Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liam Beguin | 6874 | 99.51% | 4 | 40.00% |
Stephen Boyd | 14 | 0.20% | 1 | 10.00% |
Wang Hai | 9 | 0.13% | 1 | 10.00% |
Maxime Ripard | 5 | 0.07% | 1 | 10.00% |
Colin Ian King | 4 | 0.06% | 1 | 10.00% |
Lars-Peter Clausen | 1 | 0.01% | 1 | 10.00% |
Uwe Kleine-König | 1 | 0.01% | 1 | 10.00% |
Total | 6908 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner * Pin compatible with the LMK0482x family * * Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf * * Copyright (c) 2020, Xiphos Systems Corp. * */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/gcd.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> /* 0x000 - 0x00d System Functions */ #define LMK04832_REG_RST3W 0x000 #define LMK04832_BIT_RESET BIT(7) #define LMK04832_BIT_SPI_3WIRE_DIS BIT(4) #define LMK04832_REG_POWERDOWN 0x002 #define LMK04832_REG_ID_DEV_TYPE 0x003 #define LMK04832_REG_ID_PROD_MSB 0x004 #define LMK04832_REG_ID_PROD_LSB 0x005 #define LMK04832_REG_ID_MASKREV 0x006 #define LMK04832_REG_ID_VNDR_MSB 0x00c #define LMK04832_REG_ID_VNDR_LSB 0x00d /* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */ #define LMK04832_REG_CLKOUT_CTRL0(ch) (0x100 + (ch >> 1) * 8) #define LMK04832_BIT_DCLK_DIV_LSB GENMASK(7, 0) #define LMK04832_REG_CLKOUT_CTRL1(ch) (0x101 + (ch >> 1) * 8) #define LMK04832_BIT_DCLKX_Y_DDLY_LSB GENMASK(7, 0) #define LMK04832_REG_CLKOUT_CTRL2(ch) (0x102 + (ch >> 1) * 8) #define LMK04832_BIT_CLKOUTX_Y_PD BIT(7) #define LMK04832_BIT_DCLKX_Y_DDLY_PD BIT(4) #define LMK04832_BIT_DCLKX_Y_DDLY_MSB GENMASK(3, 2) #define LMK04832_BIT_DCLK_DIV_MSB GENMASK(1, 0) #define LMK04832_REG_CLKOUT_SRC_MUX(ch) (0x103 + (ch % 2) + (ch >> 1) * 8) #define LMK04832_BIT_CLKOUT_SRC_MUX BIT(5) #define LMK04832_REG_CLKOUT_CTRL3(ch) (0x103 + (ch >> 1) * 8) #define LMK04832_BIT_DCLKX_Y_PD BIT(4) #define LMK04832_BIT_DCLKX_Y_DCC BIT(2) #define LMK04832_BIT_DCLKX_Y_HS BIT(0) #define LMK04832_REG_CLKOUT_CTRL4(ch) (0x104 + (ch >> 1) * 8) #define LMK04832_BIT_SCLK_PD BIT(4) #define LMK04832_BIT_SCLKX_Y_DIS_MODE GENMASK(3, 2) #define LMK04832_REG_SCLKX_Y_ADLY(ch) (0x105 + (ch >> 1) * 8) #define LMK04832_REG_SCLKX_Y_DDLY(ch) (0x106 + (ch >> 1) * 8) #define LMK04832_BIT_SCLKX_Y_DDLY GENMASK(3, 0) #define LMK04832_REG_CLKOUT_FMT(ch) (0x107 + (ch >> 1) * 8) #define LMK04832_BIT_CLKOUT_FMT(ch) (ch % 2 ? 0xf0 : 0x0f) #define LMK04832_VAL_CLKOUT_FMT_POWERDOWN 0x00 #define LMK04832_VAL_CLKOUT_FMT_LVDS 0x01 #define LMK04832_VAL_CLKOUT_FMT_HSDS6 0x02 #define LMK04832_VAL_CLKOUT_FMT_HSDS8 0x03 #define LMK04832_VAL_CLKOUT_FMT_LVPECL1600 0x04 #define LMK04832_VAL_CLKOUT_FMT_LVPECL2000 0x05 #define LMK04832_VAL_CLKOUT_FMT_LCPECL 0x06 #define LMK04832_VAL_CLKOUT_FMT_CML16 0x07 #define LMK04832_VAL_CLKOUT_FMT_CML24 0x08 #define LMK04832_VAL_CLKOUT_FMT_CML32 0x09 #define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV 0x0a #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF 0x0b #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV 0x0c #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR 0x0d #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV 0x0e #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR 0x0f /* 0x138 - 0x145 SYSREF, SYNC, and Device Config */ #define LMK04832_REG_VCO_OSCOUT 0x138 #define LMK04832_BIT_VCO_MUX GENMASK(6, 5) #define LMK04832_VAL_VCO_MUX_VCO0 0x00 #define LMK04832_VAL_VCO_MUX_VCO1 0x01 #define LMK04832_VAL_VCO_MUX_EXT 0x02 #define LMK04832_REG_SYSREF_OUT 0x139 #define LMK04832_BIT_SYSREF_REQ_EN BIT(6) #define LMK04832_BIT_SYSREF_MUX GENMASK(1, 0) #define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC 0x00 #define LMK04832_VAL_SYSREF_MUX_RECLK 0x01 #define LMK04832_VAL_SYSREF_MUX_PULSER 0x02 #define LMK04832_VAL_SYSREF_MUX_CONTINUOUS 0x03 #define LMK04832_REG_SYSREF_DIV_MSB 0x13a #define LMK04832_BIT_SYSREF_DIV_MSB GENMASK(4, 0) #define LMK04832_REG_SYSREF_DIV_LSB 0x13b #define LMK04832_REG_SYSREF_DDLY_MSB 0x13c #define LMK04832_BIT_SYSREF_DDLY_MSB GENMASK(4, 0) #define LMK04832_REG_SYSREF_DDLY_LSB 0x13d #define LMK04832_REG_SYSREF_PULSE_CNT 0x13e #define LMK04832_REG_FB_CTRL 0x13f #define LMK04832_BIT_PLL2_RCLK_MUX BIT(7) #define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN 0x00 #define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN 0x01 #define LMK04832_BIT_PLL2_NCLK_MUX BIT(5) #define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P 0x00 #define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX 0x01 #define LMK04832_BIT_FB_MUX_EN BIT(0) #define LMK04832_REG_MAIN_PD 0x140 #define LMK04832_BIT_PLL1_PD BIT(7) #define LMK04832_BIT_VCO_LDO_PD BIT(6) #define LMK04832_BIT_VCO_PD BIT(5) #define LMK04832_BIT_OSCIN_PD BIT(4) #define LMK04832_BIT_SYSREF_GBL_PD BIT(3) #define LMK04832_BIT_SYSREF_PD BIT(2) #define LMK04832_BIT_SYSREF_DDLY_PD BIT(1) #define LMK04832_BIT_SYSREF_PLSR_PD BIT(0) #define LMK04832_REG_SYNC 0x143 #define LMK04832_BIT_SYNC_CLR BIT(7) #define LMK04832_BIT_SYNC_1SHOT_EN BIT(6) #define LMK04832_BIT_SYNC_POL BIT(5) #define LMK04832_BIT_SYNC_EN BIT(4) #define LMK04832_BIT_SYNC_MODE GENMASK(1, 0) #define LMK04832_VAL_SYNC_MODE_OFF 0x00 #define LMK04832_VAL_SYNC_MODE_ON 0x01 #define LMK04832_VAL_SYNC_MODE_PULSER_PIN 0x02 #define LMK04832_VAL_SYNC_MODE_PULSER_SPI 0x03 #define LMK04832_REG_SYNC_DIS 0x144 /* 0x146 - 0x14a CLKin Control */ #define LMK04832_REG_CLKIN_SEL0 0x148 #define LMK04832_REG_CLKIN_SEL1 0x149 #define LMK04832_REG_CLKIN_RST 0x14a #define LMK04832_BIT_SDIO_RDBK_TYPE BIT(6) #define LMK04832_BIT_CLKIN_SEL_MUX GENMASK(5, 3) #define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK 0x06 #define LMK04832_BIT_CLKIN_SEL_TYPE GENMASK(2, 0) #define LMK04832_VAL_CLKIN_SEL_TYPE_OUT 0x03 /* 0x14b - 0x152 Holdover */ /* 0x153 - 0x15f PLL1 Configuration */ /* 0x160 - 0x16e PLL2 Configuration */ #define LMK04832_REG_PLL2_R_MSB 0x160 #define LMK04832_BIT_PLL2_R_MSB GENMASK(3, 0) #define LMK04832_REG_PLL2_R_LSB 0x161 #define LMK04832_REG_PLL2_MISC 0x162 #define LMK04832_BIT_PLL2_MISC_P GENMASK(7, 5) #define LMK04832_BIT_PLL2_MISC_REF_2X_EN BIT(0) #define LMK04832_REG_PLL2_N_CAL_0 0x163 #define LMK04832_BIT_PLL2_N_CAL_0 GENMASK(1, 0) #define LMK04832_REG_PLL2_N_CAL_1 0x164 #define LMK04832_REG_PLL2_N_CAL_2 0x165 #define LMK04832_REG_PLL2_N_0 0x166 #define LMK04832_BIT_PLL2_N_0 GENMASK(1, 0) #define LMK04832_REG_PLL2_N_1 0x167 #define LMK04832_REG_PLL2_N_2 0x168 #define LMK04832_REG_PLL2_DLD_CNT_MSB 0x16a #define LMK04832_REG_PLL2_DLD_CNT_LSB 0x16b #define LMK04832_REG_PLL2_LD 0x16e #define LMK04832_BIT_PLL2_LD_MUX GENMASK(7, 3) #define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD 0x02 #define LMK04832_BIT_PLL2_LD_TYPE GENMASK(2, 0) #define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP 0x03 /* 0x16F - 0x555 Misc Registers */ #define LMK04832_REG_PLL2_PD 0x173 #define LMK04832_BIT_PLL2_PRE_PD BIT(6) #define LMK04832_BIT_PLL2_PD BIT(5) #define LMK04832_REG_PLL1R_RST 0x177 #define LMK04832_REG_CLR_PLL_LOST 0x182 #define LMK04832_REG_RB_PLL_LD 0x183 #define LMK04832_REG_RB_CLK_DAC_VAL_MSB 0x184 #define LMK04832_REG_RB_DAC_VAL_LSB 0x185 #define LMK04832_REG_RB_HOLDOVER 0x188 #define LMK04832_REG_SPI_LOCK 0x555 enum lmk04832_device_types { LMK04832, }; /** * struct lmk04832_device_info - Holds static device information that is * specific to the chip revision * * @pid: Product Identifier * @maskrev: IC version identifier * @num_channels: Number of available output channels (clkout count) * @vco0_range: {min, max} of the VCO0 operating range (in MHz) * @vco1_range: {min, max} of the VCO1 operating range (in MHz) */ struct lmk04832_device_info { u16 pid; u8 maskrev; size_t num_channels; unsigned int vco0_range[2]; unsigned int vco1_range[2]; }; static const struct lmk04832_device_info lmk04832_device_info[] = { [LMK04832] = { .pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */ .maskrev = 0x70, .num_channels = 14, .vco0_range = { 2440, 2580 }, .vco1_range = { 2945, 3255 }, }, }; enum lmk04832_rdbk_type { RDBK_CLKIN_SEL0, RDBK_CLKIN_SEL1, RDBK_RESET, }; struct lmk_dclk { struct lmk04832 *lmk; struct clk_hw hw; u8 id; }; struct lmk_clkout { struct lmk04832 *lmk; struct clk_hw hw; bool sysref; u32 format; u8 id; }; /** * struct lmk04832 - The LMK04832 device structure * * @dev: reference to a struct device, linked to the spi_device * @regmap: struct regmap instance use to access the chip * @sync_mode: operational mode for SYNC signal * @sysref_mux: select SYSREF source * @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous * mode. * @sysref_ddly: SYSREF digital delay value * @oscin: PLL2 input clock * @vco: reference to the internal VCO clock * @sclk: reference to the internal sysref clock (SCLK) * @vco_rate: user provided VCO rate * @reset_gpio: reference to the reset GPIO * @dclk: list of internal device clock references. * Each pair of clkout clocks share a single device clock (DCLKX_Y) * @clkout: list of output clock references * @clk_data: holds clkout related data like clk_hw* and number of clocks */ struct lmk04832 { struct device *dev; struct regmap *regmap; unsigned int sync_mode; unsigned int sysref_mux; unsigned int sysref_pulse_cnt; unsigned int sysref_ddly; struct clk *oscin; struct clk_hw vco; struct clk_hw sclk; unsigned int vco_rate; struct gpio_desc *reset_gpio; struct lmk_dclk *dclk; struct lmk_clkout *clkout; struct clk_hw_onecell_data *clk_data; }; static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg) { switch (reg) { case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV: case LMK04832_REG_ID_VNDR_MSB: case LMK04832_REG_ID_VNDR_LSB: case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB: case LMK04832_REG_PLL2_LD: case LMK04832_REG_PLL2_PD: case LMK04832_REG_PLL1R_RST: case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB: case LMK04832_REG_RB_HOLDOVER: case LMK04832_REG_SPI_LOCK: return true; default: return false; }; } static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg) { switch (reg) { case LMK04832_REG_RST3W: case LMK04832_REG_POWERDOWN: return true; case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV: case LMK04832_REG_ID_VNDR_MSB: case LMK04832_REG_ID_VNDR_LSB: return false; case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB: case LMK04832_REG_PLL2_LD: case LMK04832_REG_PLL2_PD: case LMK04832_REG_PLL1R_RST: case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB: case LMK04832_REG_RB_HOLDOVER: case LMK04832_REG_SPI_LOCK: return true; default: return false; }; } static const struct regmap_config regmap_config = { .name = "lmk04832", .reg_bits = 16, .val_bits = 8, .use_single_read = 1, .use_single_write = 1, .read_flag_mask = 0x80, .write_flag_mask = 0x00, .readable_reg = lmk04832_regmap_rd_regs, .writeable_reg = lmk04832_regmap_wr_regs, .cache_type = REGCACHE_NONE, .max_register = LMK04832_REG_SPI_LOCK, }; static int lmk04832_vco_is_enabled(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); unsigned int tmp; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp); if (ret) return ret; return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) | FIELD_GET(LMK04832_BIT_VCO_PD, tmp) | FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp)); } static int lmk04832_vco_prepare(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); int ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD, LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD, 0x00); if (ret) return ret; return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD | LMK04832_BIT_OSCIN_PD, 0x00); } static void lmk04832_vco_unprepare(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD, LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD, 0xff); /* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */ regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff); } static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw, unsigned long prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); const unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7}; unsigned int pll2_n, p, pll2_r; unsigned int pll2_misc; unsigned long vco_rate; u8 tmp[3]; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc); if (ret) return ret; p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc); ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3); if (ret) return ret; pll2_n = FIELD_PREP(0x030000, tmp[0]) | FIELD_PREP(0x00ff00, tmp[1]) | FIELD_PREP(0x0000ff, tmp[2]); ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2); if (ret) return ret; pll2_r = FIELD_PREP(0x0f00, tmp[0]) | FIELD_PREP(0x00ff, tmp[1]); vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN, pll2_misc)) * pll2_n * pll2_p[p] / pll2_r; return vco_rate; } /** * lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges * * @lmk: Reference to the lmk device * @rate: Desired output rate for the VCO * * The LMK04832 has 2 internal VCO, each with independent operating ranges. * Use the device_info structure to determine which VCO to use based on rate. * * Returns: VCO_MUX value or negative errno. */ static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate) { struct spi_device *spi = to_spi_device(lmk->dev); const struct lmk04832_device_info *info; unsigned long mhz = rate / 1000000; info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data]; if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1]) return LMK04832_VAL_VCO_MUX_VCO0; if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1]) return LMK04832_VAL_VCO_MUX_VCO1; dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate); return -ERANGE; } /** * lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency * * @prate: parent rate to the PLL2, usually OSCin * @rate: Desired output rate for the VCO * @n: reference to PLL2_N * @p: reference to PLL2_P * @r: reference to PLL2_R * * This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is * recommended in the datasheet because a higher phase detector frequencies * makes the design of wider loop bandwidth filters possible. * * the VCO rate can be calculated using the following expression: * * VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R * * Returns: vco rate or negative errno. */ static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate, unsigned int *n, unsigned int *p, unsigned int *r) { unsigned int pll2_n, pll2_p, pll2_r; unsigned long num, div; /* Set PLL2_P to a fixed value to simplify optimizations */ pll2_p = 2; div = gcd(rate, prate); num = DIV_ROUND_CLOSEST(rate, div); pll2_r = DIV_ROUND_CLOSEST(prate, div); if (num > 4) { pll2_n = num >> 2; } else { pll2_r = pll2_r << 2; pll2_n = num; } if (pll2_n < 1 || pll2_n > 0x03ffff) return -EINVAL; if (pll2_r < 1 || pll2_r > 0xfff) return -EINVAL; *n = pll2_n; *p = pll2_p; *r = pll2_r; return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r); } static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); unsigned int n, p, r; long vco_rate; int ret; ret = lmk04832_check_vco_ranges(lmk, rate); if (ret < 0) return ret; vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r); if (vco_rate < 0) { dev_err(lmk->dev, "PLL2 parameters out of range\n"); return vco_rate; } if (rate != vco_rate) return -EINVAL; return vco_rate; } static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco); unsigned int n, p, r; long vco_rate; int vco_mux; int ret; vco_mux = lmk04832_check_vco_ranges(lmk, rate); if (vco_mux < 0) return vco_mux; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT, LMK04832_BIT_VCO_MUX, FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux)); if (ret) return ret; vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r); if (vco_rate < 0) { dev_err(lmk->dev, "failed to determine PLL2 parameters\n"); return vco_rate; } ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB, LMK04832_BIT_PLL2_R_MSB, FIELD_GET(0x000700, r)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB, FIELD_GET(0x0000ff, r)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC, LMK04832_BIT_PLL2_MISC_P, FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p)); if (ret) return ret; /* * PLL2_N registers must be programmed after other PLL2 dividers are * programmed to ensure proper VCO frequency calibration */ ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0, FIELD_GET(0x030000, n)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1, FIELD_GET(0x00ff00, n)); if (ret) return ret; return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2, FIELD_GET(0x0000ff, n)); } static const struct clk_ops lmk04832_vco_ops = { .is_enabled = lmk04832_vco_is_enabled, .prepare = lmk04832_vco_prepare, .unprepare = lmk04832_vco_unprepare, .recalc_rate = lmk04832_vco_recalc_rate, .round_rate = lmk04832_vco_round_rate, .set_rate = lmk04832_vco_set_rate, }; /* * lmk04832_register_vco - Initialize the internal VCO and clock distribution * path in PLL2 single loop mode. */ static int lmk04832_register_vco(struct lmk04832 *lmk) { const char *parent_names[1]; struct clk_init_data init; int ret; init.name = "lmk-vco"; parent_names[0] = __clk_get_name(lmk->oscin); init.parent_names = parent_names; init.ops = &lmk04832_vco_ops; init.num_parents = 1; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT, LMK04832_BIT_VCO_MUX, FIELD_PREP(LMK04832_BIT_VCO_MUX, LMK04832_VAL_VCO_MUX_VCO1)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL, LMK04832_BIT_PLL2_RCLK_MUX | LMK04832_BIT_PLL2_NCLK_MUX, FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX, LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)| FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX, LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC, LMK04832_BIT_PLL2_MISC_REF_2X_EN, LMK04832_BIT_PLL2_MISC_REF_2X_EN); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD, FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX, LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) | FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE, LMK04832_VAL_PLL2_LD_TYPE_OUT_PP)); if (ret) return ret; lmk->vco.init = &init; return devm_clk_hw_register(lmk->dev, &lmk->vco); } static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id) { const int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0}; unsigned int sclkx_y_ddly = 10; unsigned int dclkx_y_ddly; unsigned int dclkx_y_div; unsigned int sysref_ddly; unsigned int dclkx_y_hs; unsigned int lsb, msb; int ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), LMK04832_BIT_DCLKX_Y_DDLY_PD, FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0)); if (ret) return ret; ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb); if (ret) return ret; ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb); if (ret) return ret; sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb); if (ret) return ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb); if (ret) return ret; dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb); if (ret) return ret; dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb); dclkx_y_ddly = sysref_ddly + 1 - dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7] - dclkx_y_hs + sclkx_y_ddly; if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) { dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n", dclkx_y_ddly); return -EINVAL; } ret = regmap_write(lmk->regmap, LMK04832_REG_SCLKX_Y_DDLY(id), FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id), FIELD_GET(0x00ff, dclkx_y_ddly)); if (ret) return ret; dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, " "dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n", id, sysref_ddly, dclkx_y_ddly, dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7], dclkx_y_hs, sclkx_y_ddly); return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), LMK04832_BIT_DCLKX_Y_DDLY_MSB, FIELD_GET(0x0300, dclkx_y_ddly)); } /** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk * and dclk * * @lmk: Reference to the lmk device * * The synchronization sequence: * - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31 * (8.3.3.1 How to enable SYSREF) * - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972 * * Returns 0 or negative errno. */ static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk) { int ret; int i; /* 1. (optional) mute all sysref_outputs during synchronization */ /* 2. Enable and write device clock digital delay to applicable clocks */ ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_SYSREF_DDLY_PD, FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0)); if (ret) return ret; for (i = 0; i < lmk->clk_data->num; i += 2) { ret = lmk04832_clkout_set_ddly(lmk, i); if (ret) return ret; } /* * 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC, * and clear SYSREF_REQ_EN (see 6.) */ ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, LMK04832_BIT_SYSREF_REQ_EN | LMK04832_BIT_SYSREF_MUX, FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) | FIELD_PREP(LMK04832_BIT_SYSREF_MUX, LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_MODE, FIELD_PREP(LMK04832_BIT_SYNC_MODE, LMK04832_VAL_SYNC_MODE_ON)); if (ret) return ret; /* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */ ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00); if (ret) return ret; /* * 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock * distribution path cycles (VCO cycles), then back to 0. In * PLL2-only use case, this will be complete in less than one SPI * transaction. If SYSREF local digital delay is not used, this step * can be skipped. */ ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_CLR, FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_CLR, FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00)); if (ret) return ret; /* * 6. Toggle SYNC_POL state between inverted and not inverted. * If you use an external signal on the SYNC pin instead of toggling * SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX * does not shift into continuous SYSREF mode. */ ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_POL, FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_POL, FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00)); if (ret) return ret; /* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */ ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff); if (ret) return ret; /* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */ ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, LMK04832_BIT_SYSREF_MUX, FIELD_PREP(LMK04832_BIT_SYSREF_MUX, lmk->sysref_mux)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC, LMK04832_BIT_SYNC_MODE, FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode)); if (ret) return ret; /* * 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs * during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state, * or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional * option. */ /* * 10. (optional) To reduce power consumption, after the synchronization * event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the * digital delay counters (which are only used immediately after the * SYNC pulse to delay the output by some number of VCO counts). */ return ret; } static int lmk04832_sclk_is_enabled(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); unsigned int tmp; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp); if (ret) return ret; return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp); } static int lmk04832_sclk_prepare(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_SYSREF_PD, 0x00); } static void lmk04832_sclk_unprepare(struct clk_hw *hw) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD); } static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw, unsigned long prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); unsigned int sysref_div; u8 tmp[2]; int ret; ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2); if (ret) return ret; sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 | tmp[1]; return DIV_ROUND_CLOSEST(prate, sysref_div); } static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); unsigned long sclk_rate; unsigned int sysref_div; sysref_div = DIV_ROUND_CLOSEST(*prate, rate); sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div); if (sysref_div < 0x07 || sysref_div > 0x1fff) { dev_err(lmk->dev, "SYSREF divider out of range\n"); return -EINVAL; } if (rate != sclk_rate) return -EINVAL; return sclk_rate; } static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk); unsigned int sysref_div; int ret; sysref_div = DIV_ROUND_CLOSEST(prate, rate); if (sysref_div < 0x07 || sysref_div > 0x1fff) { dev_err(lmk->dev, "SYSREF divider out of range\n"); return -EINVAL; } ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, FIELD_GET(0x1f00, sysref_div)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB, FIELD_GET(0x00ff, sysref_div)); if (ret) return ret; ret = lmk04832_sclk_sync_sequence(lmk); if (ret) dev_err(lmk->dev, "SYNC sequence failed\n"); return ret; } static const struct clk_ops lmk04832_sclk_ops = { .is_enabled = lmk04832_sclk_is_enabled, .prepare = lmk04832_sclk_prepare, .unprepare = lmk04832_sclk_unprepare, .recalc_rate = lmk04832_sclk_recalc_rate, .round_rate = lmk04832_sclk_round_rate, .set_rate = lmk04832_sclk_set_rate, }; static int lmk04832_register_sclk(struct lmk04832 *lmk) { const char *parent_names[1]; struct clk_init_data init; int ret; init.name = "lmk-sclk"; parent_names[0] = clk_hw_get_name(&lmk->vco); init.parent_names = parent_names; init.ops = &lmk04832_sclk_ops; init.flags = CLK_SET_RATE_PARENT; init.num_parents = 1; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT, LMK04832_BIT_SYSREF_MUX, FIELD_PREP(LMK04832_BIT_SYSREF_MUX, lmk->sysref_mux)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, FIELD_GET(0x00ff, lmk->sysref_ddly)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, FIELD_GET(0x1f00, lmk->sysref_ddly)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT, ilog2(lmk->sysref_pulse_cnt)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD, LMK04832_BIT_SYSREF_DDLY_PD | LMK04832_BIT_SYSREF_PLSR_PD, FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) | FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC, FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) | FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) | FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode)); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff); if (ret) return ret; lmk->sclk.init = &init; return devm_clk_hw_register(lmk->dev, &lmk->sclk); } static int lmk04832_dclk_is_enabled(struct clk_hw *hw) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; unsigned int tmp; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id), &tmp); if (ret) return ret; return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp); } static int lmk04832_dclk_prepare(struct clk_hw *hw) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id), LMK04832_BIT_DCLKX_Y_PD, 0x00); } static void lmk04832_dclk_unprepare(struct clk_hw *hw) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id), LMK04832_BIT_DCLKX_Y_PD, 0xff); } static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw, unsigned long prate) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; unsigned int dclk_div; unsigned int lsb, msb; unsigned long rate; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id), &lsb); if (ret) return ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id), &msb); if (ret) return ret; dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb; rate = DIV_ROUND_CLOSEST(prate, dclk_div); return rate; } static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; unsigned long dclk_rate; unsigned int dclk_div; dclk_div = DIV_ROUND_CLOSEST(*prate, rate); dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div); if (dclk_div < 1 || dclk_div > 0x3ff) { dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw)); return -EINVAL; } if (rate != dclk_rate) return -EINVAL; return dclk_rate; } static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw); struct lmk04832 *lmk = dclk->lmk; unsigned int dclk_div; int ret; dclk_div = DIV_ROUND_CLOSEST(prate, rate); if (dclk_div > 0x3ff) { dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw)); return -EINVAL; } /* Enable Duty Cycle Correction */ if (dclk_div == 1) { ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id), LMK04832_BIT_DCLKX_Y_DCC, FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1)); if (ret) return ret; } /* * While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC * procedure requires to first program Divide-by-4 and then back to * Divide-by-2 or Divide-by-3 before doing SYNC. */ if (dclk_div == 2 || dclk_div == 3) { ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id), LMK04832_BIT_DCLK_DIV_MSB, 0x00); if (ret) return ret; ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04); if (ret) return ret; } ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id), FIELD_GET(0x0ff, dclk_div)); if (ret) return ret; ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id), LMK04832_BIT_DCLK_DIV_MSB, FIELD_GET(0x300, dclk_div)); if (ret) return ret; ret = lmk04832_sclk_sync_sequence(lmk); if (ret) dev_err(lmk->dev, "SYNC sequence failed\n"); return ret; } static const struct clk_ops lmk04832_dclk_ops = { .is_enabled = lmk04832_dclk_is_enabled, .prepare = lmk04832_dclk_prepare, .unprepare = lmk04832_dclk_unprepare, .recalc_rate = lmk04832_dclk_recalc_rate, .round_rate = lmk04832_dclk_round_rate, .set_rate = lmk04832_dclk_set_rate, }; static int lmk04832_clkout_is_enabled(struct clk_hw *hw) { struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); struct lmk04832 *lmk = clkout->lmk; unsigned int clkoutx_y_pd; unsigned int sclkx_y_pd; unsigned int tmp; u32 enabled; int ret; u8 fmt; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id), &clkoutx_y_pd); if (ret) return ret; enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd); ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), &tmp); if (ret) return ret; if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) { ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL4(clkout->id), &sclkx_y_pd); if (ret) return ret; enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd); } ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id), &tmp); if (ret) return ret; if (clkout->id % 2) fmt = FIELD_GET(0xf0, tmp); else fmt = FIELD_GET(0x0f, tmp); return enabled && !fmt; } static int lmk04832_clkout_prepare(struct clk_hw *hw) { struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); struct lmk04832 *lmk = clkout->lmk; unsigned int tmp; int ret; if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN) dev_err(lmk->dev, "prepared %s but format is powerdown\n", clk_hw_get_name(hw)); ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id), LMK04832_BIT_CLKOUTX_Y_PD, 0x00); if (ret) return ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), &tmp); if (ret) return ret; if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) { ret = regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL4(clkout->id), LMK04832_BIT_SCLK_PD, 0x00); if (ret) return ret; } return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id), LMK04832_BIT_CLKOUT_FMT(clkout->id), clkout->format << 4 * (clkout->id % 2)); } static void lmk04832_clkout_unprepare(struct clk_hw *hw) { struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); struct lmk04832 *lmk = clkout->lmk; regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id), LMK04832_BIT_CLKOUT_FMT(clkout->id), 0x00); } static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index) { struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); struct lmk04832 *lmk = clkout->lmk; return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), LMK04832_BIT_CLKOUT_SRC_MUX, FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX, index)); } static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw) { struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw); struct lmk04832 *lmk = clkout->lmk; unsigned int tmp; int ret; ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id), &tmp); if (ret) return ret; return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp); } static const struct clk_ops lmk04832_clkout_ops = { .is_enabled = lmk04832_clkout_is_enabled, .prepare = lmk04832_clkout_prepare, .unprepare = lmk04832_clkout_unprepare, .determine_rate = __clk_mux_determine_rate, .set_parent = lmk04832_clkout_set_parent, .get_parent = lmk04832_clkout_get_parent, }; static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num) { char name[] = "lmk-clkoutXX"; char dclk_name[] = "lmk-dclkXX_YY"; const char *parent_names[2]; struct clk_init_data init; int dclk_num = num / 2; int ret; if (num % 2 == 0) { sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1); init.name = dclk_name; parent_names[0] = clk_hw_get_name(&lmk->vco); init.ops = &lmk04832_dclk_ops; init.flags = CLK_SET_RATE_PARENT; init.num_parents = 1; lmk->dclk[dclk_num].id = num; lmk->dclk[dclk_num].lmk = lmk; lmk->dclk[dclk_num].hw.init = &init; ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw); if (ret) return ret; } else { sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num); } if (of_property_read_string_index(lmk->dev->of_node, "clock-output-names", num, &init.name)) { sprintf(name, "lmk-clkout%02d", num); init.name = name; } parent_names[0] = dclk_name; parent_names[1] = clk_hw_get_name(&lmk->sclk); init.parent_names = parent_names; init.ops = &lmk04832_clkout_ops; init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT; init.num_parents = ARRAY_SIZE(parent_names); lmk->clkout[num].id = num; lmk->clkout[num].lmk = lmk; lmk->clkout[num].hw.init = &init; lmk->clk_data->hws[num] = &lmk->clkout[num].hw; /* Set initial parent */ regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(num), LMK04832_BIT_CLKOUT_SRC_MUX, FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX, lmk->clkout[num].sysref)); return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw); } static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin) { int reg; int ret; dev_info(lmk->dev, "setting up 4-wire mode\n"); ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_SPI_3WIRE_DIS); if (ret) return ret; switch (rdbk_pin) { case RDBK_CLKIN_SEL0: reg = LMK04832_REG_CLKIN_SEL0; break; case RDBK_CLKIN_SEL1: reg = LMK04832_REG_CLKIN_SEL1; break; case RDBK_RESET: reg = LMK04832_REG_CLKIN_RST; break; default: return -EINVAL; } return regmap_write(lmk->regmap, reg, FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX, LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) | FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE, LMK04832_VAL_CLKIN_SEL_TYPE_OUT)); } static int lmk04832_probe(struct spi_device *spi) { const struct lmk04832_device_info *info; int rdbk_pin = RDBK_CLKIN_SEL1; struct device_node *child; struct lmk04832 *lmk; u8 tmp[3]; int ret; int i; info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data]; lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL); if (!lmk) return -ENOMEM; lmk->dev = &spi->dev; lmk->oscin = devm_clk_get(lmk->dev, "oscin"); if (IS_ERR(lmk->oscin)) { dev_err(lmk->dev, "failed to get oscin clock\n"); return PTR_ERR(lmk->oscin); } ret = clk_prepare_enable(lmk->oscin); if (ret) return ret; lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset", GPIOD_OUT_LOW); lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1, sizeof(struct lmk_dclk), GFP_KERNEL); if (!lmk->dclk) { ret = -ENOMEM; goto err_disable_oscin; } lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels, sizeof(*lmk->clkout), GFP_KERNEL); if (!lmk->clkout) { ret = -ENOMEM; goto err_disable_oscin; } lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws, info->num_channels), GFP_KERNEL); if (!lmk->clk_data) { ret = -ENOMEM; goto err_disable_oscin; } device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate); lmk->sysref_ddly = 8; device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly); lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS; device_property_read_u32(lmk->dev, "ti,sysref-mux", &lmk->sysref_mux); lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF; device_property_read_u32(lmk->dev, "ti,sync-mode", &lmk->sync_mode); lmk->sysref_pulse_cnt = 4; device_property_read_u32(lmk->dev, "ti,sysref-pulse-count", &lmk->sysref_pulse_cnt); for_each_child_of_node(lmk->dev->of_node, child) { int reg; ret = of_property_read_u32(child, "reg", ®); if (ret) { dev_err(lmk->dev, "missing reg property in child: %s\n", child->full_name); of_node_put(child); goto err_disable_oscin; } of_property_read_u32(child, "ti,clkout-fmt", &lmk->clkout[reg].format); if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0 && reg != 8 && reg != 10) dev_err(lmk->dev, "invalid format for clkout%02d\n", reg); lmk->clkout[reg].sysref = of_property_read_bool(child, "ti,clkout-sysref"); } lmk->regmap = devm_regmap_init_spi(spi, ®map_config); if (IS_ERR(lmk->regmap)) { dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(lmk->regmap)); ret = PTR_ERR(lmk->regmap); goto err_disable_oscin; } regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET); if (!(spi->mode & SPI_3WIRE)) { device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk", &rdbk_pin); ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin); if (ret) goto err_disable_oscin; } regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3); if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) { dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n", tmp[0] << 8 | tmp[1], tmp[2]); ret = -EINVAL; goto err_disable_oscin; } ret = lmk04832_register_vco(lmk); if (ret) { dev_err(lmk->dev, "failed to init device clock path\n"); goto err_disable_oscin; } if (lmk->vco_rate) { dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate); ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate); if (ret) { dev_err(lmk->dev, "failed to set VCO rate\n"); goto err_disable_vco; } } ret = lmk04832_register_sclk(lmk); if (ret) { dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n"); goto err_disable_vco; } for (i = 0; i < info->num_channels; i++) { ret = lmk04832_register_clkout(lmk, i); if (ret) { dev_err(lmk->dev, "failed to register clk %d\n", i); goto err_disable_vco; } } lmk->clk_data->num = info->num_channels; ret = devm_of_clk_add_hw_provider(lmk->dev, of_clk_hw_onecell_get, lmk->clk_data); if (ret) { dev_err(lmk->dev, "failed to add provider (%d)\n", ret); goto err_disable_vco; } spi_set_drvdata(spi, lmk); return 0; err_disable_vco: clk_disable_unprepare(lmk->vco.clk); err_disable_oscin: clk_disable_unprepare(lmk->oscin); return ret; } static void lmk04832_remove(struct spi_device *spi) { struct lmk04832 *lmk = spi_get_drvdata(spi); clk_disable_unprepare(lmk->oscin); } static const struct spi_device_id lmk04832_id[] = { { "lmk04832", LMK04832 }, {} }; MODULE_DEVICE_TABLE(spi, lmk04832_id); static const struct of_device_id lmk04832_of_id[] = { { .compatible = "ti,lmk04832" }, {} }; MODULE_DEVICE_TABLE(of, lmk04832_of_id); static struct spi_driver lmk04832_driver = { .driver = { .name = "lmk04832", .of_match_table = lmk04832_of_id, }, .probe = lmk04832_probe, .remove = lmk04832_remove, .id_table = lmk04832_id, }; module_spi_driver(lmk04832_driver); MODULE_AUTHOR("Liam Beguin <lvb@xiphos.com>"); MODULE_DESCRIPTION("Texas Instruments LMK04832"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1