Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
J. German Rivera | 2719 | 50.93% | 14 | 14.89% |
Tudor Laurentiu | 778 | 14.57% | 21 | 22.34% |
Ioana Ciornei | 700 | 13.11% | 12 | 12.77% |
Makarand Pawagi | 200 | 3.75% | 1 | 1.06% |
Itai Katz | 184 | 3.45% | 5 | 5.32% |
Stuart Yoder | 184 | 3.45% | 9 | 9.57% |
Bharat Bhushan | 145 | 2.72% | 3 | 3.19% |
Greg Kroah-Hartman | 105 | 1.97% | 4 | 4.26% |
Nipun Gupta | 72 | 1.35% | 4 | 4.26% |
Lu Baolu | 66 | 1.24% | 1 | 1.06% |
Andrei Botila | 34 | 0.64% | 1 | 1.06% |
Roy Pledge | 25 | 0.47% | 1 | 1.06% |
Lorenzo Pieralisi | 21 | 0.39% | 1 | 1.06% |
Horia Geantă | 20 | 0.37% | 1 | 1.06% |
Krzysztof Kozlowski | 13 | 0.24% | 1 | 1.06% |
Shin'ichiro Kawasaki | 13 | 0.24% | 1 | 1.06% |
Arnd Bergmann | 11 | 0.21% | 1 | 1.06% |
Bhumika Goyal | 10 | 0.19% | 1 | 1.06% |
Lee Jones | 10 | 0.19% | 1 | 1.06% |
Wei Yongjun | 7 | 0.13% | 1 | 1.06% |
Björn Helgaas | 6 | 0.11% | 1 | 1.06% |
Nayeemahmed Badebade | 3 | 0.06% | 1 | 1.06% |
Johannes Thumshirn | 3 | 0.06% | 1 | 1.06% |
Yicong Yang | 2 | 0.04% | 1 | 1.06% |
Tejun Heo | 2 | 0.04% | 1 | 1.06% |
Rob Herring | 2 | 0.04% | 1 | 1.06% |
Diana Craciun | 1 | 0.02% | 1 | 1.06% |
Christoph Hellwig | 1 | 0.02% | 1 | 1.06% |
Bogdan Purcareata | 1 | 0.02% | 1 | 1.06% |
Mika Westerberg | 1 | 0.02% | 1 | 1.06% |
Total | 5339 | 94 |
// SPDX-License-Identifier: GPL-2.0 /* * Freescale Management Complex (MC) bus driver * * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. * Copyright 2019-2020 NXP * Author: German Rivera <German.Rivera@freescale.com> * */ #define pr_fmt(fmt) "fsl-mc: " fmt #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_address.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/limits.h> #include <linux/bitops.h> #include <linux/dma-mapping.h> #include <linux/acpi.h> #include <linux/iommu.h> #include <linux/dma-map-ops.h> #include "fsl-mc-private.h" /* * Default DMA mask for devices on a fsl-mc bus */ #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) static struct fsl_mc_version mc_version; /** * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device * @root_mc_bus_dev: fsl-mc device representing the root DPRC * @num_translation_ranges: number of entries in addr_translation_ranges * @translation_ranges: array of bus to system address translation ranges * @fsl_mc_regs: base address of register bank */ struct fsl_mc { struct fsl_mc_device *root_mc_bus_dev; u8 num_translation_ranges; struct fsl_mc_addr_translation_range *translation_ranges; void __iomem *fsl_mc_regs; }; /** * struct fsl_mc_addr_translation_range - bus to system address translation * range * @mc_region_type: Type of MC region for the range being translated * @start_mc_offset: Start MC offset of the range being translated * @end_mc_offset: MC offset of the first byte after the range (last MC * offset of the range is end_mc_offset - 1) * @start_phys_addr: system physical address corresponding to start_mc_addr */ struct fsl_mc_addr_translation_range { enum dprc_region_type mc_region_type; u64 start_mc_offset; u64 end_mc_offset; phys_addr_t start_phys_addr; }; #define FSL_MC_GCR1 0x0 #define GCR1_P1_STOP BIT(31) #define GCR1_P2_STOP BIT(30) #define FSL_MC_FAPR 0x28 #define MC_FAPR_PL BIT(18) #define MC_FAPR_BMT BIT(17) static phys_addr_t mc_portal_base_phys_addr; /** * fsl_mc_bus_match - device to driver matching callback * @dev: the fsl-mc device to match against * @drv: the device driver to search for matching fsl-mc object type * structures * * Returns 1 on success, 0 otherwise. */ static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) { const struct fsl_mc_device_id *id; struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); bool found = false; /* When driver_override is set, only bind to the matching driver */ if (mc_dev->driver_override) { found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); goto out; } if (!mc_drv->match_id_table) goto out; /* * If the object is not 'plugged' don't match. * Only exception is the root DPRC, which is a special case. */ if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && !fsl_mc_is_root_dprc(&mc_dev->dev)) goto out; /* * Traverse the match_id table of the given driver, trying to find * a matching for the given device. */ for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { if (id->vendor == mc_dev->obj_desc.vendor && strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { found = true; break; } } out: dev_dbg(dev, "%smatched\n", found ? "" : "not "); return found; } /* * fsl_mc_bus_uevent - callback invoked when a device is added */ static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", mc_dev->obj_desc.vendor, mc_dev->obj_desc.type)) return -ENOMEM; return 0; } static int fsl_mc_dma_configure(struct device *dev) { struct device *dma_dev = dev; struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); u32 input_id = mc_dev->icid; int ret; while (dev_is_fsl_mc(dma_dev)) dma_dev = dma_dev->parent; if (dev_of_node(dma_dev)) ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); else ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); if (!ret && !mc_drv->driver_managed_dma) { ret = iommu_device_use_default_domain(dev); if (ret) arch_teardown_dma_ops(dev); } return ret; } static void fsl_mc_dma_cleanup(struct device *dev) { struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); if (!mc_drv->driver_managed_dma) iommu_device_unuse_default_domain(dev); } static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, mc_dev->obj_desc.type); } static DEVICE_ATTR_RO(modalias); static ssize_t driver_override_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); int ret; if (WARN_ON(dev->bus != &fsl_mc_bus_type)) return -EINVAL; ret = driver_set_override(dev, &mc_dev->driver_override, buf, count); if (ret) return ret; return count; } static ssize_t driver_override_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); } static DEVICE_ATTR_RW(driver_override); static struct attribute *fsl_mc_dev_attrs[] = { &dev_attr_modalias.attr, &dev_attr_driver_override.attr, NULL, }; ATTRIBUTE_GROUPS(fsl_mc_dev); static int scan_fsl_mc_bus(struct device *dev, void *data) { struct fsl_mc_device *root_mc_dev; struct fsl_mc_bus *root_mc_bus; if (!fsl_mc_is_root_dprc(dev)) goto exit; root_mc_dev = to_fsl_mc_device(dev); root_mc_bus = to_fsl_mc_bus(root_mc_dev); mutex_lock(&root_mc_bus->scan_mutex); dprc_scan_objects(root_mc_dev, false); mutex_unlock(&root_mc_bus->scan_mutex); exit: return 0; } static ssize_t rescan_store(const struct bus_type *bus, const char *buf, size_t count) { unsigned long val; if (kstrtoul(buf, 0, &val) < 0) return -EINVAL; if (val) bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); return count; } static BUS_ATTR_WO(rescan); static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) { struct fsl_mc_device *root_mc_dev; unsigned long val; char *buf = data; if (!fsl_mc_is_root_dprc(dev)) goto exit; root_mc_dev = to_fsl_mc_device(dev); if (kstrtoul(buf, 0, &val) < 0) return -EINVAL; if (val) enable_dprc_irq(root_mc_dev); else disable_dprc_irq(root_mc_dev); exit: return 0; } static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) { struct fsl_mc_device *root_mc_dev; char *buf = data; if (!fsl_mc_is_root_dprc(dev)) goto exit; root_mc_dev = to_fsl_mc_device(dev); sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); exit: return 0; } static ssize_t autorescan_store(const struct bus_type *bus, const char *buf, size_t count) { bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); return count; } static ssize_t autorescan_show(const struct bus_type *bus, char *buf) { bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); return strlen(buf); } static BUS_ATTR_RW(autorescan); static struct attribute *fsl_mc_bus_attrs[] = { &bus_attr_rescan.attr, &bus_attr_autorescan.attr, NULL, }; ATTRIBUTE_GROUPS(fsl_mc_bus); struct bus_type fsl_mc_bus_type = { .name = "fsl-mc", .match = fsl_mc_bus_match, .uevent = fsl_mc_bus_uevent, .dma_configure = fsl_mc_dma_configure, .dma_cleanup = fsl_mc_dma_cleanup, .dev_groups = fsl_mc_dev_groups, .bus_groups = fsl_mc_bus_groups, }; EXPORT_SYMBOL_GPL(fsl_mc_bus_type); struct device_type fsl_mc_bus_dprc_type = { .name = "fsl_mc_bus_dprc" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); struct device_type fsl_mc_bus_dpni_type = { .name = "fsl_mc_bus_dpni" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); struct device_type fsl_mc_bus_dpio_type = { .name = "fsl_mc_bus_dpio" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); struct device_type fsl_mc_bus_dpsw_type = { .name = "fsl_mc_bus_dpsw" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); struct device_type fsl_mc_bus_dpbp_type = { .name = "fsl_mc_bus_dpbp" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); struct device_type fsl_mc_bus_dpcon_type = { .name = "fsl_mc_bus_dpcon" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); struct device_type fsl_mc_bus_dpmcp_type = { .name = "fsl_mc_bus_dpmcp" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); struct device_type fsl_mc_bus_dpmac_type = { .name = "fsl_mc_bus_dpmac" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); struct device_type fsl_mc_bus_dprtc_type = { .name = "fsl_mc_bus_dprtc" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); struct device_type fsl_mc_bus_dpseci_type = { .name = "fsl_mc_bus_dpseci" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); struct device_type fsl_mc_bus_dpdmux_type = { .name = "fsl_mc_bus_dpdmux" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); struct device_type fsl_mc_bus_dpdcei_type = { .name = "fsl_mc_bus_dpdcei" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); struct device_type fsl_mc_bus_dpaiop_type = { .name = "fsl_mc_bus_dpaiop" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); struct device_type fsl_mc_bus_dpci_type = { .name = "fsl_mc_bus_dpci" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); struct device_type fsl_mc_bus_dpdmai_type = { .name = "fsl_mc_bus_dpdmai" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); struct device_type fsl_mc_bus_dpdbg_type = { .name = "fsl_mc_bus_dpdbg" }; EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); static struct device_type *fsl_mc_get_device_type(const char *type) { static const struct { struct device_type *dev_type; const char *type; } dev_types[] = { { &fsl_mc_bus_dprc_type, "dprc" }, { &fsl_mc_bus_dpni_type, "dpni" }, { &fsl_mc_bus_dpio_type, "dpio" }, { &fsl_mc_bus_dpsw_type, "dpsw" }, { &fsl_mc_bus_dpbp_type, "dpbp" }, { &fsl_mc_bus_dpcon_type, "dpcon" }, { &fsl_mc_bus_dpmcp_type, "dpmcp" }, { &fsl_mc_bus_dpmac_type, "dpmac" }, { &fsl_mc_bus_dprtc_type, "dprtc" }, { &fsl_mc_bus_dpseci_type, "dpseci" }, { &fsl_mc_bus_dpdmux_type, "dpdmux" }, { &fsl_mc_bus_dpdcei_type, "dpdcei" }, { &fsl_mc_bus_dpaiop_type, "dpaiop" }, { &fsl_mc_bus_dpci_type, "dpci" }, { &fsl_mc_bus_dpdmai_type, "dpdmai" }, { &fsl_mc_bus_dpdbg_type, "dpdbg" }, { NULL, NULL } }; int i; for (i = 0; dev_types[i].dev_type; i++) if (!strcmp(dev_types[i].type, type)) return dev_types[i].dev_type; return NULL; } static int fsl_mc_driver_probe(struct device *dev) { struct fsl_mc_driver *mc_drv; struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); int error; mc_drv = to_fsl_mc_driver(dev->driver); error = mc_drv->probe(mc_dev); if (error < 0) { if (error != -EPROBE_DEFER) dev_err(dev, "%s failed: %d\n", __func__, error); return error; } return 0; } static int fsl_mc_driver_remove(struct device *dev) { struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); mc_drv->remove(mc_dev); return 0; } static void fsl_mc_driver_shutdown(struct device *dev) { struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); mc_drv->shutdown(mc_dev); } /* * __fsl_mc_driver_register - registers a child device driver with the * MC bus * * This function is implicitly invoked from the registration function of * fsl_mc device drivers, which is generated by the * module_fsl_mc_driver() macro. */ int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, struct module *owner) { int error; mc_driver->driver.owner = owner; mc_driver->driver.bus = &fsl_mc_bus_type; if (mc_driver->probe) mc_driver->driver.probe = fsl_mc_driver_probe; if (mc_driver->remove) mc_driver->driver.remove = fsl_mc_driver_remove; if (mc_driver->shutdown) mc_driver->driver.shutdown = fsl_mc_driver_shutdown; error = driver_register(&mc_driver->driver); if (error < 0) { pr_err("driver_register() failed for %s: %d\n", mc_driver->driver.name, error); return error; } return 0; } EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); /* * fsl_mc_driver_unregister - unregisters a device driver from the * MC bus */ void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) { driver_unregister(&mc_driver->driver); } EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); /** * mc_get_version() - Retrieves the Management Complex firmware * version information * @mc_io: Pointer to opaque I/O object * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' * @mc_ver_info: Returned version information structure * * Return: '0' on Success; Error code otherwise. */ static int mc_get_version(struct fsl_mc_io *mc_io, u32 cmd_flags, struct fsl_mc_version *mc_ver_info) { struct fsl_mc_command cmd = { 0 }; struct dpmng_rsp_get_version *rsp_params; int err; /* prepare command */ cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, cmd_flags, 0); /* send command to mc*/ err = mc_send_command(mc_io, &cmd); if (err) return err; /* retrieve response parameters */ rsp_params = (struct dpmng_rsp_get_version *)cmd.params; mc_ver_info->revision = le32_to_cpu(rsp_params->revision); mc_ver_info->major = le32_to_cpu(rsp_params->version_major); mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); return 0; } /** * fsl_mc_get_version - function to retrieve the MC f/w version information * * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. */ struct fsl_mc_version *fsl_mc_get_version(void) { if (mc_version.major) return &mc_version; return NULL; } EXPORT_SYMBOL_GPL(fsl_mc_get_version); /* * fsl_mc_get_root_dprc - function to traverse to the root dprc */ void fsl_mc_get_root_dprc(struct device *dev, struct device **root_dprc_dev) { if (!dev) { *root_dprc_dev = NULL; } else if (!dev_is_fsl_mc(dev)) { *root_dprc_dev = NULL; } else { *root_dprc_dev = dev; while (dev_is_fsl_mc((*root_dprc_dev)->parent)) *root_dprc_dev = (*root_dprc_dev)->parent; } } static int get_dprc_attr(struct fsl_mc_io *mc_io, int container_id, struct dprc_attributes *attr) { u16 dprc_handle; int error; error = dprc_open(mc_io, 0, container_id, &dprc_handle); if (error < 0) { dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); return error; } memset(attr, 0, sizeof(struct dprc_attributes)); error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); if (error < 0) { dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", error); goto common_cleanup; } error = 0; common_cleanup: (void)dprc_close(mc_io, 0, dprc_handle); return error; } static int get_dprc_icid(struct fsl_mc_io *mc_io, int container_id, u32 *icid) { struct dprc_attributes attr; int error; error = get_dprc_attr(mc_io, container_id, &attr); if (error == 0) *icid = attr.icid; return error; } static int translate_mc_addr(struct fsl_mc_device *mc_dev, enum dprc_region_type mc_region_type, u64 mc_offset, phys_addr_t *phys_addr) { int i; struct device *root_dprc_dev; struct fsl_mc *mc; fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); mc = dev_get_drvdata(root_dprc_dev->parent); if (mc->num_translation_ranges == 0) { /* * Do identity mapping: */ *phys_addr = mc_offset; return 0; } for (i = 0; i < mc->num_translation_ranges; i++) { struct fsl_mc_addr_translation_range *range = &mc->translation_ranges[i]; if (mc_region_type == range->mc_region_type && mc_offset >= range->start_mc_offset && mc_offset < range->end_mc_offset) { *phys_addr = range->start_phys_addr + (mc_offset - range->start_mc_offset); return 0; } } return -EFAULT; } static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, struct fsl_mc_device *mc_bus_dev) { int i; int error; struct resource *regions; struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; struct device *parent_dev = mc_dev->dev.parent; enum dprc_region_type mc_region_type; if (is_fsl_mc_bus_dprc(mc_dev) || is_fsl_mc_bus_dpmcp(mc_dev)) { mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; } else if (is_fsl_mc_bus_dpio(mc_dev)) { mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; } else { /* * This function should not have been called for this MC object * type, as this object type is not supposed to have MMIO * regions */ return -EINVAL; } regions = kmalloc_array(obj_desc->region_count, sizeof(regions[0]), GFP_KERNEL); if (!regions) return -ENOMEM; for (i = 0; i < obj_desc->region_count; i++) { struct dprc_region_desc region_desc; error = dprc_get_obj_region(mc_bus_dev->mc_io, 0, mc_bus_dev->mc_handle, obj_desc->type, obj_desc->id, i, ®ion_desc); if (error < 0) { dev_err(parent_dev, "dprc_get_obj_region() failed: %d\n", error); goto error_cleanup_regions; } /* * Older MC only returned region offset and no base address * If base address is in the region_desc use it otherwise * revert to old mechanism */ if (region_desc.base_address) { regions[i].start = region_desc.base_address + region_desc.base_offset; } else { error = translate_mc_addr(mc_dev, mc_region_type, region_desc.base_offset, ®ions[i].start); /* * Some versions of the MC firmware wrongly report * 0 for register base address of the DPMCP associated * with child DPRC objects thus rendering them unusable. * This is particularly troublesome in ACPI boot * scenarios where the legacy way of extracting this * base address from the device tree does not apply. * Given that DPMCPs share the same base address, * workaround this by using the base address extracted * from the root DPRC container. */ if (is_fsl_mc_bus_dprc(mc_dev) && regions[i].start == region_desc.base_offset) regions[i].start += mc_portal_base_phys_addr; } if (error < 0) { dev_err(parent_dev, "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", region_desc.base_offset, obj_desc->type, obj_desc->id, i); goto error_cleanup_regions; } regions[i].end = regions[i].start + region_desc.size - 1; regions[i].name = "fsl-mc object MMIO region"; regions[i].flags = region_desc.flags & IORESOURCE_BITS; regions[i].flags |= IORESOURCE_MEM; } mc_dev->regions = regions; return 0; error_cleanup_regions: kfree(regions); return error; } /* * fsl_mc_is_root_dprc - function to check if a given device is a root dprc */ bool fsl_mc_is_root_dprc(struct device *dev) { struct device *root_dprc_dev; fsl_mc_get_root_dprc(dev, &root_dprc_dev); if (!root_dprc_dev) return false; return dev == root_dprc_dev; } static void fsl_mc_device_release(struct device *dev) { struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); kfree(mc_dev->regions); if (is_fsl_mc_bus_dprc(mc_dev)) kfree(to_fsl_mc_bus(mc_dev)); else kfree(mc_dev); } /* * Add a newly discovered fsl-mc device to be visible in Linux */ int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, struct fsl_mc_io *mc_io, struct device *parent_dev, struct fsl_mc_device **new_mc_dev) { int error; struct fsl_mc_device *mc_dev = NULL; struct fsl_mc_bus *mc_bus = NULL; struct fsl_mc_device *parent_mc_dev; if (dev_is_fsl_mc(parent_dev)) parent_mc_dev = to_fsl_mc_device(parent_dev); else parent_mc_dev = NULL; if (strcmp(obj_desc->type, "dprc") == 0) { /* * Allocate an MC bus device object: */ mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); if (!mc_bus) return -ENOMEM; mutex_init(&mc_bus->scan_mutex); mc_dev = &mc_bus->mc_dev; } else { /* * Allocate a regular fsl_mc_device object: */ mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); if (!mc_dev) return -ENOMEM; } mc_dev->obj_desc = *obj_desc; mc_dev->mc_io = mc_io; device_initialize(&mc_dev->dev); mc_dev->dev.parent = parent_dev; mc_dev->dev.bus = &fsl_mc_bus_type; mc_dev->dev.release = fsl_mc_device_release; mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); if (!mc_dev->dev.type) { error = -ENODEV; dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); goto error_cleanup_dev; } dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); if (strcmp(obj_desc->type, "dprc") == 0) { struct fsl_mc_io *mc_io2; mc_dev->flags |= FSL_MC_IS_DPRC; /* * To get the DPRC's ICID, we need to open the DPRC * in get_dprc_icid(). For child DPRCs, we do so using the * parent DPRC's MC portal instead of the child DPRC's MC * portal, in case the child DPRC is already opened with * its own portal (e.g., the DPRC used by AIOP). * * NOTE: There cannot be more than one active open for a * given MC object, using the same MC portal. */ if (parent_mc_dev) { /* * device being added is a child DPRC device */ mc_io2 = parent_mc_dev->mc_io; } else { /* * device being added is the root DPRC device */ if (!mc_io) { error = -EINVAL; goto error_cleanup_dev; } mc_io2 = mc_io; } error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); if (error < 0) goto error_cleanup_dev; } else { /* * A non-DPRC object has to be a child of a DPRC, use the * parent's ICID and interrupt domain. */ mc_dev->icid = parent_mc_dev->icid; mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; mc_dev->dev.dma_mask = &mc_dev->dma_mask; mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; dev_set_msi_domain(&mc_dev->dev, dev_get_msi_domain(&parent_mc_dev->dev)); } /* * Get MMIO regions for the device from the MC: * * NOTE: the root DPRC is a special case as its MMIO region is * obtained from the device tree */ if (parent_mc_dev && obj_desc->region_count != 0) { error = fsl_mc_device_get_mmio_regions(mc_dev, parent_mc_dev); if (error < 0) goto error_cleanup_dev; } /* * The device-specific probe callback will get invoked by device_add() */ error = device_add(&mc_dev->dev); if (error < 0) { dev_err(parent_dev, "device_add() failed for device %s: %d\n", dev_name(&mc_dev->dev), error); goto error_cleanup_dev; } dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); *new_mc_dev = mc_dev; return 0; error_cleanup_dev: kfree(mc_dev->regions); kfree(mc_bus); kfree(mc_dev); return error; } EXPORT_SYMBOL_GPL(fsl_mc_device_add); static struct notifier_block fsl_mc_nb; /** * fsl_mc_device_remove - Remove an fsl-mc device from being visible to * Linux * * @mc_dev: Pointer to an fsl-mc device */ void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) { kfree(mc_dev->driver_override); mc_dev->driver_override = NULL; /* * The device-specific remove callback will get invoked by device_del() */ device_del(&mc_dev->dev); put_device(&mc_dev->dev); } EXPORT_SYMBOL_GPL(fsl_mc_device_remove); struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, u16 if_id) { struct fsl_mc_device *mc_bus_dev, *endpoint; struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; struct dprc_endpoint endpoint1 = {{ 0 }}; struct dprc_endpoint endpoint2 = {{ 0 }}; int state, err; mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); strcpy(endpoint1.type, mc_dev->obj_desc.type); endpoint1.id = mc_dev->obj_desc.id; endpoint1.if_id = if_id; err = dprc_get_connection(mc_bus_dev->mc_io, 0, mc_bus_dev->mc_handle, &endpoint1, &endpoint2, &state); if (err == -ENOTCONN || state == -1) return ERR_PTR(-ENOTCONN); if (err < 0) { dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); return ERR_PTR(err); } strcpy(endpoint_desc.type, endpoint2.type); endpoint_desc.id = endpoint2.id; endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); /* * We know that the device has an endpoint because we verified by * interrogating the firmware. This is the case when the device was not * yet discovered by the fsl-mc bus, thus the lookup returned NULL. * Force a rescan of the devices in this container and retry the lookup. */ if (!endpoint) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); if (mutex_trylock(&mc_bus->scan_mutex)) { err = dprc_scan_objects(mc_bus_dev, true); mutex_unlock(&mc_bus->scan_mutex); } if (err < 0) return ERR_PTR(err); } endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); /* * This means that the endpoint might reside in a different isolation * context (DPRC/container). Not much to do, so return a permssion * error. */ if (!endpoint) return ERR_PTR(-EPERM); return endpoint; } EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); static int parse_mc_ranges(struct device *dev, int *paddr_cells, int *mc_addr_cells, int *mc_size_cells, const __be32 **ranges_start) { const __be32 *prop; int range_tuple_cell_count; int ranges_len; int tuple_len; struct device_node *mc_node = dev->of_node; *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); if (!(*ranges_start) || !ranges_len) { dev_warn(dev, "missing or empty ranges property for device tree node '%pOFn'\n", mc_node); return 0; } *paddr_cells = of_n_addr_cells(mc_node); prop = of_get_property(mc_node, "#address-cells", NULL); if (prop) *mc_addr_cells = be32_to_cpup(prop); else *mc_addr_cells = *paddr_cells; prop = of_get_property(mc_node, "#size-cells", NULL); if (prop) *mc_size_cells = be32_to_cpup(prop); else *mc_size_cells = of_n_size_cells(mc_node); range_tuple_cell_count = *paddr_cells + *mc_addr_cells + *mc_size_cells; tuple_len = range_tuple_cell_count * sizeof(__be32); if (ranges_len % tuple_len != 0) { dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); return -EINVAL; } return ranges_len / tuple_len; } static int get_mc_addr_translation_ranges(struct device *dev, struct fsl_mc_addr_translation_range **ranges, u8 *num_ranges) { int ret; int paddr_cells; int mc_addr_cells; int mc_size_cells; int i; const __be32 *ranges_start; const __be32 *cell; ret = parse_mc_ranges(dev, &paddr_cells, &mc_addr_cells, &mc_size_cells, &ranges_start); if (ret < 0) return ret; *num_ranges = ret; if (!ret) { /* * Missing or empty ranges property ("ranges;") for the * 'fsl,qoriq-mc' node. In this case, identity mapping * will be used. */ *ranges = NULL; return 0; } *ranges = devm_kcalloc(dev, *num_ranges, sizeof(struct fsl_mc_addr_translation_range), GFP_KERNEL); if (!(*ranges)) return -ENOMEM; cell = ranges_start; for (i = 0; i < *num_ranges; ++i) { struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; range->mc_region_type = of_read_number(cell, 1); range->start_mc_offset = of_read_number(cell + 1, mc_addr_cells - 1); cell += mc_addr_cells; range->start_phys_addr = of_read_number(cell, paddr_cells); cell += paddr_cells; range->end_mc_offset = range->start_mc_offset + of_read_number(cell, mc_size_cells); cell += mc_size_cells; } return 0; } /* * fsl_mc_bus_probe - callback invoked when the root MC bus is being * added */ static int fsl_mc_bus_probe(struct platform_device *pdev) { struct fsl_mc_obj_desc obj_desc; int error; struct fsl_mc *mc; struct fsl_mc_device *mc_bus_dev = NULL; struct fsl_mc_io *mc_io = NULL; int container_id; phys_addr_t mc_portal_phys_addr; u32 mc_portal_size, mc_stream_id; struct resource *plat_res; mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); if (!mc) return -ENOMEM; platform_set_drvdata(pdev, mc); plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (plat_res) { mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); if (IS_ERR(mc->fsl_mc_regs)) return PTR_ERR(mc->fsl_mc_regs); } if (mc->fsl_mc_regs) { if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); /* * HW ORs the PL and BMT bit, places the result in bit * 14 of the StreamID and ORs in the ICID. Calculate it * accordingly. */ mc_stream_id = (mc_stream_id & 0xffff) | ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? BIT(14) : 0); error = acpi_dma_configure_id(&pdev->dev, DEV_DMA_COHERENT, &mc_stream_id); if (error == -EPROBE_DEFER) return error; if (error) dev_warn(&pdev->dev, "failed to configure dma: %d.\n", error); } /* * Some bootloaders pause the MC firmware before booting the * kernel so that MC will not cause faults as soon as the * SMMU probes due to the fact that there's no configuration * in place for MC. * At this point MC should have all its SMMU setup done so make * sure it is resumed. */ writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & (~(GCR1_P1_STOP | GCR1_P2_STOP)), mc->fsl_mc_regs + FSL_MC_GCR1); } /* * Get physical address of MC portal for the root DPRC: */ plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mc_portal_phys_addr = plat_res->start; mc_portal_size = resource_size(plat_res); mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, mc_portal_size, NULL, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); if (error < 0) return error; error = mc_get_version(mc_io, 0, &mc_version); if (error != 0) { dev_err(&pdev->dev, "mc_get_version() failed with error %d\n", error); goto error_cleanup_mc_io; } dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", mc_version.major, mc_version.minor, mc_version.revision); if (dev_of_node(&pdev->dev)) { error = get_mc_addr_translation_ranges(&pdev->dev, &mc->translation_ranges, &mc->num_translation_ranges); if (error < 0) goto error_cleanup_mc_io; } error = dprc_get_container_id(mc_io, 0, &container_id); if (error < 0) { dev_err(&pdev->dev, "dprc_get_container_id() failed: %d\n", error); goto error_cleanup_mc_io; } memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); error = dprc_get_api_version(mc_io, 0, &obj_desc.ver_major, &obj_desc.ver_minor); if (error < 0) goto error_cleanup_mc_io; obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; strcpy(obj_desc.type, "dprc"); obj_desc.id = container_id; obj_desc.irq_count = 1; obj_desc.region_count = 0; error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); if (error < 0) goto error_cleanup_mc_io; mc->root_mc_bus_dev = mc_bus_dev; mc_bus_dev->dev.fwnode = pdev->dev.fwnode; return 0; error_cleanup_mc_io: fsl_destroy_mc_io(mc_io); return error; } /* * fsl_mc_bus_remove - callback invoked when the root MC bus is being * removed */ static int fsl_mc_bus_remove(struct platform_device *pdev) { struct fsl_mc *mc = platform_get_drvdata(pdev); struct fsl_mc_io *mc_io; if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) return -EINVAL; mc_io = mc->root_mc_bus_dev->mc_io; fsl_mc_device_remove(mc->root_mc_bus_dev); fsl_destroy_mc_io(mc_io); bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); if (mc->fsl_mc_regs) { /* * Pause the MC firmware so that it doesn't crash in certain * scenarios, such as kexec. */ writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), mc->fsl_mc_regs + FSL_MC_GCR1); } return 0; } static void fsl_mc_bus_shutdown(struct platform_device *pdev) { fsl_mc_bus_remove(pdev); } static const struct of_device_id fsl_mc_bus_match_table[] = { {.compatible = "fsl,qoriq-mc",}, {}, }; MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { {"NXP0008", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); static struct platform_driver fsl_mc_bus_driver = { .driver = { .name = "fsl_mc_bus", .pm = NULL, .of_match_table = fsl_mc_bus_match_table, .acpi_match_table = fsl_mc_bus_acpi_match_table, }, .probe = fsl_mc_bus_probe, .remove = fsl_mc_bus_remove, .shutdown = fsl_mc_bus_shutdown, }; static int fsl_mc_bus_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; struct resource *res; void __iomem *fsl_mc_regs; if (action != BUS_NOTIFY_ADD_DEVICE) return 0; if (!of_match_device(fsl_mc_bus_match_table, dev) && !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) return 0; res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); if (!res) return 0; fsl_mc_regs = ioremap(res->start, resource_size(res)); if (!fsl_mc_regs) return 0; /* * Make sure that the MC firmware is paused before the IOMMU setup for * it is done or otherwise the firmware will crash right after the SMMU * gets probed and enabled. */ writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), fsl_mc_regs + FSL_MC_GCR1); iounmap(fsl_mc_regs); return 0; } static struct notifier_block fsl_mc_nb = { .notifier_call = fsl_mc_bus_notifier, }; static int __init fsl_mc_bus_driver_init(void) { int error; error = bus_register(&fsl_mc_bus_type); if (error < 0) { pr_err("bus type registration failed: %d\n", error); goto error_cleanup_cache; } error = platform_driver_register(&fsl_mc_bus_driver); if (error < 0) { pr_err("platform_driver_register() failed: %d\n", error); goto error_cleanup_bus; } error = dprc_driver_init(); if (error < 0) goto error_cleanup_driver; error = fsl_mc_allocator_driver_init(); if (error < 0) goto error_cleanup_dprc_driver; return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); error_cleanup_dprc_driver: dprc_driver_exit(); error_cleanup_driver: platform_driver_unregister(&fsl_mc_bus_driver); error_cleanup_bus: bus_unregister(&fsl_mc_bus_type); error_cleanup_cache: return error; } postcore_initcall(fsl_mc_bus_driver_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1