Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralf Baechle | 1790 | 81.77% | 1 | 4.55% |
Johannes Berg | 311 | 14.21% | 1 | 4.55% |
Bin Shi | 36 | 1.64% | 1 | 4.55% |
Alexey Dobriyan | 13 | 0.59% | 2 | 9.09% |
Arnd Bergmann | 10 | 0.46% | 4 | 18.18% |
Tejun Heo | 9 | 0.41% | 1 | 4.55% |
Akinobu Mita | 4 | 0.18% | 1 | 4.55% |
Andrew Morton | 3 | 0.14% | 1 | 4.55% |
Christoph Hellwig | 2 | 0.09% | 1 | 4.55% |
Linus Torvalds | 2 | 0.09% | 1 | 4.55% |
Neil Brown | 2 | 0.09% | 1 | 4.55% |
Rafael J. Wysocki | 2 | 0.09% | 2 | 9.09% |
Thomas Gleixner | 1 | 0.05% | 1 | 4.55% |
Jiang Jian | 1 | 0.05% | 1 | 4.55% |
Al Viro | 1 | 0.05% | 1 | 4.55% |
Paul Bolle | 1 | 0.05% | 1 | 4.55% |
Justin P. Mattock | 1 | 0.05% | 1 | 4.55% |
Total | 2189 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * bios-less APM driver for ARM Linux * Jamey Hicks <jamey@crl.dec.com> * adapted from the APM BIOS driver for Linux by Stephen Rothwell (sfr@linuxcare.com) * * APM 1.2 Reference: * Intel Corporation, Microsoft Corporation. Advanced Power Management * (APM) BIOS Interface Specification, Revision 1.2, February 1996. * * This document is available from Microsoft at: * http://www.microsoft.com/whdc/archive/amp_12.mspx */ #include <linux/module.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/miscdevice.h> #include <linux/apm_bios.h> #include <linux/capability.h> #include <linux/sched.h> #include <linux/suspend.h> #include <linux/apm-emulation.h> #include <linux/freezer.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/init.h> #include <linux/completion.h> #include <linux/kthread.h> #include <linux/delay.h> /* * One option can be changed at boot time as follows: * apm=on/off enable/disable APM */ /* * Maximum number of events stored */ #define APM_MAX_EVENTS 16 struct apm_queue { unsigned int event_head; unsigned int event_tail; apm_event_t events[APM_MAX_EVENTS]; }; /* * thread states (for threads using a writable /dev/apm_bios fd): * * SUSPEND_NONE: nothing happening * SUSPEND_PENDING: suspend event queued for thread and pending to be read * SUSPEND_READ: suspend event read, pending acknowledgement * SUSPEND_ACKED: acknowledgement received from thread (via ioctl), * waiting for resume * SUSPEND_ACKTO: acknowledgement timeout * SUSPEND_DONE: thread had acked suspend and is now notified of * resume * * SUSPEND_WAIT: this thread invoked suspend and is waiting for resume * * A thread migrates in one of three paths: * NONE -1-> PENDING -2-> READ -3-> ACKED -4-> DONE -5-> NONE * -6-> ACKTO -7-> NONE * NONE -8-> WAIT -9-> NONE * * While in PENDING or READ, the thread is accounted for in the * suspend_acks_pending counter. * * The transitions are invoked as follows: * 1: suspend event is signalled from the core PM code * 2: the suspend event is read from the fd by the userspace thread * 3: userspace thread issues the APM_IOC_SUSPEND ioctl (as ack) * 4: core PM code signals that we have resumed * 5: APM_IOC_SUSPEND ioctl returns * * 6: the notifier invoked from the core PM code timed out waiting * for all relevant threds to enter ACKED state and puts those * that haven't into ACKTO * 7: those threads issue APM_IOC_SUSPEND ioctl too late, * get an error * * 8: userspace thread issues the APM_IOC_SUSPEND ioctl (to suspend), * ioctl code invokes pm_suspend() * 9: pm_suspend() returns indicating resume */ enum apm_suspend_state { SUSPEND_NONE, SUSPEND_PENDING, SUSPEND_READ, SUSPEND_ACKED, SUSPEND_ACKTO, SUSPEND_WAIT, SUSPEND_DONE, }; /* * The per-file APM data */ struct apm_user { struct list_head list; unsigned int suser: 1; unsigned int writer: 1; unsigned int reader: 1; int suspend_result; enum apm_suspend_state suspend_state; struct apm_queue queue; }; /* * Local variables */ static atomic_t suspend_acks_pending = ATOMIC_INIT(0); static atomic_t userspace_notification_inhibit = ATOMIC_INIT(0); static int apm_disabled; static struct task_struct *kapmd_tsk; static DECLARE_WAIT_QUEUE_HEAD(apm_waitqueue); static DECLARE_WAIT_QUEUE_HEAD(apm_suspend_waitqueue); /* * This is a list of everyone who has opened /dev/apm_bios */ static DECLARE_RWSEM(user_list_lock); static LIST_HEAD(apm_user_list); /* * kapmd info. kapmd provides us a process context to handle * "APM" events within - specifically necessary if we're going * to be suspending the system. */ static DECLARE_WAIT_QUEUE_HEAD(kapmd_wait); static DEFINE_SPINLOCK(kapmd_queue_lock); static struct apm_queue kapmd_queue; static DEFINE_MUTEX(state_lock); static const char driver_version[] = "1.13"; /* no spaces */ /* * Compatibility cruft until the IPAQ people move over to the new * interface. */ static void __apm_get_power_status(struct apm_power_info *info) { } /* * This allows machines to provide their own "apm get power status" function. */ void (*apm_get_power_status)(struct apm_power_info *) = __apm_get_power_status; EXPORT_SYMBOL(apm_get_power_status); /* * APM event queue management. */ static inline int queue_empty(struct apm_queue *q) { return q->event_head == q->event_tail; } static inline apm_event_t queue_get_event(struct apm_queue *q) { q->event_tail = (q->event_tail + 1) % APM_MAX_EVENTS; return q->events[q->event_tail]; } static void queue_add_event(struct apm_queue *q, apm_event_t event) { q->event_head = (q->event_head + 1) % APM_MAX_EVENTS; if (q->event_head == q->event_tail) { static int notified; if (notified++ == 0) printk(KERN_ERR "apm: an event queue overflowed\n"); q->event_tail = (q->event_tail + 1) % APM_MAX_EVENTS; } q->events[q->event_head] = event; } static void queue_event(apm_event_t event) { struct apm_user *as; down_read(&user_list_lock); list_for_each_entry(as, &apm_user_list, list) { if (as->reader) queue_add_event(&as->queue, event); } up_read(&user_list_lock); wake_up_interruptible(&apm_waitqueue); } static ssize_t apm_read(struct file *fp, char __user *buf, size_t count, loff_t *ppos) { struct apm_user *as = fp->private_data; apm_event_t event; int i = count, ret = 0; if (count < sizeof(apm_event_t)) return -EINVAL; if (queue_empty(&as->queue) && fp->f_flags & O_NONBLOCK) return -EAGAIN; wait_event_interruptible(apm_waitqueue, !queue_empty(&as->queue)); while ((i >= sizeof(event)) && !queue_empty(&as->queue)) { event = queue_get_event(&as->queue); ret = -EFAULT; if (copy_to_user(buf, &event, sizeof(event))) break; mutex_lock(&state_lock); if (as->suspend_state == SUSPEND_PENDING && (event == APM_SYS_SUSPEND || event == APM_USER_SUSPEND)) as->suspend_state = SUSPEND_READ; mutex_unlock(&state_lock); buf += sizeof(event); i -= sizeof(event); } if (i < count) ret = count - i; return ret; } static __poll_t apm_poll(struct file *fp, poll_table * wait) { struct apm_user *as = fp->private_data; poll_wait(fp, &apm_waitqueue, wait); return queue_empty(&as->queue) ? 0 : EPOLLIN | EPOLLRDNORM; } /* * apm_ioctl - handle APM ioctl * * APM_IOC_SUSPEND * This IOCTL is overloaded, and performs two functions. It is used to: * - initiate a suspend * - acknowledge a suspend read from /dev/apm_bios. * Only when everyone who has opened /dev/apm_bios with write permission * has acknowledge does the actual suspend happen. */ static long apm_ioctl(struct file *filp, u_int cmd, u_long arg) { struct apm_user *as = filp->private_data; int err = -EINVAL; if (!as->suser || !as->writer) return -EPERM; switch (cmd) { case APM_IOC_SUSPEND: mutex_lock(&state_lock); as->suspend_result = -EINTR; switch (as->suspend_state) { case SUSPEND_READ: /* * If we read a suspend command from /dev/apm_bios, * then the corresponding APM_IOC_SUSPEND ioctl is * interpreted as an acknowledge. */ as->suspend_state = SUSPEND_ACKED; atomic_dec(&suspend_acks_pending); mutex_unlock(&state_lock); /* * suspend_acks_pending changed, the notifier needs to * be woken up for this */ wake_up(&apm_suspend_waitqueue); /* * Wait for the suspend/resume to complete. If there * are pending acknowledges, we wait here for them. * wait_event_freezable() is interruptible and pending * signal can cause busy looping. We aren't doing * anything critical, chill a bit on each iteration. */ while (wait_event_freezable(apm_suspend_waitqueue, as->suspend_state != SUSPEND_ACKED)) msleep(10); break; case SUSPEND_ACKTO: as->suspend_result = -ETIMEDOUT; mutex_unlock(&state_lock); break; default: as->suspend_state = SUSPEND_WAIT; mutex_unlock(&state_lock); /* * Otherwise it is a request to suspend the system. * Just invoke pm_suspend(), we'll handle it from * there via the notifier. */ as->suspend_result = pm_suspend(PM_SUSPEND_MEM); } mutex_lock(&state_lock); err = as->suspend_result; as->suspend_state = SUSPEND_NONE; mutex_unlock(&state_lock); break; } return err; } static int apm_release(struct inode * inode, struct file * filp) { struct apm_user *as = filp->private_data; filp->private_data = NULL; down_write(&user_list_lock); list_del(&as->list); up_write(&user_list_lock); /* * We are now unhooked from the chain. As far as new * events are concerned, we no longer exist. */ mutex_lock(&state_lock); if (as->suspend_state == SUSPEND_PENDING || as->suspend_state == SUSPEND_READ) atomic_dec(&suspend_acks_pending); mutex_unlock(&state_lock); wake_up(&apm_suspend_waitqueue); kfree(as); return 0; } static int apm_open(struct inode * inode, struct file * filp) { struct apm_user *as; as = kzalloc(sizeof(*as), GFP_KERNEL); if (as) { /* * XXX - this is a tiny bit broken, when we consider BSD * process accounting. If the device is opened by root, we * instantly flag that we used superuser privs. Who knows, * we might close the device immediately without doing a * privileged operation -- cevans */ as->suser = capable(CAP_SYS_ADMIN); as->writer = (filp->f_mode & FMODE_WRITE) == FMODE_WRITE; as->reader = (filp->f_mode & FMODE_READ) == FMODE_READ; down_write(&user_list_lock); list_add(&as->list, &apm_user_list); up_write(&user_list_lock); filp->private_data = as; } return as ? 0 : -ENOMEM; } static const struct file_operations apm_bios_fops = { .owner = THIS_MODULE, .read = apm_read, .poll = apm_poll, .unlocked_ioctl = apm_ioctl, .open = apm_open, .release = apm_release, .llseek = noop_llseek, }; static struct miscdevice apm_device = { .minor = APM_MINOR_DEV, .name = "apm_bios", .fops = &apm_bios_fops }; #ifdef CONFIG_PROC_FS /* * Arguments, with symbols from linux/apm_bios.h. * * 0) Linux driver version (this will change if format changes) * 1) APM BIOS Version. Usually 1.0, 1.1 or 1.2. * 2) APM flags from APM Installation Check (0x00): * bit 0: APM_16_BIT_SUPPORT * bit 1: APM_32_BIT_SUPPORT * bit 2: APM_IDLE_SLOWS_CLOCK * bit 3: APM_BIOS_DISABLED * bit 4: APM_BIOS_DISENGAGED * 3) AC line status * 0x00: Off-line * 0x01: On-line * 0x02: On backup power (BIOS >= 1.1 only) * 0xff: Unknown * 4) Battery status * 0x00: High * 0x01: Low * 0x02: Critical * 0x03: Charging * 0x04: Selected battery not present (BIOS >= 1.2 only) * 0xff: Unknown * 5) Battery flag * bit 0: High * bit 1: Low * bit 2: Critical * bit 3: Charging * bit 7: No system battery * 0xff: Unknown * 6) Remaining battery life (percentage of charge): * 0-100: valid * -1: Unknown * 7) Remaining battery life (time units): * Number of remaining minutes or seconds * -1: Unknown * 8) min = minutes; sec = seconds */ static int proc_apm_show(struct seq_file *m, void *v) { struct apm_power_info info; char *units; info.ac_line_status = 0xff; info.battery_status = 0xff; info.battery_flag = 0xff; info.battery_life = -1; info.time = -1; info.units = -1; if (apm_get_power_status) apm_get_power_status(&info); switch (info.units) { default: units = "?"; break; case 0: units = "min"; break; case 1: units = "sec"; break; } seq_printf(m, "%s 1.2 0x%02x 0x%02x 0x%02x 0x%02x %d%% %d %s\n", driver_version, APM_32_BIT_SUPPORT, info.ac_line_status, info.battery_status, info.battery_flag, info.battery_life, info.time, units); return 0; } #endif static int kapmd(void *arg) { do { apm_event_t event; wait_event_interruptible(kapmd_wait, !queue_empty(&kapmd_queue) || kthread_should_stop()); if (kthread_should_stop()) break; spin_lock_irq(&kapmd_queue_lock); event = 0; if (!queue_empty(&kapmd_queue)) event = queue_get_event(&kapmd_queue); spin_unlock_irq(&kapmd_queue_lock); switch (event) { case 0: break; case APM_LOW_BATTERY: case APM_POWER_STATUS_CHANGE: queue_event(event); break; case APM_USER_SUSPEND: case APM_SYS_SUSPEND: pm_suspend(PM_SUSPEND_MEM); break; case APM_CRITICAL_SUSPEND: atomic_inc(&userspace_notification_inhibit); pm_suspend(PM_SUSPEND_MEM); atomic_dec(&userspace_notification_inhibit); break; } } while (1); return 0; } static int apm_suspend_notifier(struct notifier_block *nb, unsigned long event, void *dummy) { struct apm_user *as; int err; unsigned long apm_event; /* short-cut emergency suspends */ if (atomic_read(&userspace_notification_inhibit)) return NOTIFY_DONE; switch (event) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: apm_event = (event == PM_SUSPEND_PREPARE) ? APM_USER_SUSPEND : APM_USER_HIBERNATION; /* * Queue an event to all "writer" users that we want * to suspend and need their ack. */ mutex_lock(&state_lock); down_read(&user_list_lock); list_for_each_entry(as, &apm_user_list, list) { if (as->suspend_state != SUSPEND_WAIT && as->reader && as->writer && as->suser) { as->suspend_state = SUSPEND_PENDING; atomic_inc(&suspend_acks_pending); queue_add_event(&as->queue, apm_event); } } up_read(&user_list_lock); mutex_unlock(&state_lock); wake_up_interruptible(&apm_waitqueue); /* * Wait for the suspend_acks_pending variable to drop to * zero, meaning everybody acked the suspend event (or the * process was killed.) * * If the app won't answer within a short while we assume it * locked up and ignore it. */ err = wait_event_interruptible_timeout( apm_suspend_waitqueue, atomic_read(&suspend_acks_pending) == 0, 5*HZ); /* timed out */ if (err == 0) { /* * Move anybody who timed out to "ack timeout" state. * * We could time out and the userspace does the ACK * right after we time out but before we enter the * locked section here, but that's fine. */ mutex_lock(&state_lock); down_read(&user_list_lock); list_for_each_entry(as, &apm_user_list, list) { if (as->suspend_state == SUSPEND_PENDING || as->suspend_state == SUSPEND_READ) { as->suspend_state = SUSPEND_ACKTO; atomic_dec(&suspend_acks_pending); } } up_read(&user_list_lock); mutex_unlock(&state_lock); } /* let suspend proceed */ if (err >= 0) return NOTIFY_OK; /* interrupted by signal */ return notifier_from_errno(err); case PM_POST_SUSPEND: case PM_POST_HIBERNATION: apm_event = (event == PM_POST_SUSPEND) ? APM_NORMAL_RESUME : APM_HIBERNATION_RESUME; /* * Anyone on the APM queues will think we're still suspended. * Send a message so everyone knows we're now awake again. */ queue_event(apm_event); /* * Finally, wake up anyone who is sleeping on the suspend. */ mutex_lock(&state_lock); down_read(&user_list_lock); list_for_each_entry(as, &apm_user_list, list) { if (as->suspend_state == SUSPEND_ACKED) { /* * TODO: maybe grab error code, needs core * changes to push the error to the notifier * chain (could use the second parameter if * implemented) */ as->suspend_result = 0; as->suspend_state = SUSPEND_DONE; } } up_read(&user_list_lock); mutex_unlock(&state_lock); wake_up(&apm_suspend_waitqueue); return NOTIFY_OK; default: return NOTIFY_DONE; } } static struct notifier_block apm_notif_block = { .notifier_call = apm_suspend_notifier, }; static int __init apm_init(void) { int ret; if (apm_disabled) { printk(KERN_NOTICE "apm: disabled on user request.\n"); return -ENODEV; } kapmd_tsk = kthread_create(kapmd, NULL, "kapmd"); if (IS_ERR(kapmd_tsk)) { ret = PTR_ERR(kapmd_tsk); kapmd_tsk = NULL; goto out; } wake_up_process(kapmd_tsk); #ifdef CONFIG_PROC_FS proc_create_single("apm", 0, NULL, proc_apm_show); #endif ret = misc_register(&apm_device); if (ret) goto out_stop; ret = register_pm_notifier(&apm_notif_block); if (ret) goto out_unregister; return 0; out_unregister: misc_deregister(&apm_device); out_stop: remove_proc_entry("apm", NULL); kthread_stop(kapmd_tsk); out: return ret; } static void __exit apm_exit(void) { unregister_pm_notifier(&apm_notif_block); misc_deregister(&apm_device); remove_proc_entry("apm", NULL); kthread_stop(kapmd_tsk); } module_init(apm_init); module_exit(apm_exit); MODULE_AUTHOR("Stephen Rothwell"); MODULE_DESCRIPTION("Advanced Power Management"); MODULE_LICENSE("GPL"); #ifndef MODULE static int __init apm_setup(char *str) { while ((str != NULL) && (*str != '\0')) { if (strncmp(str, "off", 3) == 0) apm_disabled = 1; if (strncmp(str, "on", 2) == 0) apm_disabled = 0; str = strchr(str, ','); if (str != NULL) str += strspn(str, ", \t"); } return 1; } __setup("apm=", apm_setup); #endif /** * apm_queue_event - queue an APM event for kapmd * @event: APM event * * Queue an APM event for kapmd to process and ultimately take the * appropriate action. Only a subset of events are handled: * %APM_LOW_BATTERY * %APM_POWER_STATUS_CHANGE * %APM_USER_SUSPEND * %APM_SYS_SUSPEND * %APM_CRITICAL_SUSPEND */ void apm_queue_event(apm_event_t event) { unsigned long flags; spin_lock_irqsave(&kapmd_queue_lock, flags); queue_add_event(&kapmd_queue, event); spin_unlock_irqrestore(&kapmd_queue_lock, flags); wake_up_interruptible(&kapmd_wait); } EXPORT_SYMBOL(apm_queue_event);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1