Contributors: 10
Author Tokens Token Proportion Commits Commit Proportion
Tony Lindgren 4349 99.36% 2 16.67%
Stephen Boyd 7 0.16% 1 8.33%
Kees Cook 6 0.14% 1 8.33%
Colin Ian King 4 0.09% 2 16.67%
Michael Turquette 3 0.07% 1 8.33%
Stephen Kitt 3 0.07% 1 8.33%
Uwe Kleine-König 2 0.05% 1 8.33%
Bhumika Goyal 1 0.02% 1 8.33%
Tero Kristo 1 0.02% 1 8.33%
Thomas Gleixner 1 0.02% 1 8.33%
Total 4377 12


// SPDX-License-Identifier: GPL-2.0-only

#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/string.h>

#define ADPLL_PLLSS_MMR_LOCK_OFFSET	0x00	/* Managed by MPPULL */
#define ADPLL_PLLSS_MMR_LOCK_ENABLED	0x1f125B64
#define ADPLL_PLLSS_MMR_UNLOCK_MAGIC	0x1eda4c3d

#define ADPLL_PWRCTRL_OFFSET		0x00
#define ADPLL_PWRCTRL_PONIN		5
#define ADPLL_PWRCTRL_PGOODIN		4
#define ADPLL_PWRCTRL_RET		3
#define ADPLL_PWRCTRL_ISORET		2
#define ADPLL_PWRCTRL_ISOSCAN		1
#define ADPLL_PWRCTRL_OFFMODE		0

#define ADPLL_CLKCTRL_OFFSET		0x04
#define ADPLL_CLKCTRL_CLKDCOLDOEN	29
#define ADPLL_CLKCTRL_IDLE		23
#define ADPLL_CLKCTRL_CLKOUTEN		20
#define ADPLL_CLKINPHIFSEL_ADPLL_S	19	/* REVISIT: which bit? */
#define ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ 19
#define ADPLL_CLKCTRL_ULOWCLKEN		18
#define ADPLL_CLKCTRL_CLKDCOLDOPWDNZ	17
#define ADPLL_CLKCTRL_M2PWDNZ		16
#define ADPLL_CLKCTRL_M3PWDNZ_ADPLL_S	15
#define ADPLL_CLKCTRL_LOWCURRSTDBY_ADPLL_S 13
#define ADPLL_CLKCTRL_LPMODE_ADPLL_S	12
#define ADPLL_CLKCTRL_REGM4XEN_ADPLL_S	10
#define ADPLL_CLKCTRL_SELFREQDCO_ADPLL_LJ 10
#define ADPLL_CLKCTRL_TINITZ		0

#define ADPLL_TENABLE_OFFSET		0x08
#define ADPLL_TENABLEDIV_OFFSET		0x8c

#define ADPLL_M2NDIV_OFFSET		0x10
#define ADPLL_M2NDIV_M2			16
#define ADPLL_M2NDIV_M2_ADPLL_S_WIDTH	5
#define ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH	7

#define ADPLL_MN2DIV_OFFSET		0x14
#define ADPLL_MN2DIV_N2			16

#define ADPLL_FRACDIV_OFFSET		0x18
#define ADPLL_FRACDIV_REGSD		24
#define ADPLL_FRACDIV_FRACTIONALM	0
#define ADPLL_FRACDIV_FRACTIONALM_MASK	0x3ffff

#define ADPLL_BWCTRL_OFFSET		0x1c
#define ADPLL_BWCTRL_BWCONTROL		1
#define ADPLL_BWCTRL_BW_INCR_DECRZ	0

#define ADPLL_RESERVED_OFFSET		0x20

#define ADPLL_STATUS_OFFSET		0x24
#define ADPLL_STATUS_PONOUT		31
#define ADPLL_STATUS_PGOODOUT		30
#define ADPLL_STATUS_LDOPWDN		29
#define ADPLL_STATUS_RECAL_BSTATUS3	28
#define ADPLL_STATUS_RECAL_OPPIN	27
#define ADPLL_STATUS_PHASELOCK		10
#define ADPLL_STATUS_FREQLOCK		9
#define ADPLL_STATUS_BYPASSACK		8
#define ADPLL_STATUS_LOSSREF		6
#define ADPLL_STATUS_CLKOUTENACK	5
#define ADPLL_STATUS_LOCK2		4
#define ADPLL_STATUS_M2CHANGEACK	3
#define ADPLL_STATUS_HIGHJITTER		1
#define ADPLL_STATUS_BYPASS		0
#define ADPLL_STATUS_PREPARED_MASK	(BIT(ADPLL_STATUS_PHASELOCK) | \
					 BIT(ADPLL_STATUS_FREQLOCK))

#define ADPLL_M3DIV_OFFSET		0x28	/* Only on MPUPLL */
#define ADPLL_M3DIV_M3			0
#define ADPLL_M3DIV_M3_WIDTH		5
#define ADPLL_M3DIV_M3_MASK		0x1f

#define ADPLL_RAMPCTRL_OFFSET		0x2c	/* Only on MPUPLL */
#define ADPLL_RAMPCTRL_CLKRAMPLEVEL	19
#define ADPLL_RAMPCTRL_CLKRAMPRATE	16
#define ADPLL_RAMPCTRL_RELOCK_RAMP_EN	0

#define MAX_ADPLL_INPUTS		3
#define MAX_ADPLL_OUTPUTS		4
#define ADPLL_MAX_RETRIES		5

#define to_dco(_hw)	container_of(_hw, struct ti_adpll_dco_data, hw)
#define to_adpll(_hw)	container_of(_hw, struct ti_adpll_data, dco)
#define to_clkout(_hw)	container_of(_hw, struct ti_adpll_clkout_data, hw)

enum ti_adpll_clocks {
	TI_ADPLL_DCO,
	TI_ADPLL_DCO_GATE,
	TI_ADPLL_N2,
	TI_ADPLL_M2,
	TI_ADPLL_M2_GATE,
	TI_ADPLL_BYPASS,
	TI_ADPLL_HIF,
	TI_ADPLL_DIV2,
	TI_ADPLL_CLKOUT,
	TI_ADPLL_CLKOUT2,
	TI_ADPLL_M3,
};

#define TI_ADPLL_NR_CLOCKS	(TI_ADPLL_M3 + 1)

enum ti_adpll_inputs {
	TI_ADPLL_CLKINP,
	TI_ADPLL_CLKINPULOW,
	TI_ADPLL_CLKINPHIF,
};

enum ti_adpll_s_outputs {
	TI_ADPLL_S_DCOCLKLDO,
	TI_ADPLL_S_CLKOUT,
	TI_ADPLL_S_CLKOUTX2,
	TI_ADPLL_S_CLKOUTHIF,
};

enum ti_adpll_lj_outputs {
	TI_ADPLL_LJ_CLKDCOLDO,
	TI_ADPLL_LJ_CLKOUT,
	TI_ADPLL_LJ_CLKOUTLDO,
};

struct ti_adpll_platform_data {
	const bool is_type_s;
	const int nr_max_inputs;
	const int nr_max_outputs;
	const int output_index;
};

struct ti_adpll_clock {
	struct clk *clk;
	struct clk_lookup *cl;
	void (*unregister)(struct clk *clk);
};

struct ti_adpll_dco_data {
	struct clk_hw hw;
};

struct ti_adpll_clkout_data {
	struct ti_adpll_data *adpll;
	struct clk_gate gate;
	struct clk_hw hw;
};

struct ti_adpll_data {
	struct device *dev;
	const struct ti_adpll_platform_data *c;
	struct device_node *np;
	unsigned long pa;
	void __iomem *iobase;
	void __iomem *regs;
	spinlock_t lock;	/* For ADPLL shared register access */
	const char *parent_names[MAX_ADPLL_INPUTS];
	struct clk *parent_clocks[MAX_ADPLL_INPUTS];
	struct ti_adpll_clock *clocks;
	struct clk_onecell_data outputs;
	struct ti_adpll_dco_data dco;
};

static const char *ti_adpll_clk_get_name(struct ti_adpll_data *d,
					 int output_index,
					 const char *postfix)
{
	const char *name;
	int err;

	if (output_index >= 0) {
		err = of_property_read_string_index(d->np,
						    "clock-output-names",
						    output_index,
						    &name);
		if (err)
			return NULL;
	} else {
		name = devm_kasprintf(d->dev, GFP_KERNEL, "%08lx.adpll.%s",
				      d->pa, postfix);
	}

	return name;
}

#define ADPLL_MAX_CON_ID	16	/* See MAX_CON_ID */

static int ti_adpll_setup_clock(struct ti_adpll_data *d, struct clk *clock,
				int index, int output_index, const char *name,
				void (*unregister)(struct clk *clk))
{
	struct clk_lookup *cl;
	const char *postfix = NULL;
	char con_id[ADPLL_MAX_CON_ID];

	d->clocks[index].clk = clock;
	d->clocks[index].unregister = unregister;

	/* Separate con_id in format "pll040dcoclkldo" to fit MAX_CON_ID */
	postfix = strrchr(name, '.');
	if (postfix && strlen(postfix) > 1) {
		if (strlen(postfix) > ADPLL_MAX_CON_ID)
			dev_warn(d->dev, "clock %s con_id lookup may fail\n",
				 name);
		snprintf(con_id, 16, "pll%03lx%s", d->pa & 0xfff, postfix + 1);
		cl = clkdev_create(clock, con_id, NULL);
		if (!cl)
			return -ENOMEM;
		d->clocks[index].cl = cl;
	} else {
		dev_warn(d->dev, "no con_id for clock %s\n", name);
	}

	if (output_index < 0)
		return 0;

	d->outputs.clks[output_index] = clock;
	d->outputs.clk_num++;

	return 0;
}

static int ti_adpll_init_divider(struct ti_adpll_data *d,
				 enum ti_adpll_clocks index,
				 int output_index, char *name,
				 struct clk *parent_clock,
				 void __iomem *reg,
				 u8 shift, u8 width,
				 u8 clk_divider_flags)
{
	const char *child_name;
	const char *parent_name;
	struct clk *clock;

	child_name = ti_adpll_clk_get_name(d, output_index, name);
	if (!child_name)
		return -EINVAL;

	parent_name = __clk_get_name(parent_clock);
	clock = clk_register_divider(d->dev, child_name, parent_name, 0,
				     reg, shift, width, clk_divider_flags,
				     &d->lock);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "failed to register divider %s: %li\n",
			name, PTR_ERR(clock));
		return PTR_ERR(clock);
	}

	return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
				    clk_unregister_divider);
}

static int ti_adpll_init_mux(struct ti_adpll_data *d,
			     enum ti_adpll_clocks index,
			     char *name, struct clk *clk0,
			     struct clk *clk1,
			     void __iomem *reg,
			     u8 shift)
{
	const char *child_name;
	const char *parents[2];
	struct clk *clock;

	child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
	if (!child_name)
		return -ENOMEM;
	parents[0] = __clk_get_name(clk0);
	parents[1] = __clk_get_name(clk1);
	clock = clk_register_mux(d->dev, child_name, parents, 2, 0,
				 reg, shift, 1, 0, &d->lock);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "failed to register mux %s: %li\n",
			name, PTR_ERR(clock));
		return PTR_ERR(clock);
	}

	return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
				    clk_unregister_mux);
}

static int ti_adpll_init_gate(struct ti_adpll_data *d,
			      enum ti_adpll_clocks index,
			      int output_index, char *name,
			      struct clk *parent_clock,
			      void __iomem *reg,
			      u8 bit_idx,
			      u8 clk_gate_flags)
{
	const char *child_name;
	const char *parent_name;
	struct clk *clock;

	child_name = ti_adpll_clk_get_name(d, output_index, name);
	if (!child_name)
		return -EINVAL;

	parent_name = __clk_get_name(parent_clock);
	clock = clk_register_gate(d->dev, child_name, parent_name, 0,
				  reg, bit_idx, clk_gate_flags,
				  &d->lock);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "failed to register gate %s: %li\n",
			name, PTR_ERR(clock));
		return PTR_ERR(clock);
	}

	return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
				    clk_unregister_gate);
}

static int ti_adpll_init_fixed_factor(struct ti_adpll_data *d,
				      enum ti_adpll_clocks index,
				      char *name,
				      struct clk *parent_clock,
				      unsigned int mult,
				      unsigned int div)
{
	const char *child_name;
	const char *parent_name;
	struct clk *clock;

	child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
	if (!child_name)
		return -ENOMEM;

	parent_name = __clk_get_name(parent_clock);
	clock = clk_register_fixed_factor(d->dev, child_name, parent_name,
					  0, mult, div);
	if (IS_ERR(clock))
		return PTR_ERR(clock);

	return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
				    clk_unregister);
}

static void ti_adpll_set_idle_bypass(struct ti_adpll_data *d)
{
	unsigned long flags;
	u32 v;

	spin_lock_irqsave(&d->lock, flags);
	v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
	v |= BIT(ADPLL_CLKCTRL_IDLE);
	writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
	spin_unlock_irqrestore(&d->lock, flags);
}

static void ti_adpll_clear_idle_bypass(struct ti_adpll_data *d)
{
	unsigned long flags;
	u32 v;

	spin_lock_irqsave(&d->lock, flags);
	v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
	v &= ~BIT(ADPLL_CLKCTRL_IDLE);
	writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
	spin_unlock_irqrestore(&d->lock, flags);
}

static bool ti_adpll_clock_is_bypass(struct ti_adpll_data *d)
{
	u32 v;

	v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);

	return v & BIT(ADPLL_STATUS_BYPASS);
}

/*
 * Locked and bypass are not actually mutually exclusive:  if you only care
 * about the DCO clock and not CLKOUT you can clear M2PWDNZ before enabling
 * the PLL, resulting in status (FREQLOCK | PHASELOCK | BYPASS) after lock.
 */
static bool ti_adpll_is_locked(struct ti_adpll_data *d)
{
	u32 v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);

	return (v & ADPLL_STATUS_PREPARED_MASK) == ADPLL_STATUS_PREPARED_MASK;
}

static int ti_adpll_wait_lock(struct ti_adpll_data *d)
{
	int retries = ADPLL_MAX_RETRIES;

	do {
		if (ti_adpll_is_locked(d))
			return 0;
		usleep_range(200, 300);
	} while (retries--);

	dev_err(d->dev, "pll failed to lock\n");
	return -ETIMEDOUT;
}

static int ti_adpll_prepare(struct clk_hw *hw)
{
	struct ti_adpll_dco_data *dco = to_dco(hw);
	struct ti_adpll_data *d = to_adpll(dco);

	ti_adpll_clear_idle_bypass(d);
	ti_adpll_wait_lock(d);

	return 0;
}

static void ti_adpll_unprepare(struct clk_hw *hw)
{
	struct ti_adpll_dco_data *dco = to_dco(hw);
	struct ti_adpll_data *d = to_adpll(dco);

	ti_adpll_set_idle_bypass(d);
}

static int ti_adpll_is_prepared(struct clk_hw *hw)
{
	struct ti_adpll_dco_data *dco = to_dco(hw);
	struct ti_adpll_data *d = to_adpll(dco);

	return ti_adpll_is_locked(d);
}

/*
 * Note that the DCO clock is never subject to bypass: if the PLL is off,
 * dcoclk is low.
 */
static unsigned long ti_adpll_recalc_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct ti_adpll_dco_data *dco = to_dco(hw);
	struct ti_adpll_data *d = to_adpll(dco);
	u32 frac_m, divider, v;
	u64 rate;
	unsigned long flags;

	if (ti_adpll_clock_is_bypass(d))
		return 0;

	spin_lock_irqsave(&d->lock, flags);
	frac_m = readl_relaxed(d->regs + ADPLL_FRACDIV_OFFSET);
	frac_m &= ADPLL_FRACDIV_FRACTIONALM_MASK;
	rate = (u64)readw_relaxed(d->regs + ADPLL_MN2DIV_OFFSET) << 18;
	rate += frac_m;
	rate *= parent_rate;
	divider = (readw_relaxed(d->regs + ADPLL_M2NDIV_OFFSET) + 1) << 18;
	spin_unlock_irqrestore(&d->lock, flags);

	do_div(rate, divider);

	if (d->c->is_type_s) {
		v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
		if (v & BIT(ADPLL_CLKCTRL_REGM4XEN_ADPLL_S))
			rate *= 4;
		rate *= 2;
	}

	return rate;
}

/* PLL parent is always clkinp, bypass only affects the children */
static u8 ti_adpll_get_parent(struct clk_hw *hw)
{
	return 0;
}

static const struct clk_ops ti_adpll_ops = {
	.prepare = ti_adpll_prepare,
	.unprepare = ti_adpll_unprepare,
	.is_prepared = ti_adpll_is_prepared,
	.recalc_rate = ti_adpll_recalc_rate,
	.get_parent = ti_adpll_get_parent,
};

static int ti_adpll_init_dco(struct ti_adpll_data *d)
{
	struct clk_init_data init;
	struct clk *clock;
	const char *postfix;
	int width, err;

	d->outputs.clks = devm_kcalloc(d->dev,
				       MAX_ADPLL_OUTPUTS,
				       sizeof(struct clk *),
				       GFP_KERNEL);
	if (!d->outputs.clks)
		return -ENOMEM;

	if (d->c->output_index < 0)
		postfix = "dco";
	else
		postfix = NULL;

	init.name = ti_adpll_clk_get_name(d, d->c->output_index, postfix);
	if (!init.name)
		return -EINVAL;

	init.parent_names = d->parent_names;
	init.num_parents = d->c->nr_max_inputs;
	init.ops = &ti_adpll_ops;
	init.flags = CLK_GET_RATE_NOCACHE;
	d->dco.hw.init = &init;

	if (d->c->is_type_s)
		width = 5;
	else
		width = 4;

	/* Internal input clock divider N2 */
	err = ti_adpll_init_divider(d, TI_ADPLL_N2, -ENODEV, "n2",
				    d->parent_clocks[TI_ADPLL_CLKINP],
				    d->regs + ADPLL_MN2DIV_OFFSET,
				    ADPLL_MN2DIV_N2, width, 0);
	if (err)
		return err;

	clock = devm_clk_register(d->dev, &d->dco.hw);
	if (IS_ERR(clock))
		return PTR_ERR(clock);

	return ti_adpll_setup_clock(d, clock, TI_ADPLL_DCO, d->c->output_index,
				    init.name, NULL);
}

static int ti_adpll_clkout_enable(struct clk_hw *hw)
{
	struct ti_adpll_clkout_data *co = to_clkout(hw);
	struct clk_hw *gate_hw = &co->gate.hw;

	__clk_hw_set_clk(gate_hw, hw);

	return clk_gate_ops.enable(gate_hw);
}

static void ti_adpll_clkout_disable(struct clk_hw *hw)
{
	struct ti_adpll_clkout_data *co = to_clkout(hw);
	struct clk_hw *gate_hw = &co->gate.hw;

	__clk_hw_set_clk(gate_hw, hw);
	clk_gate_ops.disable(gate_hw);
}

static int ti_adpll_clkout_is_enabled(struct clk_hw *hw)
{
	struct ti_adpll_clkout_data *co = to_clkout(hw);
	struct clk_hw *gate_hw = &co->gate.hw;

	__clk_hw_set_clk(gate_hw, hw);

	return clk_gate_ops.is_enabled(gate_hw);
}

/* Setting PLL bypass puts clkout and clkoutx2 into bypass */
static u8 ti_adpll_clkout_get_parent(struct clk_hw *hw)
{
	struct ti_adpll_clkout_data *co = to_clkout(hw);
	struct ti_adpll_data *d = co->adpll;

	return ti_adpll_clock_is_bypass(d);
}

static int ti_adpll_init_clkout(struct ti_adpll_data *d,
				enum ti_adpll_clocks index,
				int output_index, int gate_bit,
				char *name, struct clk *clk0,
				struct clk *clk1)
{
	struct ti_adpll_clkout_data *co;
	struct clk_init_data init;
	struct clk_ops *ops;
	const char *parent_names[2];
	const char *child_name;
	struct clk *clock;
	int err;

	co = devm_kzalloc(d->dev, sizeof(*co), GFP_KERNEL);
	if (!co)
		return -ENOMEM;
	co->adpll = d;

	err = of_property_read_string_index(d->np,
					    "clock-output-names",
					    output_index,
					    &child_name);
	if (err)
		return err;

	ops = devm_kzalloc(d->dev, sizeof(*ops), GFP_KERNEL);
	if (!ops)
		return -ENOMEM;

	init.name = child_name;
	init.ops = ops;
	init.flags = 0;
	co->hw.init = &init;
	parent_names[0] = __clk_get_name(clk0);
	parent_names[1] = __clk_get_name(clk1);
	init.parent_names = parent_names;
	init.num_parents = 2;

	ops->get_parent = ti_adpll_clkout_get_parent;
	ops->determine_rate = __clk_mux_determine_rate;
	if (gate_bit) {
		co->gate.lock = &d->lock;
		co->gate.reg = d->regs + ADPLL_CLKCTRL_OFFSET;
		co->gate.bit_idx = gate_bit;
		ops->enable = ti_adpll_clkout_enable;
		ops->disable = ti_adpll_clkout_disable;
		ops->is_enabled = ti_adpll_clkout_is_enabled;
	}

	clock = devm_clk_register(d->dev, &co->hw);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "failed to register output %s: %li\n",
			name, PTR_ERR(clock));
		return PTR_ERR(clock);
	}

	return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
				    NULL);
}

static int ti_adpll_init_children_adpll_s(struct ti_adpll_data *d)
{
	int err;

	if (!d->c->is_type_s)
		return 0;

	/* Internal mux, sources from divider N2 or clkinpulow */
	err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
				d->clocks[TI_ADPLL_N2].clk,
				d->parent_clocks[TI_ADPLL_CLKINPULOW],
				d->regs + ADPLL_CLKCTRL_OFFSET,
				ADPLL_CLKCTRL_ULOWCLKEN);
	if (err)
		return err;

	/* Internal divider M2, sources DCO */
	err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV, "m2",
				    d->clocks[TI_ADPLL_DCO].clk,
				    d->regs + ADPLL_M2NDIV_OFFSET,
				    ADPLL_M2NDIV_M2,
				    ADPLL_M2NDIV_M2_ADPLL_S_WIDTH,
				    CLK_DIVIDER_ONE_BASED);
	if (err)
		return err;

	/* Internal fixed divider, after M2 before clkout */
	err = ti_adpll_init_fixed_factor(d, TI_ADPLL_DIV2, "div2",
					 d->clocks[TI_ADPLL_M2].clk,
					 1, 2);
	if (err)
		return err;

	/* Output clkout with a mux and gate, sources from div2 or bypass */
	err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
				   ADPLL_CLKCTRL_CLKOUTEN, "clkout",
				   d->clocks[TI_ADPLL_DIV2].clk,
				   d->clocks[TI_ADPLL_BYPASS].clk);
	if (err)
		return err;

	/* Output clkoutx2 with a mux and gate, sources from M2 or bypass */
	err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT2, TI_ADPLL_S_CLKOUTX2, 0,
				   "clkout2", d->clocks[TI_ADPLL_M2].clk,
				   d->clocks[TI_ADPLL_BYPASS].clk);
	if (err)
		return err;

	/* Internal mux, sources from DCO and clkinphif */
	if (d->parent_clocks[TI_ADPLL_CLKINPHIF]) {
		err = ti_adpll_init_mux(d, TI_ADPLL_HIF, "hif",
					d->clocks[TI_ADPLL_DCO].clk,
					d->parent_clocks[TI_ADPLL_CLKINPHIF],
					d->regs + ADPLL_CLKCTRL_OFFSET,
					ADPLL_CLKINPHIFSEL_ADPLL_S);
		if (err)
			return err;
	}

	/* Output clkouthif with a divider M3, sources from hif */
	err = ti_adpll_init_divider(d, TI_ADPLL_M3, TI_ADPLL_S_CLKOUTHIF, "m3",
				    d->clocks[TI_ADPLL_HIF].clk,
				    d->regs + ADPLL_M3DIV_OFFSET,
				    ADPLL_M3DIV_M3,
				    ADPLL_M3DIV_M3_WIDTH,
				    CLK_DIVIDER_ONE_BASED);
	if (err)
		return err;

	/* Output clock dcoclkldo is the DCO */

	return 0;
}

static int ti_adpll_init_children_adpll_lj(struct ti_adpll_data *d)
{
	int err;

	if (d->c->is_type_s)
		return 0;

	/* Output clkdcoldo, gated output of DCO */
	err = ti_adpll_init_gate(d, TI_ADPLL_DCO_GATE, TI_ADPLL_LJ_CLKDCOLDO,
				 "clkdcoldo", d->clocks[TI_ADPLL_DCO].clk,
				 d->regs + ADPLL_CLKCTRL_OFFSET,
				 ADPLL_CLKCTRL_CLKDCOLDOEN, 0);
	if (err)
		return err;

	/* Internal divider M2, sources from DCO */
	err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV,
				    "m2", d->clocks[TI_ADPLL_DCO].clk,
				    d->regs + ADPLL_M2NDIV_OFFSET,
				    ADPLL_M2NDIV_M2,
				    ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH,
				    CLK_DIVIDER_ONE_BASED);
	if (err)
		return err;

	/* Output clkoutldo, gated output of M2 */
	err = ti_adpll_init_gate(d, TI_ADPLL_M2_GATE, TI_ADPLL_LJ_CLKOUTLDO,
				 "clkoutldo", d->clocks[TI_ADPLL_M2].clk,
				 d->regs + ADPLL_CLKCTRL_OFFSET,
				 ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ,
				 0);
	if (err)
		return err;

	/* Internal mux, sources from divider N2 or clkinpulow */
	err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
				d->clocks[TI_ADPLL_N2].clk,
				d->parent_clocks[TI_ADPLL_CLKINPULOW],
				d->regs + ADPLL_CLKCTRL_OFFSET,
				ADPLL_CLKCTRL_ULOWCLKEN);
	if (err)
		return err;

	/* Output clkout, sources M2 or bypass */
	err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
				   ADPLL_CLKCTRL_CLKOUTEN, "clkout",
				   d->clocks[TI_ADPLL_M2].clk,
				   d->clocks[TI_ADPLL_BYPASS].clk);
	if (err)
		return err;

	return 0;
}

static void ti_adpll_free_resources(struct ti_adpll_data *d)
{
	int i;

	for (i = TI_ADPLL_M3; i >= 0; i--) {
		struct ti_adpll_clock *ac = &d->clocks[i];

		if (!ac || IS_ERR_OR_NULL(ac->clk))
			continue;
		if (ac->cl)
			clkdev_drop(ac->cl);
		if (ac->unregister)
			ac->unregister(ac->clk);
	}
}

/* MPU PLL manages the lock register for all PLLs */
static void ti_adpll_unlock_all(void __iomem *reg)
{
	u32 v;

	v = readl_relaxed(reg);
	if (v == ADPLL_PLLSS_MMR_LOCK_ENABLED)
		writel_relaxed(ADPLL_PLLSS_MMR_UNLOCK_MAGIC, reg);
}

static int ti_adpll_init_registers(struct ti_adpll_data *d)
{
	int register_offset = 0;

	if (d->c->is_type_s) {
		register_offset = 8;
		ti_adpll_unlock_all(d->iobase + ADPLL_PLLSS_MMR_LOCK_OFFSET);
	}

	d->regs = d->iobase + register_offset + ADPLL_PWRCTRL_OFFSET;

	return 0;
}

static int ti_adpll_init_inputs(struct ti_adpll_data *d)
{
	static const char error[] = "need at least %i inputs";
	struct clk *clock;
	int nr_inputs;

	nr_inputs = of_clk_get_parent_count(d->np);
	if (nr_inputs < d->c->nr_max_inputs) {
		dev_err(d->dev, error, nr_inputs);
		return -EINVAL;
	}
	of_clk_parent_fill(d->np, d->parent_names, nr_inputs);

	clock = devm_clk_get(d->dev, d->parent_names[0]);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "could not get clkinp\n");
		return PTR_ERR(clock);
	}
	d->parent_clocks[TI_ADPLL_CLKINP] = clock;

	clock = devm_clk_get(d->dev, d->parent_names[1]);
	if (IS_ERR(clock)) {
		dev_err(d->dev, "could not get clkinpulow clock\n");
		return PTR_ERR(clock);
	}
	d->parent_clocks[TI_ADPLL_CLKINPULOW] = clock;

	if (d->c->is_type_s) {
		clock =  devm_clk_get(d->dev, d->parent_names[2]);
		if (IS_ERR(clock)) {
			dev_err(d->dev, "could not get clkinphif clock\n");
			return PTR_ERR(clock);
		}
		d->parent_clocks[TI_ADPLL_CLKINPHIF] = clock;
	}

	return 0;
}

static const struct ti_adpll_platform_data ti_adpll_type_s = {
	.is_type_s = true,
	.nr_max_inputs = MAX_ADPLL_INPUTS,
	.nr_max_outputs = MAX_ADPLL_OUTPUTS,
	.output_index = TI_ADPLL_S_DCOCLKLDO,
};

static const struct ti_adpll_platform_data ti_adpll_type_lj = {
	.is_type_s = false,
	.nr_max_inputs = MAX_ADPLL_INPUTS - 1,
	.nr_max_outputs = MAX_ADPLL_OUTPUTS - 1,
	.output_index = -EINVAL,
};

static const struct of_device_id ti_adpll_match[] = {
	{ .compatible = "ti,dm814-adpll-s-clock", &ti_adpll_type_s },
	{ .compatible = "ti,dm814-adpll-lj-clock", &ti_adpll_type_lj },
	{},
};
MODULE_DEVICE_TABLE(of, ti_adpll_match);

static int ti_adpll_probe(struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	const struct of_device_id *match;
	const struct ti_adpll_platform_data *pdata;
	struct ti_adpll_data *d;
	struct resource *res;
	int err;

	match = of_match_device(ti_adpll_match, dev);
	if (match)
		pdata = match->data;
	else
		return -ENODEV;

	d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
	d->dev = dev;
	d->np = node;
	d->c = pdata;
	dev_set_drvdata(d->dev, d);
	spin_lock_init(&d->lock);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;
	d->pa = res->start;

	d->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(d->iobase))
		return PTR_ERR(d->iobase);

	err = ti_adpll_init_registers(d);
	if (err)
		return err;

	err = ti_adpll_init_inputs(d);
	if (err)
		return err;

	d->clocks = devm_kcalloc(d->dev,
				 TI_ADPLL_NR_CLOCKS,
				 sizeof(struct ti_adpll_clock),
				 GFP_KERNEL);
	if (!d->clocks)
		return -ENOMEM;

	err = ti_adpll_init_dco(d);
	if (err) {
		dev_err(dev, "could not register dco: %i\n", err);
		goto free;
	}

	err = ti_adpll_init_children_adpll_s(d);
	if (err)
		goto free;
	err = ti_adpll_init_children_adpll_lj(d);
	if (err)
		goto free;

	err = of_clk_add_provider(d->np, of_clk_src_onecell_get, &d->outputs);
	if (err)
		goto free;

	return 0;

free:
	WARN_ON(1);
	ti_adpll_free_resources(d);

	return err;
}

static void ti_adpll_remove(struct platform_device *pdev)
{
	struct ti_adpll_data *d = dev_get_drvdata(&pdev->dev);

	ti_adpll_free_resources(d);
}

static struct platform_driver ti_adpll_driver = {
	.driver = {
		.name = "ti-adpll",
		.of_match_table = ti_adpll_match,
	},
	.probe = ti_adpll_probe,
	.remove_new = ti_adpll_remove,
};

static int __init ti_adpll_init(void)
{
	return platform_driver_register(&ti_adpll_driver);
}
core_initcall(ti_adpll_init);

static void __exit ti_adpll_exit(void)
{
	platform_driver_unregister(&ti_adpll_driver);
}
module_exit(ti_adpll_exit);

MODULE_DESCRIPTION("Clock driver for dm814x ADPLL");
MODULE_ALIAS("platform:dm814-adpll-clock");
MODULE_AUTHOR("Tony LIndgren <tony@atomide.com>");
MODULE_LICENSE("GPL v2");