Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Corey Minyard | 5629 | 66.66% | 94 | 54.97% |
Andrew Morton | 1874 | 22.19% | 3 | 1.75% |
Matthew Garrett | 207 | 2.45% | 6 | 3.51% |
Martin Wilck | 111 | 1.31% | 2 | 1.17% |
Hidehiro Kawai | 61 | 0.72% | 3 | 1.75% |
John Stultz | 53 | 0.63% | 2 | 1.17% |
Xianting Tian | 51 | 0.60% | 1 | 0.58% |
Yakui Zhao | 49 | 0.58% | 1 | 0.58% |
Bodo Stroesser | 46 | 0.54% | 1 | 0.58% |
Zhang Yuchen | 43 | 0.51% | 1 | 0.58% |
Myron Stowe | 41 | 0.49% | 1 | 0.58% |
Masamitsu Yamazaki | 34 | 0.40% | 2 | 1.17% |
Arnd Bergmann | 30 | 0.36% | 2 | 1.17% |
Yang Yingliang | 24 | 0.28% | 1 | 0.58% |
Matt Domsch | 22 | 0.26% | 2 | 1.17% |
Jeremy Kerr | 16 | 0.19% | 1 | 0.58% |
Linus Torvalds (pre-git) | 15 | 0.18% | 8 | 4.68% |
Jan Stancek | 14 | 0.17% | 1 | 0.58% |
Kees Cook | 13 | 0.15% | 1 | 0.58% |
Joe Perches | 12 | 0.14% | 1 | 0.58% |
Tony Camuso | 10 | 0.12% | 1 | 0.58% |
Andy Shevchenko | 9 | 0.11% | 2 | 1.17% |
Wen Yang | 6 | 0.07% | 1 | 0.58% |
Alan Stern | 6 | 0.07% | 1 | 0.58% |
Benjamin Collins | 6 | 0.07% | 2 | 1.17% |
Colin Ian King | 5 | 0.06% | 1 | 0.58% |
Paolo Galtieri | 5 | 0.06% | 1 | 0.58% |
Christoph Hellwig | 5 | 0.06% | 1 | 0.58% |
Xie XiuQi | 4 | 0.05% | 1 | 0.58% |
Dan Carpenter | 4 | 0.05% | 2 | 1.17% |
Ye Guojin | 4 | 0.05% | 1 | 0.58% |
Corentin Labbe | 4 | 0.05% | 1 | 0.58% |
Alexey Dobriyan | 3 | 0.04% | 1 | 0.58% |
Dwaipayan Ray | 3 | 0.04% | 1 | 0.58% |
Lucas De Marchi | 2 | 0.02% | 1 | 0.58% |
Terry Duncan | 2 | 0.02% | 1 | 0.58% |
Thomas Bogendoerfer | 2 | 0.02% | 1 | 0.58% |
Al Viro | 2 | 0.02% | 2 | 1.17% |
Kefeng Wang | 2 | 0.02% | 1 | 0.58% |
David Howells | 2 | 0.02% | 1 | 0.58% |
Paul E. McKenney | 1 | 0.01% | 1 | 0.58% |
Nishanth Aravamudan | 1 | 0.01% | 1 | 0.58% |
Arnaud Patard | 1 | 0.01% | 1 | 0.58% |
Rusty Russell | 1 | 0.01% | 1 | 0.58% |
Adam Buchbinder | 1 | 0.01% | 1 | 0.58% |
Yinghai Lu | 1 | 0.01% | 1 | 0.58% |
Dongsheng Yang | 1 | 0.01% | 1 | 0.58% |
Mauro Carvalho Chehab | 1 | 0.01% | 1 | 0.58% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.58% |
Tianjia Zhang | 1 | 0.01% | 1 | 0.58% |
Dan Aloni | 1 | 0.01% | 1 | 0.58% |
Takao Indoh | 1 | 0.01% | 1 | 0.58% |
Jiri Kosina | 1 | 0.01% | 1 | 0.58% |
Total | 8444 | 171 |
// SPDX-License-Identifier: GPL-2.0+ /* * ipmi_si.c * * The interface to the IPMI driver for the system interfaces (KCS, SMIC, * BT). * * Author: MontaVista Software, Inc. * Corey Minyard <minyard@mvista.com> * source@mvista.com * * Copyright 2002 MontaVista Software Inc. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> */ /* * This file holds the "policy" for the interface to the SMI state * machine. It does the configuration, handles timers and interrupts, * and drives the real SMI state machine. */ #define pr_fmt(fmt) "ipmi_si: " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/mutex.h> #include <linux/kthread.h> #include <asm/irq.h> #include <linux/interrupt.h> #include <linux/rcupdate.h> #include <linux/ipmi.h> #include <linux/ipmi_smi.h> #include "ipmi_si.h" #include "ipmi_si_sm.h" #include <linux/string.h> #include <linux/ctype.h> /* Measure times between events in the driver. */ #undef DEBUG_TIMING /* Call every 10 ms. */ #define SI_TIMEOUT_TIME_USEC 10000 #define SI_USEC_PER_JIFFY (1000000/HZ) #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a short timeout */ enum si_intf_state { SI_NORMAL, SI_GETTING_FLAGS, SI_GETTING_EVENTS, SI_CLEARING_FLAGS, SI_GETTING_MESSAGES, SI_CHECKING_ENABLES, SI_SETTING_ENABLES /* FIXME - add watchdog stuff. */ }; /* Some BT-specific defines we need here. */ #define IPMI_BT_INTMASK_REG 2 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 /* 'invalid' to allow a firmware-specified interface to be disabled */ const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL }; static bool initialized; /* * Indexes into stats[] in smi_info below. */ enum si_stat_indexes { /* * Number of times the driver requested a timer while an operation * was in progress. */ SI_STAT_short_timeouts = 0, /* * Number of times the driver requested a timer while nothing was in * progress. */ SI_STAT_long_timeouts, /* Number of times the interface was idle while being polled. */ SI_STAT_idles, /* Number of interrupts the driver handled. */ SI_STAT_interrupts, /* Number of time the driver got an ATTN from the hardware. */ SI_STAT_attentions, /* Number of times the driver requested flags from the hardware. */ SI_STAT_flag_fetches, /* Number of times the hardware didn't follow the state machine. */ SI_STAT_hosed_count, /* Number of completed messages. */ SI_STAT_complete_transactions, /* Number of IPMI events received from the hardware. */ SI_STAT_events, /* Number of watchdog pretimeouts. */ SI_STAT_watchdog_pretimeouts, /* Number of asynchronous messages received. */ SI_STAT_incoming_messages, /* This *must* remain last, add new values above this. */ SI_NUM_STATS }; struct smi_info { int si_num; struct ipmi_smi *intf; struct si_sm_data *si_sm; const struct si_sm_handlers *handlers; spinlock_t si_lock; struct ipmi_smi_msg *waiting_msg; struct ipmi_smi_msg *curr_msg; enum si_intf_state si_state; /* * Used to handle the various types of I/O that can occur with * IPMI */ struct si_sm_io io; /* * Per-OEM handler, called from handle_flags(). Returns 1 * when handle_flags() needs to be re-run or 0 indicating it * set si_state itself. */ int (*oem_data_avail_handler)(struct smi_info *smi_info); /* * Flags from the last GET_MSG_FLAGS command, used when an ATTN * is set to hold the flags until we are done handling everything * from the flags. */ #define RECEIVE_MSG_AVAIL 0x01 #define EVENT_MSG_BUFFER_FULL 0x02 #define WDT_PRE_TIMEOUT_INT 0x08 #define OEM0_DATA_AVAIL 0x20 #define OEM1_DATA_AVAIL 0x40 #define OEM2_DATA_AVAIL 0x80 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ OEM1_DATA_AVAIL | \ OEM2_DATA_AVAIL) unsigned char msg_flags; /* Does the BMC have an event buffer? */ bool has_event_buffer; /* * If set to true, this will request events the next time the * state machine is idle. */ atomic_t req_events; /* * If true, run the state machine to completion on every send * call. Generally used after a panic to make sure stuff goes * out. */ bool run_to_completion; /* The timer for this si. */ struct timer_list si_timer; /* This flag is set, if the timer can be set */ bool timer_can_start; /* This flag is set, if the timer is running (timer_pending() isn't enough) */ bool timer_running; /* The time (in jiffies) the last timeout occurred at. */ unsigned long last_timeout_jiffies; /* Are we waiting for the events, pretimeouts, received msgs? */ atomic_t need_watch; /* * The driver will disable interrupts when it gets into a * situation where it cannot handle messages due to lack of * memory. Once that situation clears up, it will re-enable * interrupts. */ bool interrupt_disabled; /* * Does the BMC support events? */ bool supports_event_msg_buff; /* * Can we disable interrupts the global enables receive irq * bit? There are currently two forms of brokenness, some * systems cannot disable the bit (which is technically within * the spec but a bad idea) and some systems have the bit * forced to zero even though interrupts work (which is * clearly outside the spec). The next bool tells which form * of brokenness is present. */ bool cannot_disable_irq; /* * Some systems are broken and cannot set the irq enable * bit, even if they support interrupts. */ bool irq_enable_broken; /* Is the driver in maintenance mode? */ bool in_maintenance_mode; /* * Did we get an attention that we did not handle? */ bool got_attn; /* From the get device id response... */ struct ipmi_device_id device_id; /* Have we added the device group to the device? */ bool dev_group_added; /* Counters and things for the proc filesystem. */ atomic_t stats[SI_NUM_STATS]; struct task_struct *thread; struct list_head link; }; #define smi_inc_stat(smi, stat) \ atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) #define smi_get_stat(smi, stat) \ ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) #define IPMI_MAX_INTFS 4 static int force_kipmid[IPMI_MAX_INTFS]; static int num_force_kipmid; static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; static int num_max_busy_us; static bool unload_when_empty = true; static int try_smi_init(struct smi_info *smi); static void cleanup_one_si(struct smi_info *smi_info); static void cleanup_ipmi_si(void); #ifdef DEBUG_TIMING void debug_timestamp(struct smi_info *smi_info, char *msg) { struct timespec64 t; ktime_get_ts64(&t); dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n", msg, t.tv_sec, t.tv_nsec); } #else #define debug_timestamp(smi_info, x) #endif static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); static int register_xaction_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&xaction_notifier_list, nb); } static void deliver_recv_msg(struct smi_info *smi_info, struct ipmi_smi_msg *msg) { /* Deliver the message to the upper layer. */ ipmi_smi_msg_received(smi_info->intf, msg); } static void return_hosed_msg(struct smi_info *smi_info, int cCode) { struct ipmi_smi_msg *msg = smi_info->curr_msg; if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) cCode = IPMI_ERR_UNSPECIFIED; /* else use it as is */ /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = cCode; msg->rsp_size = 3; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); } static enum si_sm_result start_next_msg(struct smi_info *smi_info) { int rv; if (!smi_info->waiting_msg) { smi_info->curr_msg = NULL; rv = SI_SM_IDLE; } else { int err; smi_info->curr_msg = smi_info->waiting_msg; smi_info->waiting_msg = NULL; debug_timestamp(smi_info, "Start2"); err = atomic_notifier_call_chain(&xaction_notifier_list, 0, smi_info); if (err & NOTIFY_STOP_MASK) { rv = SI_SM_CALL_WITHOUT_DELAY; goto out; } err = smi_info->handlers->start_transaction( smi_info->si_sm, smi_info->curr_msg->data, smi_info->curr_msg->data_size); if (err) return_hosed_msg(smi_info, err); rv = SI_SM_CALL_WITHOUT_DELAY; } out: return rv; } static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) { if (!smi_info->timer_can_start) return; smi_info->last_timeout_jiffies = jiffies; mod_timer(&smi_info->si_timer, new_val); smi_info->timer_running = true; } /* * Start a new message and (re)start the timer and thread. */ static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, unsigned int size) { smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); if (smi_info->thread) wake_up_process(smi_info->thread); smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); } static void start_check_enables(struct smi_info *smi_info) { unsigned char msg[2]; msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; start_new_msg(smi_info, msg, 2); smi_info->si_state = SI_CHECKING_ENABLES; } static void start_clear_flags(struct smi_info *smi_info) { unsigned char msg[3]; /* Make sure the watchdog pre-timeout flag is not set at startup. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; start_new_msg(smi_info, msg, 3); smi_info->si_state = SI_CLEARING_FLAGS; } static void start_getting_msg_queue(struct smi_info *smi_info) { smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; smi_info->curr_msg->data_size = 2; start_new_msg(smi_info, smi_info->curr_msg->data, smi_info->curr_msg->data_size); smi_info->si_state = SI_GETTING_MESSAGES; } static void start_getting_events(struct smi_info *smi_info) { smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; smi_info->curr_msg->data_size = 2; start_new_msg(smi_info, smi_info->curr_msg->data, smi_info->curr_msg->data_size); smi_info->si_state = SI_GETTING_EVENTS; } /* * When we have a situtaion where we run out of memory and cannot * allocate messages, we just leave them in the BMC and run the system * polled until we can allocate some memory. Once we have some * memory, we will re-enable the interrupt. * * Note that we cannot just use disable_irq(), since the interrupt may * be shared. */ static inline bool disable_si_irq(struct smi_info *smi_info) { if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { smi_info->interrupt_disabled = true; start_check_enables(smi_info); return true; } return false; } static inline bool enable_si_irq(struct smi_info *smi_info) { if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { smi_info->interrupt_disabled = false; start_check_enables(smi_info); return true; } return false; } /* * Allocate a message. If unable to allocate, start the interrupt * disable process and return NULL. If able to allocate but * interrupts are disabled, free the message and return NULL after * starting the interrupt enable process. */ static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) { struct ipmi_smi_msg *msg; msg = ipmi_alloc_smi_msg(); if (!msg) { if (!disable_si_irq(smi_info)) smi_info->si_state = SI_NORMAL; } else if (enable_si_irq(smi_info)) { ipmi_free_smi_msg(msg); msg = NULL; } return msg; } static void handle_flags(struct smi_info *smi_info) { retry: if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { /* Watchdog pre-timeout */ smi_inc_stat(smi_info, watchdog_pretimeouts); start_clear_flags(smi_info); smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; ipmi_smi_watchdog_pretimeout(smi_info->intf); } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { /* Messages available. */ smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) return; start_getting_msg_queue(smi_info); } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { /* Events available. */ smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) return; start_getting_events(smi_info); } else if (smi_info->msg_flags & OEM_DATA_AVAIL && smi_info->oem_data_avail_handler) { if (smi_info->oem_data_avail_handler(smi_info)) goto retry; } else smi_info->si_state = SI_NORMAL; } /* * Global enables we care about. */ #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ IPMI_BMC_EVT_MSG_INTR) static u8 current_global_enables(struct smi_info *smi_info, u8 base, bool *irq_on) { u8 enables = 0; if (smi_info->supports_event_msg_buff) enables |= IPMI_BMC_EVT_MSG_BUFF; if (((smi_info->io.irq && !smi_info->interrupt_disabled) || smi_info->cannot_disable_irq) && !smi_info->irq_enable_broken) enables |= IPMI_BMC_RCV_MSG_INTR; if (smi_info->supports_event_msg_buff && smi_info->io.irq && !smi_info->interrupt_disabled && !smi_info->irq_enable_broken) enables |= IPMI_BMC_EVT_MSG_INTR; *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); return enables; } static void check_bt_irq(struct smi_info *smi_info, bool irq_on) { u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; if ((bool)irqstate == irq_on) return; if (irq_on) smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_ENABLE_IRQ_BIT); else smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); } static void handle_transaction_done(struct smi_info *smi_info) { struct ipmi_smi_msg *msg; debug_timestamp(smi_info, "Done"); switch (smi_info->si_state) { case SI_NORMAL: if (!smi_info->curr_msg) break; smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); break; case SI_GETTING_FLAGS: { unsigned char msg[4]; unsigned int len; /* We got the flags from the SMI, now handle them. */ len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) { /* Error fetching flags, just give up for now. */ smi_info->si_state = SI_NORMAL; } else if (len < 4) { /* * Hmm, no flags. That's technically illegal, but * don't use uninitialized data. */ smi_info->si_state = SI_NORMAL; } else { smi_info->msg_flags = msg[3]; handle_flags(smi_info); } break; } case SI_CLEARING_FLAGS: { unsigned char msg[3]; /* We cleared the flags. */ smi_info->handlers->get_result(smi_info->si_sm, msg, 3); if (msg[2] != 0) { /* Error clearing flags */ dev_warn_ratelimited(smi_info->io.dev, "Error clearing flags: %2.2x\n", msg[2]); } smi_info->si_state = SI_NORMAL; break; } case SI_GETTING_EVENTS: { smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; if (msg->rsp[2] != 0) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the event flag. */ smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(smi_info); } else { smi_inc_stat(smi_info, events); /* * Do this before we deliver the message * because delivering the message releases the * lock and something else can mess with the * state. */ handle_flags(smi_info); deliver_recv_msg(smi_info, msg); } break; } case SI_GETTING_MESSAGES: { smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; if (msg->rsp[2] != 0) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the msg flag. */ smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(smi_info); } else { smi_inc_stat(smi_info, incoming_messages); /* * Do this before we deliver the message * because delivering the message releases the * lock and something else can mess with the * state. */ handle_flags(smi_info); deliver_recv_msg(smi_info, msg); } break; } case SI_CHECKING_ENABLES: { unsigned char msg[4]; u8 enables; bool irq_on; /* We got the flags from the SMI, now handle them. */ smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) { dev_warn_ratelimited(smi_info->io.dev, "Couldn't get irq info: %x,\n" "Maybe ok, but ipmi might run very slowly.\n", msg[2]); smi_info->si_state = SI_NORMAL; break; } enables = current_global_enables(smi_info, 0, &irq_on); if (smi_info->io.si_type == SI_BT) /* BT has its own interrupt enable bit. */ check_bt_irq(smi_info, irq_on); if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { /* Enables are not correct, fix them. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); smi_info->handlers->start_transaction( smi_info->si_sm, msg, 3); smi_info->si_state = SI_SETTING_ENABLES; } else if (smi_info->supports_event_msg_buff) { smi_info->curr_msg = ipmi_alloc_smi_msg(); if (!smi_info->curr_msg) { smi_info->si_state = SI_NORMAL; break; } start_getting_events(smi_info); } else { smi_info->si_state = SI_NORMAL; } break; } case SI_SETTING_ENABLES: { unsigned char msg[4]; smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) dev_warn_ratelimited(smi_info->io.dev, "Could not set the global enables: 0x%x.\n", msg[2]); if (smi_info->supports_event_msg_buff) { smi_info->curr_msg = ipmi_alloc_smi_msg(); if (!smi_info->curr_msg) { smi_info->si_state = SI_NORMAL; break; } start_getting_events(smi_info); } else { smi_info->si_state = SI_NORMAL; } break; } } } /* * Called on timeouts and events. Timeouts should pass the elapsed * time, interrupts should pass in zero. Must be called with * si_lock held and interrupts disabled. */ static enum si_sm_result smi_event_handler(struct smi_info *smi_info, int time) { enum si_sm_result si_sm_result; restart: /* * There used to be a loop here that waited a little while * (around 25us) before giving up. That turned out to be * pointless, the minimum delays I was seeing were in the 300us * range, which is far too long to wait in an interrupt. So * we just run until the state machine tells us something * happened or it needs a delay. */ si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); time = 0; while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { smi_inc_stat(smi_info, complete_transactions); handle_transaction_done(smi_info); goto restart; } else if (si_sm_result == SI_SM_HOSED) { smi_inc_stat(smi_info, hosed_count); /* * Do the before return_hosed_msg, because that * releases the lock. */ smi_info->si_state = SI_NORMAL; if (smi_info->curr_msg != NULL) { /* * If we were handling a user message, format * a response to send to the upper layer to * tell it about the error. */ return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); } goto restart; } /* * We prefer handling attn over new messages. But don't do * this if there is not yet an upper layer to handle anything. */ if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) { unsigned char msg[2]; if (smi_info->si_state != SI_NORMAL) { /* * We got an ATTN, but we are doing something else. * Handle the ATTN later. */ smi_info->got_attn = true; } else { smi_info->got_attn = false; smi_inc_stat(smi_info, attentions); /* * Got a attn, send down a get message flags to see * what's causing it. It would be better to handle * this in the upper layer, but due to the way * interrupts work with the SMI, that's not really * possible. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_GET_MSG_FLAGS_CMD; start_new_msg(smi_info, msg, 2); smi_info->si_state = SI_GETTING_FLAGS; goto restart; } } /* If we are currently idle, try to start the next message. */ if (si_sm_result == SI_SM_IDLE) { smi_inc_stat(smi_info, idles); si_sm_result = start_next_msg(smi_info); if (si_sm_result != SI_SM_IDLE) goto restart; } if ((si_sm_result == SI_SM_IDLE) && (atomic_read(&smi_info->req_events))) { /* * We are idle and the upper layer requested that I fetch * events, so do so. */ atomic_set(&smi_info->req_events, 0); /* * Take this opportunity to check the interrupt and * message enable state for the BMC. The BMC can be * asynchronously reset, and may thus get interrupts * disable and messages disabled. */ if (smi_info->supports_event_msg_buff || smi_info->io.irq) { start_check_enables(smi_info); } else { smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) goto out; start_getting_events(smi_info); } goto restart; } if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { /* Ok it if fails, the timer will just go off. */ if (del_timer(&smi_info->si_timer)) smi_info->timer_running = false; } out: return si_sm_result; } static void check_start_timer_thread(struct smi_info *smi_info) { if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); if (smi_info->thread) wake_up_process(smi_info->thread); start_next_msg(smi_info); smi_event_handler(smi_info, 0); } } static void flush_messages(void *send_info) { struct smi_info *smi_info = send_info; enum si_sm_result result; /* * Currently, this function is called only in run-to-completion * mode. This means we are single-threaded, no need for locks. */ result = smi_event_handler(smi_info, 0); while (result != SI_SM_IDLE) { udelay(SI_SHORT_TIMEOUT_USEC); result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); } } static void sender(void *send_info, struct ipmi_smi_msg *msg) { struct smi_info *smi_info = send_info; unsigned long flags; debug_timestamp(smi_info, "Enqueue"); if (smi_info->run_to_completion) { /* * If we are running to completion, start it. Upper * layer will call flush_messages to clear it out. */ smi_info->waiting_msg = msg; return; } spin_lock_irqsave(&smi_info->si_lock, flags); /* * The following two lines don't need to be under the lock for * the lock's sake, but they do need SMP memory barriers to * avoid getting things out of order. We are already claiming * the lock, anyway, so just do it under the lock to avoid the * ordering problem. */ BUG_ON(smi_info->waiting_msg); smi_info->waiting_msg = msg; check_start_timer_thread(smi_info); spin_unlock_irqrestore(&smi_info->si_lock, flags); } static void set_run_to_completion(void *send_info, bool i_run_to_completion) { struct smi_info *smi_info = send_info; smi_info->run_to_completion = i_run_to_completion; if (i_run_to_completion) flush_messages(smi_info); } /* * Use -1 as a special constant to tell that we are spinning in kipmid * looking for something and not delaying between checks */ #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull) static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result, const struct smi_info *smi_info, ktime_t *busy_until) { unsigned int max_busy_us = 0; if (smi_info->si_num < num_max_busy_us) max_busy_us = kipmid_max_busy_us[smi_info->si_num]; if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) *busy_until = IPMI_TIME_NOT_BUSY; else if (*busy_until == IPMI_TIME_NOT_BUSY) { *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC; } else { if (unlikely(ktime_get() > *busy_until)) { *busy_until = IPMI_TIME_NOT_BUSY; return false; } } return true; } /* * A busy-waiting loop for speeding up IPMI operation. * * Lousy hardware makes this hard. This is only enabled for systems * that are not BT and do not have interrupts. It starts spinning * when an operation is complete or until max_busy tells it to stop * (if that is enabled). See the paragraph on kimid_max_busy_us in * Documentation/driver-api/ipmi.rst for details. */ static int ipmi_thread(void *data) { struct smi_info *smi_info = data; unsigned long flags; enum si_sm_result smi_result; ktime_t busy_until = IPMI_TIME_NOT_BUSY; set_user_nice(current, MAX_NICE); while (!kthread_should_stop()) { int busy_wait; spin_lock_irqsave(&(smi_info->si_lock), flags); smi_result = smi_event_handler(smi_info, 0); /* * If the driver is doing something, there is a possible * race with the timer. If the timer handler see idle, * and the thread here sees something else, the timer * handler won't restart the timer even though it is * required. So start it here if necessary. */ if (smi_result != SI_SM_IDLE && !smi_info->timer_running) smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); spin_unlock_irqrestore(&(smi_info->si_lock), flags); busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, &busy_until); if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { ; /* do nothing */ } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) { /* * In maintenance mode we run as fast as * possible to allow firmware updates to * complete as fast as possible, but normally * don't bang on the scheduler. */ if (smi_info->in_maintenance_mode) schedule(); else usleep_range(100, 200); } else if (smi_result == SI_SM_IDLE) { if (atomic_read(&smi_info->need_watch)) { schedule_timeout_interruptible(100); } else { /* Wait to be woken up when we are needed. */ __set_current_state(TASK_INTERRUPTIBLE); schedule(); } } else { schedule_timeout_interruptible(1); } } return 0; } static void poll(void *send_info) { struct smi_info *smi_info = send_info; unsigned long flags = 0; bool run_to_completion = smi_info->run_to_completion; /* * Make sure there is some delay in the poll loop so we can * drive time forward and timeout things. */ udelay(10); if (!run_to_completion) spin_lock_irqsave(&smi_info->si_lock, flags); smi_event_handler(smi_info, 10); if (!run_to_completion) spin_unlock_irqrestore(&smi_info->si_lock, flags); } static void request_events(void *send_info) { struct smi_info *smi_info = send_info; if (!smi_info->has_event_buffer) return; atomic_set(&smi_info->req_events, 1); } static void set_need_watch(void *send_info, unsigned int watch_mask) { struct smi_info *smi_info = send_info; unsigned long flags; int enable; enable = !!watch_mask; atomic_set(&smi_info->need_watch, enable); spin_lock_irqsave(&smi_info->si_lock, flags); check_start_timer_thread(smi_info); spin_unlock_irqrestore(&smi_info->si_lock, flags); } static void smi_timeout(struct timer_list *t) { struct smi_info *smi_info = from_timer(smi_info, t, si_timer); enum si_sm_result smi_result; unsigned long flags; unsigned long jiffies_now; long time_diff; long timeout; spin_lock_irqsave(&(smi_info->si_lock), flags); debug_timestamp(smi_info, "Timer"); jiffies_now = jiffies; time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) * SI_USEC_PER_JIFFY); smi_result = smi_event_handler(smi_info, time_diff); if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { /* Running with interrupts, only do long timeouts. */ timeout = jiffies + SI_TIMEOUT_JIFFIES; smi_inc_stat(smi_info, long_timeouts); goto do_mod_timer; } /* * If the state machine asks for a short delay, then shorten * the timer timeout. */ if (smi_result == SI_SM_CALL_WITH_DELAY) { smi_inc_stat(smi_info, short_timeouts); timeout = jiffies + 1; } else { smi_inc_stat(smi_info, long_timeouts); timeout = jiffies + SI_TIMEOUT_JIFFIES; } do_mod_timer: if (smi_result != SI_SM_IDLE) smi_mod_timer(smi_info, timeout); else smi_info->timer_running = false; spin_unlock_irqrestore(&(smi_info->si_lock), flags); } irqreturn_t ipmi_si_irq_handler(int irq, void *data) { struct smi_info *smi_info = data; unsigned long flags; if (smi_info->io.si_type == SI_BT) /* We need to clear the IRQ flag for the BT interface. */ smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_CLEAR_IRQ_BIT | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); spin_lock_irqsave(&(smi_info->si_lock), flags); smi_inc_stat(smi_info, interrupts); debug_timestamp(smi_info, "Interrupt"); smi_event_handler(smi_info, 0); spin_unlock_irqrestore(&(smi_info->si_lock), flags); return IRQ_HANDLED; } static int smi_start_processing(void *send_info, struct ipmi_smi *intf) { struct smi_info *new_smi = send_info; int enable = 0; new_smi->intf = intf; /* Set up the timer that drives the interface. */ timer_setup(&new_smi->si_timer, smi_timeout, 0); new_smi->timer_can_start = true; smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); /* Try to claim any interrupts. */ if (new_smi->io.irq_setup) { new_smi->io.irq_handler_data = new_smi; new_smi->io.irq_setup(&new_smi->io); } /* * Check if the user forcefully enabled the daemon. */ if (new_smi->si_num < num_force_kipmid) enable = force_kipmid[new_smi->si_num]; /* * The BT interface is efficient enough to not need a thread, * and there is no need for a thread if we have interrupts. */ else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) enable = 1; if (enable) { new_smi->thread = kthread_run(ipmi_thread, new_smi, "kipmi%d", new_smi->si_num); if (IS_ERR(new_smi->thread)) { dev_notice(new_smi->io.dev, "Could not start kernel thread due to error %ld, only using timers to drive the interface\n", PTR_ERR(new_smi->thread)); new_smi->thread = NULL; } } return 0; } static int get_smi_info(void *send_info, struct ipmi_smi_info *data) { struct smi_info *smi = send_info; data->addr_src = smi->io.addr_source; data->dev = smi->io.dev; data->addr_info = smi->io.addr_info; get_device(smi->io.dev); return 0; } static void set_maintenance_mode(void *send_info, bool enable) { struct smi_info *smi_info = send_info; if (!enable) atomic_set(&smi_info->req_events, 0); smi_info->in_maintenance_mode = enable; } static void shutdown_smi(void *send_info); static const struct ipmi_smi_handlers handlers = { .owner = THIS_MODULE, .start_processing = smi_start_processing, .shutdown = shutdown_smi, .get_smi_info = get_smi_info, .sender = sender, .request_events = request_events, .set_need_watch = set_need_watch, .set_maintenance_mode = set_maintenance_mode, .set_run_to_completion = set_run_to_completion, .flush_messages = flush_messages, .poll = poll, }; static LIST_HEAD(smi_infos); static DEFINE_MUTEX(smi_infos_lock); static int smi_num; /* Used to sequence the SMIs */ static const char * const addr_space_to_str[] = { "i/o", "mem" }; module_param_array(force_kipmid, int, &num_force_kipmid, 0); MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm."); module_param(unload_when_empty, bool, 0); MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod."); module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); MODULE_PARM_DESC(kipmid_max_busy_us, "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time."); void ipmi_irq_finish_setup(struct si_sm_io *io) { if (io->si_type == SI_BT) /* Enable the interrupt in the BT interface. */ io->outputb(io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_ENABLE_IRQ_BIT); } void ipmi_irq_start_cleanup(struct si_sm_io *io) { if (io->si_type == SI_BT) /* Disable the interrupt in the BT interface. */ io->outputb(io, IPMI_BT_INTMASK_REG, 0); } static void std_irq_cleanup(struct si_sm_io *io) { ipmi_irq_start_cleanup(io); free_irq(io->irq, io->irq_handler_data); } int ipmi_std_irq_setup(struct si_sm_io *io) { int rv; if (!io->irq) return 0; rv = request_irq(io->irq, ipmi_si_irq_handler, IRQF_SHARED, SI_DEVICE_NAME, io->irq_handler_data); if (rv) { dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n", SI_DEVICE_NAME, io->irq); io->irq = 0; } else { io->irq_cleanup = std_irq_cleanup; ipmi_irq_finish_setup(io); dev_info(io->dev, "Using irq %d\n", io->irq); } return rv; } static int wait_for_msg_done(struct smi_info *smi_info) { enum si_sm_result smi_result; smi_result = smi_info->handlers->event(smi_info->si_sm, 0); for (;;) { if (smi_result == SI_SM_CALL_WITH_DELAY || smi_result == SI_SM_CALL_WITH_TICK_DELAY) { schedule_timeout_uninterruptible(1); smi_result = smi_info->handlers->event( smi_info->si_sm, jiffies_to_usecs(1)); } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { smi_result = smi_info->handlers->event( smi_info->si_sm, 0); } else break; } if (smi_result == SI_SM_HOSED) /* * We couldn't get the state machine to run, so whatever's at * the port is probably not an IPMI SMI interface. */ return -ENODEV; return 0; } static int try_get_dev_id(struct smi_info *smi_info) { unsigned char msg[2]; unsigned char *resp; unsigned long resp_len; int rv = 0; unsigned int retry_count = 0; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; /* * Do a Get Device ID command, since it comes back with some * useful info. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; retry: smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) goto out; resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); /* Check and record info from the get device id, in case we need it. */ rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], resp + 2, resp_len - 2, &smi_info->device_id); if (rv) { /* record completion code */ unsigned char cc = *(resp + 2); if (cc != IPMI_CC_NO_ERROR && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { dev_warn_ratelimited(smi_info->io.dev, "BMC returned 0x%2.2x, retry get bmc device id\n", cc); goto retry; } } out: kfree(resp); return rv; } static int get_global_enables(struct smi_info *smi_info, u8 *enables) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) { dev_warn(smi_info->io.dev, "Error getting response from get global enables command: %d\n", rv); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 4 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || resp[2] != 0) { dev_warn(smi_info->io.dev, "Invalid return from get global enables command: %ld %x %x %x\n", resp_len, resp[0], resp[1], resp[2]); rv = -EINVAL; goto out; } else { *enables = resp[3]; } out: kfree(resp); return rv; } /* * Returns 1 if it gets an error from the command. */ static int set_global_enables(struct smi_info *smi_info, u8 enables) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = enables; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); rv = wait_for_msg_done(smi_info); if (rv) { dev_warn(smi_info->io.dev, "Error getting response from set global enables command: %d\n", rv); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 3 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { dev_warn(smi_info->io.dev, "Invalid return from set global enables command: %ld %x %x\n", resp_len, resp[0], resp[1]); rv = -EINVAL; goto out; } if (resp[2] != 0) rv = 1; out: kfree(resp); return rv; } /* * Some BMCs do not support clearing the receive irq bit in the global * enables (even if they don't support interrupts on the BMC). Check * for this and handle it properly. */ static void check_clr_rcv_irq(struct smi_info *smi_info) { u8 enables = 0; int rv; rv = get_global_enables(smi_info, &enables); if (!rv) { if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) /* Already clear, should work ok. */ return; enables &= ~IPMI_BMC_RCV_MSG_INTR; rv = set_global_enables(smi_info, enables); } if (rv < 0) { dev_err(smi_info->io.dev, "Cannot check clearing the rcv irq: %d\n", rv); return; } if (rv) { /* * An error when setting the event buffer bit means * clearing the bit is not supported. */ dev_warn(smi_info->io.dev, "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); smi_info->cannot_disable_irq = true; } } /* * Some BMCs do not support setting the interrupt bits in the global * enables even if they support interrupts. Clearly bad, but we can * compensate. */ static void check_set_rcv_irq(struct smi_info *smi_info) { u8 enables = 0; int rv; if (!smi_info->io.irq) return; rv = get_global_enables(smi_info, &enables); if (!rv) { enables |= IPMI_BMC_RCV_MSG_INTR; rv = set_global_enables(smi_info, enables); } if (rv < 0) { dev_err(smi_info->io.dev, "Cannot check setting the rcv irq: %d\n", rv); return; } if (rv) { /* * An error when setting the event buffer bit means * setting the bit is not supported. */ dev_warn(smi_info->io.dev, "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); smi_info->cannot_disable_irq = true; smi_info->irq_enable_broken = true; } } static int try_enable_event_buffer(struct smi_info *smi_info) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv = 0; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) { pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n"); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 4 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || resp[2] != 0) { pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n"); rv = -EINVAL; goto out; } if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { /* buffer is already enabled, nothing to do. */ smi_info->supports_event_msg_buff = true; goto out; } msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); rv = wait_for_msg_done(smi_info); if (rv) { pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n"); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 3 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { pr_warn("Invalid return from get global, enables command, not enable the event buffer\n"); rv = -EINVAL; goto out; } if (resp[2] != 0) /* * An error when setting the event buffer bit means * that the event buffer is not supported. */ rv = -ENOENT; else smi_info->supports_event_msg_buff = true; out: kfree(resp); return rv; } #define IPMI_SI_ATTR(name) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct smi_info *smi_info = dev_get_drvdata(dev); \ \ return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \ } \ static DEVICE_ATTR_RO(name) static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct smi_info *smi_info = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]); } static DEVICE_ATTR_RO(type); static ssize_t interrupts_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct smi_info *smi_info = dev_get_drvdata(dev); int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; return sysfs_emit(buf, "%d\n", enabled); } static DEVICE_ATTR_RO(interrupts_enabled); IPMI_SI_ATTR(short_timeouts); IPMI_SI_ATTR(long_timeouts); IPMI_SI_ATTR(idles); IPMI_SI_ATTR(interrupts); IPMI_SI_ATTR(attentions); IPMI_SI_ATTR(flag_fetches); IPMI_SI_ATTR(hosed_count); IPMI_SI_ATTR(complete_transactions); IPMI_SI_ATTR(events); IPMI_SI_ATTR(watchdog_pretimeouts); IPMI_SI_ATTR(incoming_messages); static ssize_t params_show(struct device *dev, struct device_attribute *attr, char *buf) { struct smi_info *smi_info = dev_get_drvdata(dev); return sysfs_emit(buf, "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", si_to_str[smi_info->io.si_type], addr_space_to_str[smi_info->io.addr_space], smi_info->io.addr_data, smi_info->io.regspacing, smi_info->io.regsize, smi_info->io.regshift, smi_info->io.irq, smi_info->io.slave_addr); } static DEVICE_ATTR_RO(params); static struct attribute *ipmi_si_dev_attrs[] = { &dev_attr_type.attr, &dev_attr_interrupts_enabled.attr, &dev_attr_short_timeouts.attr, &dev_attr_long_timeouts.attr, &dev_attr_idles.attr, &dev_attr_interrupts.attr, &dev_attr_attentions.attr, &dev_attr_flag_fetches.attr, &dev_attr_hosed_count.attr, &dev_attr_complete_transactions.attr, &dev_attr_events.attr, &dev_attr_watchdog_pretimeouts.attr, &dev_attr_incoming_messages.attr, &dev_attr_params.attr, NULL }; static const struct attribute_group ipmi_si_dev_attr_group = { .attrs = ipmi_si_dev_attrs, }; /* * oem_data_avail_to_receive_msg_avail * @info - smi_info structure with msg_flags set * * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL * Returns 1 indicating need to re-run handle_flags(). */ static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) { smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | RECEIVE_MSG_AVAIL); return 1; } /* * setup_dell_poweredge_oem_data_handler * @info - smi_info.device_id must be populated * * Systems that match, but have firmware version < 1.40 may assert * OEM0_DATA_AVAIL on their own, without being told via Set Flags that * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags * as RECEIVE_MSG_AVAIL instead. * * As Dell has no plans to release IPMI 1.5 firmware that *ever* * assert the OEM[012] bits, and if it did, the driver would have to * change to handle that properly, we don't actually check for the * firmware version. * Device ID = 0x20 BMC on PowerEdge 8G servers * Device Revision = 0x80 * Firmware Revision1 = 0x01 BMC version 1.40 * Firmware Revision2 = 0x40 BCD encoded * IPMI Version = 0x51 IPMI 1.5 * Manufacturer ID = A2 02 00 Dell IANA * * Additionally, PowerEdge systems with IPMI < 1.5 may also assert * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. * */ #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 #define DELL_IANA_MFR_ID 0x0002a2 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) { struct ipmi_device_id *id = &smi_info->device_id; if (id->manufacturer_id == DELL_IANA_MFR_ID) { if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { smi_info->oem_data_avail_handler = oem_data_avail_to_receive_msg_avail; } else if (ipmi_version_major(id) < 1 || (ipmi_version_major(id) == 1 && ipmi_version_minor(id) < 5)) { smi_info->oem_data_avail_handler = oem_data_avail_to_receive_msg_avail; } } } #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA static void return_hosed_msg_badsize(struct smi_info *smi_info) { struct ipmi_smi_msg *msg = smi_info->curr_msg; /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; msg->rsp_size = 3; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); } /* * dell_poweredge_bt_xaction_handler * @info - smi_info.device_id must be populated * * Dell PowerEdge servers with the BT interface (x6xx and 1750) will * not respond to a Get SDR command if the length of the data * requested is exactly 0x3A, which leads to command timeouts and no * data returned. This intercepts such commands, and causes userspace * callers to try again with a different-sized buffer, which succeeds. */ #define STORAGE_NETFN 0x0A #define STORAGE_CMD_GET_SDR 0x23 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, unsigned long unused, void *in) { struct smi_info *smi_info = in; unsigned char *data = smi_info->curr_msg->data; unsigned int size = smi_info->curr_msg->data_size; if (size >= 8 && (data[0]>>2) == STORAGE_NETFN && data[1] == STORAGE_CMD_GET_SDR && data[7] == 0x3A) { return_hosed_msg_badsize(smi_info); return NOTIFY_STOP; } return NOTIFY_DONE; } static struct notifier_block dell_poweredge_bt_xaction_notifier = { .notifier_call = dell_poweredge_bt_xaction_handler, }; /* * setup_dell_poweredge_bt_xaction_handler * @info - smi_info.device_id must be filled in already * * Fills in smi_info.device_id.start_transaction_pre_hook * when we know what function to use there. */ static void setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) { struct ipmi_device_id *id = &smi_info->device_id; if (id->manufacturer_id == DELL_IANA_MFR_ID && smi_info->io.si_type == SI_BT) register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); } /* * setup_oem_data_handler * @info - smi_info.device_id must be filled in already * * Fills in smi_info.device_id.oem_data_available_handler * when we know what function to use there. */ static void setup_oem_data_handler(struct smi_info *smi_info) { setup_dell_poweredge_oem_data_handler(smi_info); } static void setup_xaction_handlers(struct smi_info *smi_info) { setup_dell_poweredge_bt_xaction_handler(smi_info); } static void check_for_broken_irqs(struct smi_info *smi_info) { check_clr_rcv_irq(smi_info); check_set_rcv_irq(smi_info); } static inline void stop_timer_and_thread(struct smi_info *smi_info) { if (smi_info->thread != NULL) { kthread_stop(smi_info->thread); smi_info->thread = NULL; } smi_info->timer_can_start = false; del_timer_sync(&smi_info->si_timer); } static struct smi_info *find_dup_si(struct smi_info *info) { struct smi_info *e; list_for_each_entry(e, &smi_infos, link) { if (e->io.addr_space != info->io.addr_space) continue; if (e->io.addr_data == info->io.addr_data) { /* * This is a cheap hack, ACPI doesn't have a defined * slave address but SMBIOS does. Pick it up from * any source that has it available. */ if (info->io.slave_addr && !e->io.slave_addr) e->io.slave_addr = info->io.slave_addr; return e; } } return NULL; } int ipmi_si_add_smi(struct si_sm_io *io) { int rv = 0; struct smi_info *new_smi, *dup; /* * If the user gave us a hard-coded device at the same * address, they presumably want us to use it and not what is * in the firmware. */ if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD && ipmi_si_hardcode_match(io->addr_space, io->addr_data)) { dev_info(io->dev, "Hard-coded device at this address already exists"); return -ENODEV; } if (!io->io_setup) { if (io->addr_space == IPMI_IO_ADDR_SPACE) { io->io_setup = ipmi_si_port_setup; } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) { io->io_setup = ipmi_si_mem_setup; } else { return -EINVAL; } } new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); if (!new_smi) return -ENOMEM; spin_lock_init(&new_smi->si_lock); new_smi->io = *io; mutex_lock(&smi_infos_lock); dup = find_dup_si(new_smi); if (dup) { if (new_smi->io.addr_source == SI_ACPI && dup->io.addr_source == SI_SMBIOS) { /* We prefer ACPI over SMBIOS. */ dev_info(dup->io.dev, "Removing SMBIOS-specified %s state machine in favor of ACPI\n", si_to_str[new_smi->io.si_type]); cleanup_one_si(dup); } else { dev_info(new_smi->io.dev, "%s-specified %s state machine: duplicate\n", ipmi_addr_src_to_str(new_smi->io.addr_source), si_to_str[new_smi->io.si_type]); rv = -EBUSY; kfree(new_smi); goto out_err; } } pr_info("Adding %s-specified %s state machine\n", ipmi_addr_src_to_str(new_smi->io.addr_source), si_to_str[new_smi->io.si_type]); list_add_tail(&new_smi->link, &smi_infos); if (initialized) rv = try_smi_init(new_smi); out_err: mutex_unlock(&smi_infos_lock); return rv; } /* * Try to start up an interface. Must be called with smi_infos_lock * held, primarily to keep smi_num consistent, we only one to do these * one at a time. */ static int try_smi_init(struct smi_info *new_smi) { int rv = 0; int i; pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", ipmi_addr_src_to_str(new_smi->io.addr_source), si_to_str[new_smi->io.si_type], addr_space_to_str[new_smi->io.addr_space], new_smi->io.addr_data, new_smi->io.slave_addr, new_smi->io.irq); switch (new_smi->io.si_type) { case SI_KCS: new_smi->handlers = &kcs_smi_handlers; break; case SI_SMIC: new_smi->handlers = &smic_smi_handlers; break; case SI_BT: new_smi->handlers = &bt_smi_handlers; break; default: /* No support for anything else yet. */ rv = -EIO; goto out_err; } new_smi->si_num = smi_num; /* Do this early so it's available for logs. */ if (!new_smi->io.dev) { pr_err("IPMI interface added with no device\n"); rv = -EIO; goto out_err; } /* Allocate the state machine's data and initialize it. */ new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); if (!new_smi->si_sm) { rv = -ENOMEM; goto out_err; } new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, &new_smi->io); /* Now that we know the I/O size, we can set up the I/O. */ rv = new_smi->io.io_setup(&new_smi->io); if (rv) { dev_err(new_smi->io.dev, "Could not set up I/O space\n"); goto out_err; } /* Do low-level detection first. */ if (new_smi->handlers->detect(new_smi->si_sm)) { if (new_smi->io.addr_source) dev_err(new_smi->io.dev, "Interface detection failed\n"); rv = -ENODEV; goto out_err; } /* * Attempt a get device id command. If it fails, we probably * don't have a BMC here. */ rv = try_get_dev_id(new_smi); if (rv) { if (new_smi->io.addr_source) dev_err(new_smi->io.dev, "There appears to be no BMC at this location\n"); goto out_err; } setup_oem_data_handler(new_smi); setup_xaction_handlers(new_smi); check_for_broken_irqs(new_smi); new_smi->waiting_msg = NULL; new_smi->curr_msg = NULL; atomic_set(&new_smi->req_events, 0); new_smi->run_to_completion = false; for (i = 0; i < SI_NUM_STATS; i++) atomic_set(&new_smi->stats[i], 0); new_smi->interrupt_disabled = true; atomic_set(&new_smi->need_watch, 0); rv = try_enable_event_buffer(new_smi); if (rv == 0) new_smi->has_event_buffer = true; /* * Start clearing the flags before we enable interrupts or the * timer to avoid racing with the timer. */ start_clear_flags(new_smi); /* * IRQ is defined to be set when non-zero. req_events will * cause a global flags check that will enable interrupts. */ if (new_smi->io.irq) { new_smi->interrupt_disabled = false; atomic_set(&new_smi->req_events, 1); } dev_set_drvdata(new_smi->io.dev, new_smi); rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); if (rv) { dev_err(new_smi->io.dev, "Unable to add device attributes: error %d\n", rv); goto out_err; } new_smi->dev_group_added = true; rv = ipmi_register_smi(&handlers, new_smi, new_smi->io.dev, new_smi->io.slave_addr); if (rv) { dev_err(new_smi->io.dev, "Unable to register device: error %d\n", rv); goto out_err; } /* Don't increment till we know we have succeeded. */ smi_num++; dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", si_to_str[new_smi->io.si_type]); WARN_ON(new_smi->io.dev->init_name != NULL); out_err: if (rv && new_smi->io.io_cleanup) { new_smi->io.io_cleanup(&new_smi->io); new_smi->io.io_cleanup = NULL; } return rv; } static int __init init_ipmi_si(void) { struct smi_info *e; enum ipmi_addr_src type = SI_INVALID; if (initialized) return 0; ipmi_hardcode_init(); pr_info("IPMI System Interface driver\n"); ipmi_si_platform_init(); ipmi_si_pci_init(); ipmi_si_parisc_init(); /* We prefer devices with interrupts, but in the case of a machine with multiple BMCs we assume that there will be several instances of a given type so if we succeed in registering a type then also try to register everything else of the same type */ mutex_lock(&smi_infos_lock); list_for_each_entry(e, &smi_infos, link) { /* Try to register a device if it has an IRQ and we either haven't successfully registered a device yet or this device has the same type as one we successfully registered */ if (e->io.irq && (!type || e->io.addr_source == type)) { if (!try_smi_init(e)) { type = e->io.addr_source; } } } /* type will only have been set if we successfully registered an si */ if (type) goto skip_fallback_noirq; /* Fall back to the preferred device */ list_for_each_entry(e, &smi_infos, link) { if (!e->io.irq && (!type || e->io.addr_source == type)) { if (!try_smi_init(e)) { type = e->io.addr_source; } } } skip_fallback_noirq: initialized = true; mutex_unlock(&smi_infos_lock); if (type) return 0; mutex_lock(&smi_infos_lock); if (unload_when_empty && list_empty(&smi_infos)) { mutex_unlock(&smi_infos_lock); cleanup_ipmi_si(); pr_warn("Unable to find any System Interface(s)\n"); return -ENODEV; } else { mutex_unlock(&smi_infos_lock); return 0; } } module_init(init_ipmi_si); static void wait_msg_processed(struct smi_info *smi_info) { unsigned long jiffies_now; long time_diff; while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { jiffies_now = jiffies; time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) * SI_USEC_PER_JIFFY); smi_event_handler(smi_info, time_diff); schedule_timeout_uninterruptible(1); } } static void shutdown_smi(void *send_info) { struct smi_info *smi_info = send_info; if (smi_info->dev_group_added) { device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group); smi_info->dev_group_added = false; } if (smi_info->io.dev) dev_set_drvdata(smi_info->io.dev, NULL); /* * Make sure that interrupts, the timer and the thread are * stopped and will not run again. */ smi_info->interrupt_disabled = true; if (smi_info->io.irq_cleanup) { smi_info->io.irq_cleanup(&smi_info->io); smi_info->io.irq_cleanup = NULL; } stop_timer_and_thread(smi_info); /* * Wait until we know that we are out of any interrupt * handlers might have been running before we freed the * interrupt. */ synchronize_rcu(); /* * Timeouts are stopped, now make sure the interrupts are off * in the BMC. Note that timers and CPU interrupts are off, * so no need for locks. */ wait_msg_processed(smi_info); if (smi_info->handlers) disable_si_irq(smi_info); wait_msg_processed(smi_info); if (smi_info->handlers) smi_info->handlers->cleanup(smi_info->si_sm); if (smi_info->io.io_cleanup) { smi_info->io.io_cleanup(&smi_info->io); smi_info->io.io_cleanup = NULL; } kfree(smi_info->si_sm); smi_info->si_sm = NULL; smi_info->intf = NULL; } /* * Must be called with smi_infos_lock held, to serialize the * smi_info->intf check. */ static void cleanup_one_si(struct smi_info *smi_info) { if (!smi_info) return; list_del(&smi_info->link); ipmi_unregister_smi(smi_info->intf); kfree(smi_info); } void ipmi_si_remove_by_dev(struct device *dev) { struct smi_info *e; mutex_lock(&smi_infos_lock); list_for_each_entry(e, &smi_infos, link) { if (e->io.dev == dev) { cleanup_one_si(e); break; } } mutex_unlock(&smi_infos_lock); } struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type, unsigned long addr) { /* remove */ struct smi_info *e, *tmp_e; struct device *dev = NULL; mutex_lock(&smi_infos_lock); list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { if (e->io.addr_space != addr_space) continue; if (e->io.si_type != si_type) continue; if (e->io.addr_data == addr) { dev = get_device(e->io.dev); cleanup_one_si(e); } } mutex_unlock(&smi_infos_lock); return dev; } static void cleanup_ipmi_si(void) { struct smi_info *e, *tmp_e; if (!initialized) return; ipmi_si_pci_shutdown(); ipmi_si_parisc_shutdown(); ipmi_si_platform_shutdown(); mutex_lock(&smi_infos_lock); list_for_each_entry_safe(e, tmp_e, &smi_infos, link) cleanup_one_si(e); mutex_unlock(&smi_infos_lock); ipmi_si_hardcode_exit(); ipmi_si_hotmod_exit(); } module_exit(cleanup_ipmi_si); MODULE_ALIAS("platform:dmi-ipmi-si"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1