { d->mask_buf[i] = d->mask_buf_def[i]; if (chip->handle_mask_sync) { ret = chip->handle_mask_sync(i, d->mask_buf_def[i], d->mask_buf[i], chip->irq_drv_data); if (ret) goto err_alloc; } if (chip->mask_base && !chip->handle_mask_sync) { reg = d->get_irq_reg(d, chip->mask_base, i); ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->mask_buf[i]); if (ret) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); goto err_alloc; } } if (chip->unmask_base && !chip->handle_mask_sync) { reg = d->get_irq_reg(d, chip->unmask_base, i); ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->mask_buf[i]); if (ret) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); goto err_alloc; } } if (!chip->init_ack_masked) continue; /* Ack masked but set interrupts */ if (d->chip->no_status) { /* no status register so default to all active */ d->status_buf[i] = GENMASK(31, 0); } else { reg = d->get_irq_reg(d, d->chip->status_base, i); ret = regmap_read(map, reg, &d->status_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); goto err_alloc; } } if (chip->status_invert) d->status_buf[i] = ~d->status_buf[i]; if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { reg = d->get_irq_reg(d, d->chip->ack_base, i); if (chip->ack_invert) ret = regmap_write(map, reg, ~(d->status_buf[i] & d->mask_buf[i])); else ret = regmap_write(map, reg, d->status_buf[i] & d->mask_buf[i]); if (chip->clear_ack) { if (chip->ack_invert && !ret) ret = regmap_write(map, reg, UINT_MAX); else if (!ret) ret = regmap_write(map, reg, 0); } if (ret != 0) { dev_err(map->dev, "Failed to ack 0x%x: %d\n", reg, ret); goto err_alloc; } } } /* Wake is disabled by default */ if (d->wake_buf) { for (i = 0; i < chip->num_regs; i++) { d->wake_buf[i] = d->mask_buf_def[i]; reg = d->get_irq_reg(d, d->chip->wake_base, i); if (chip->wake_invert) ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], 0); else ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->wake_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); goto err_alloc; } } } if (irq_base) d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, irq_base, 0, ®map_domain_ops, d); else d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, ®map_domain_ops, d); if (!d->domain) { dev_err(map->dev, "Failed to create IRQ domain\n"); ret = -ENOMEM; goto err_alloc; } ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags | IRQF_ONESHOT, chip->name, d); if (ret != 0) { dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", irq, chip->name, ret); goto err_domain; } *data = d; return 0; err_domain: /* Should really dispose of the domain but... */ err_alloc: kfree(d->type_buf); kfree(d->type_buf_def); kfree(d->wake_buf); kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_buf); kfree(d->status_reg_buf); if (d->config_buf) { for (i = 0; i < chip->num_config_bases; i++) kfree(d->config_buf[i]); kfree(d->config_buf); } kfree(d); return ret; } EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); /** * regmap_add_irq_chip() - Use standard regmap IRQ controller handling * * @map: The regmap for the device. * @irq: The IRQ the device uses to signal interrupts. * @irq_flags: The IRQF_ flags to use for the primary interrupt. * @irq_base: Allocate at specific IRQ number if irq_base > 0. * @chip: Configuration for the interrupt controller. * @data: Runtime data structure for the controller, allocated on success. * * Returns 0 on success or an errno on failure. * * This is the same as regmap_add_irq_chip_fwnode, except that the firmware * node of the regmap is used. */ int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, irq_flags, irq_base, chip, data); } EXPORT_SYMBOL_GPL(regmap_add_irq_chip); /** * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip * * @irq: Primary IRQ for the device * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() * * This function also disposes of all mapped IRQs on the chip. */ void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) { unsigned int virq; int i, hwirq; if (!d) return; free_irq(irq, d); /* Dispose all virtual irq from irq domain before removing it */ for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { /* Ignore hwirq if holes in the IRQ list */ if (!d->chip->irqs[hwirq].mask) continue; /* * Find the virtual irq of hwirq on chip and if it is * there then dispose it */ virq = irq_find_mapping(d->domain, hwirq); if (virq) irq_dispose_mapping(virq); } irq_domain_remove(d->domain); kfree(d->type_buf); kfree(d->type_buf_def); kfree(d->wake_buf); kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_reg_buf); kfree(d->status_buf); if (d->config_buf) { for (i = 0; i < d->chip->num_config_bases; i++) kfree(d->config_buf[i]); kfree(d->config_buf); } kfree(d); } EXPORT_SYMBOL_GPL(regmap_del_irq_chip); static void devm_regmap_irq_chip_release(struct device *dev, void *res) { struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; regmap_del_irq_chip(d->irq, d); } static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) { struct regmap_irq_chip_data **r = res; if (!r || !*r) { WARN_ON(!r || !*r); return 0; } return *r == data; } /** * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() * * @dev: The device pointer on which irq_chip belongs to. * @fwnode: The firmware node where the IRQ domain should be added to. * @map: The regmap for the device. * @irq: The IRQ the device uses to signal interrupts * @irq_flags: The IRQF_ flags to use for the primary interrupt. * @irq_base: Allocate at specific IRQ number if irq_base > 0. * @chip: Configuration for the interrupt controller. * @data: Runtime data structure for the controller, allocated on success * * Returns 0 on success or an errno on failure. * * The ®map_irq_chip_data will be automatically released when the device is * unbound. */ int devm_regmap_add_irq_chip_fwnode(struct device *dev, struct fwnode_handle *fwnode, struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { struct regmap_irq_chip_data **ptr, *d; int ret; ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, chip, &d); if (ret < 0) { devres_free(ptr); return ret; } *ptr = d; devres_add(dev, ptr); *data = d; return 0; } EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); /** * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() * * @dev: The device pointer on which irq_chip belongs to. * @map: The regmap for the device. * @irq: The IRQ the device uses to signal interrupts * @irq_flags: The IRQF_ flags to use for the primary interrupt. * @irq_base: Allocate at specific IRQ number if irq_base > 0. * @chip: Configuration for the interrupt controller. * @data: Runtime data structure for the controller, allocated on success * * Returns 0 on success or an errno on failure. * * The ®map_irq_chip_data will be automatically released when the device is * unbound. */ int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, irq, irq_flags, irq_base, chip, data); } EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); /** * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() * * @dev: Device for which the resource was allocated. * @irq: Primary IRQ for the device. * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). * * A resource managed version of regmap_del_irq_chip(). */ void devm_regmap_del_irq_chip(struct device *dev, int irq, struct regmap_irq_chip_data *data) { int rc; WARN_ON(irq != data->irq); rc = devres_release(dev, devm_regmap_irq_chip_release, devm_regmap_irq_chip_match, data); if (rc != 0) WARN_ON(rc); } EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); /** * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip * * @data: regmap irq controller to operate on. * * Useful for drivers to request their own IRQs. */ int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) { WARN_ON(!data->irq_base); return data->irq_base; } EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); /** * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ * * @data: regmap irq controller to operate on. * @irq: index of the interrupt requested in the chip IRQs. * * Useful for drivers to request their own IRQs. */ int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) { /* Handle holes in the IRQ list */ if (!data->chip->irqs[irq].mask) return -EINVAL; return irq_create_mapping(data->domain, irq); } EXPORT_SYMBOL_GPL(regmap_irq_get_virq); /** * regmap_irq_get_domain() - Retrieve the irq_domain for the chip * * @data: regmap_irq controller to operate on. * * Useful for drivers to request their own IRQs and for integration * with subsystems. For ease of integration NULL is accepted as a * domain, allowing devices to just call this even if no domain is * allocated. */ struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) { if (data) return data->domain; else return NULL; } EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1