Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shubhrajyoti Datta | 2362 | 60.46% | 11 | 45.83% |
Sören Brinkmann | 1515 | 38.78% | 3 | 12.50% |
Yang Yingliang | 10 | 0.26% | 1 | 4.17% |
Claudiu Beznea | 4 | 0.10% | 1 | 4.17% |
Devendra Naga | 3 | 0.08% | 1 | 4.17% |
Stephen Boyd | 3 | 0.08% | 1 | 4.17% |
Sirnam Swetha | 2 | 0.05% | 1 | 4.17% |
Uwe Kleine-König | 2 | 0.05% | 1 | 4.17% |
Dan Carpenter | 2 | 0.05% | 1 | 4.17% |
Yue haibing | 2 | 0.05% | 1 | 4.17% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 4.17% |
Xavier Roumegue | 1 | 0.03% | 1 | 4.17% |
Total | 3907 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx 'Clocking Wizard' driver * * Copyright (C) 2013 - 2021 Xilinx * * Sören Brinkmann <soren.brinkmann@xilinx.com> * */ #include <linux/bitfield.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/err.h> #include <linux/iopoll.h> #define WZRD_NUM_OUTPUTS 7 #define WZRD_ACLK_MAX_FREQ 250000000UL #define WZRD_CLK_CFG_REG(n) (0x200 + 4 * (n)) #define WZRD_CLKOUT0_FRAC_EN BIT(18) #define WZRD_CLKFBOUT_FRAC_EN BIT(26) #define WZRD_CLKFBOUT_MULT_SHIFT 8 #define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT) #define WZRD_CLKFBOUT_FRAC_SHIFT 16 #define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT) #define WZRD_DIVCLK_DIVIDE_SHIFT 0 #define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) #define WZRD_CLKOUT_DIVIDE_SHIFT 0 #define WZRD_CLKOUT_DIVIDE_WIDTH 8 #define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) #define WZRD_CLKOUT_FRAC_SHIFT 8 #define WZRD_CLKOUT_FRAC_MASK 0x3ff #define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8) #define WZRD_DR_MAX_INT_DIV_VALUE 255 #define WZRD_DR_STATUS_REG_OFFSET 0x04 #define WZRD_DR_LOCK_BIT_MASK 0x00000001 #define WZRD_DR_INIT_REG_OFFSET 0x25C #define WZRD_DR_DIV_TO_PHASE_OFFSET 4 #define WZRD_DR_BEGIN_DYNA_RECONF 0x03 #define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07 #define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02 #define WZRD_USEC_POLL 10 #define WZRD_TIMEOUT_POLL 1000 /* Divider limits, from UG572 Table 3-4 for Ultrascale+ */ #define DIV_O 0x01 #define DIV_ALL 0x03 #define WZRD_M_MIN 2 #define WZRD_M_MAX 128 #define WZRD_D_MIN 1 #define WZRD_D_MAX 106 #define WZRD_VCO_MIN 800000000 #define WZRD_VCO_MAX 1600000000 #define WZRD_O_MIN 1 #define WZRD_O_MAX 128 #define WZRD_MIN_ERR 20000 #define WZRD_FRAC_POINTS 1000 /* Get the mask from width */ #define div_mask(width) ((1 << (width)) - 1) /* Extract divider instance from clock hardware instance */ #define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw) enum clk_wzrd_int_clks { wzrd_clk_mul, wzrd_clk_mul_div, wzrd_clk_mul_frac, wzrd_clk_int_max }; /** * struct clk_wzrd - Clock wizard private data structure * * @clk_data: Clock data * @nb: Notifier block * @base: Memory base * @clk_in1: Handle to input clock 'clk_in1' * @axi_clk: Handle to input clock 's_axi_aclk' * @clks_internal: Internal clocks * @clkout: Output clocks * @speed_grade: Speed grade of the device * @suspended: Flag indicating power state of the device */ struct clk_wzrd { struct clk_onecell_data clk_data; struct notifier_block nb; void __iomem *base; struct clk *clk_in1; struct clk *axi_clk; struct clk *clks_internal[wzrd_clk_int_max]; struct clk *clkout[WZRD_NUM_OUTPUTS]; unsigned int speed_grade; bool suspended; }; /** * struct clk_wzrd_divider - clock divider specific to clk_wzrd * * @hw: handle between common and hardware-specific interfaces * @base: base address of register containing the divider * @offset: offset address of register containing the divider * @shift: shift to the divider bit field * @width: width of the divider bit field * @flags: clk_wzrd divider flags * @table: array of value/divider pairs, last entry should have div = 0 * @m: value of the multiplier * @d: value of the common divider * @o: value of the leaf divider * @lock: register lock */ struct clk_wzrd_divider { struct clk_hw hw; void __iomem *base; u16 offset; u8 shift; u8 width; u8 flags; const struct clk_div_table *table; u32 m; u32 d; u32 o; spinlock_t *lock; /* divider lock */ }; #define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb) /* maximum frequencies for input/output clocks per speed grade */ static const unsigned long clk_wzrd_max_freq[] = { 800000000UL, 933000000UL, 1066000000UL }; /* spin lock variable for clk_wzrd */ static DEFINE_SPINLOCK(clkwzrd_lock); static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; unsigned int val; val = readl(div_addr) >> divider->shift; val &= div_mask(divider->width); return divider_recalc_rate(hw, parent_rate, val, divider->table, divider->flags, divider->width); } static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int err; u32 value; unsigned long flags = 0; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; if (divider->lock) spin_lock_irqsave(divider->lock, flags); else __acquire(divider->lock); value = DIV_ROUND_CLOSEST(parent_rate, rate); /* Cap the value to max */ min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE); /* Set divisor and clear phase offset */ writel(value, div_addr); writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) goto err_reconfig; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); err_reconfig: if (divider->lock) spin_unlock_irqrestore(divider->lock, flags); else __release(divider->lock); return err; } static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u8 div; /* * since we don't change parent rate we just round rate to closest * achievable */ div = DIV_ROUND_CLOSEST(*prate, rate); return *prate / div; } static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long vco_freq, freq, diff; u32 m, d, o; for (m = WZRD_M_MIN; m <= WZRD_M_MAX; m++) { for (d = WZRD_D_MIN; d <= WZRD_D_MAX; d++) { vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d); if (vco_freq >= WZRD_VCO_MIN && vco_freq <= WZRD_VCO_MAX) { for (o = WZRD_O_MIN; o <= WZRD_O_MAX; o++) { freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o); diff = abs(freq - rate); if (diff < WZRD_MIN_ERR) { divider->m = m; divider->d = d; divider->o = o; return 0; } } } } } return -EBUSY; } static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long vco_freq, rate_div, clockout0_div; u32 reg, pre, value, f; int err; err = clk_wzrd_get_divisors(hw, rate, parent_rate); if (err) return err; vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d); rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate); clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS); pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate); f = (pre - (clockout0_div * WZRD_FRAC_POINTS)); f &= WZRD_CLKOUT_FRAC_MASK; reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) | FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f); writel(reg, divider->base + WZRD_CLK_CFG_REG(2)); /* Set divisor and clear phase offset */ reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) | FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d); writel(reg, divider->base + WZRD_CLK_CFG_REG(0)); writel(divider->o, divider->base + WZRD_CLK_CFG_REG(2)); writel(0, divider->base + WZRD_CLK_CFG_REG(3)); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) return -ETIMEDOUT; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); } static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long flags = 0; int ret; spin_lock_irqsave(divider->lock, flags); ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate); spin_unlock_irqrestore(divider->lock, flags); return ret; } static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw, unsigned long parent_rate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); u32 m, d, o, div, reg, f; reg = readl(divider->base + WZRD_CLK_CFG_REG(0)); d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg); m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg); reg = readl(divider->base + WZRD_CLK_CFG_REG(2)); o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg); f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg); div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS); return divider_recalc_rate(hw, parent_rate * m, div, divider->table, divider->flags, divider->width); } static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); unsigned long int_freq; u32 m, d, o, div, f; int err; err = clk_wzrd_get_divisors(hw, rate, *prate); if (err) return err; m = divider->m; d = divider->d; o = divider->o; div = d * o; int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table, divider->flags, divider->width); if (rate > int_freq) { f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq); rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS); } return rate; } static const struct clk_ops clk_wzrd_clk_divider_ops = { .round_rate = clk_wzrd_round_rate, .set_rate = clk_wzrd_dynamic_reconfig, .recalc_rate = clk_wzrd_recalc_rate, }; static const struct clk_ops clk_wzrd_clk_div_all_ops = { .round_rate = clk_wzrd_round_rate_all, .set_rate = clk_wzrd_dynamic_all, .recalc_rate = clk_wzrd_recalc_rate_all, }; static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw, unsigned long parent_rate) { unsigned int val; u32 div, frac; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; val = readl(div_addr); div = val & div_mask(divider->width); frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK; return mult_frac(parent_rate, 1000, (div * 1000) + frac); } static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int err; u32 value, pre; unsigned long rate_div, f, clockout0_div; struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); void __iomem *div_addr = divider->base + divider->offset; rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate); clockout0_div = rate_div / 1000; pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate); f = (u32)(pre - (clockout0_div * 1000)); f = f & WZRD_CLKOUT_FRAC_MASK; f = f << WZRD_CLKOUT_DIVIDE_WIDTH; value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK)); /* Set divisor and clear phase offset */ writel(value, div_addr); writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); /* Check status register */ err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); if (err) return err; /* Initiate reconfiguration */ writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2, divider->base + WZRD_DR_INIT_REG_OFFSET); /* Check status register */ return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, value & WZRD_DR_LOCK_BIT_MASK, WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); } static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { return rate; } static const struct clk_ops clk_wzrd_clk_divider_ops_f = { .round_rate = clk_wzrd_round_rate_f, .set_rate = clk_wzrd_dynamic_reconfig_f, .recalc_rate = clk_wzrd_recalc_ratef, }; static struct clk *clk_wzrd_register_divf(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *base, u16 offset, u8 shift, u8 width, u8 clk_divider_flags, u32 div_type, spinlock_t *lock) { struct clk_wzrd_divider *div; struct clk_hw *hw; struct clk_init_data init; int ret; div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_wzrd_clk_divider_ops_f; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; div->base = base; div->offset = offset; div->shift = shift; div->width = width; div->flags = clk_divider_flags; div->lock = lock; div->hw.init = &init; hw = &div->hw; ret = devm_clk_hw_register(dev, hw); if (ret) return ERR_PTR(ret); return hw->clk; } static struct clk *clk_wzrd_register_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *base, u16 offset, u8 shift, u8 width, u8 clk_divider_flags, u32 div_type, spinlock_t *lock) { struct clk_wzrd_divider *div; struct clk_hw *hw; struct clk_init_data init; int ret; div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); init.name = name; if (clk_divider_flags & CLK_DIVIDER_READ_ONLY) init.ops = &clk_divider_ro_ops; else if (div_type == DIV_O) init.ops = &clk_wzrd_clk_divider_ops; else init.ops = &clk_wzrd_clk_div_all_ops; init.flags = flags; init.parent_names = &parent_name; init.num_parents = 1; div->base = base; div->offset = offset; div->shift = shift; div->width = width; div->flags = clk_divider_flags; div->lock = lock; div->hw.init = &init; hw = &div->hw; ret = devm_clk_hw_register(dev, hw); if (ret) return ERR_PTR(ret); return hw->clk; } static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event, void *data) { unsigned long max; struct clk_notifier_data *ndata = data; struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb); if (clk_wzrd->suspended) return NOTIFY_OK; if (ndata->clk == clk_wzrd->clk_in1) max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1]; else if (ndata->clk == clk_wzrd->axi_clk) max = WZRD_ACLK_MAX_FREQ; else return NOTIFY_DONE; /* should never happen */ switch (event) { case PRE_RATE_CHANGE: if (ndata->new_rate > max) return NOTIFY_BAD; return NOTIFY_OK; case POST_RATE_CHANGE: case ABORT_RATE_CHANGE: default: return NOTIFY_DONE; } } static int __maybe_unused clk_wzrd_suspend(struct device *dev) { struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); clk_disable_unprepare(clk_wzrd->axi_clk); clk_wzrd->suspended = true; return 0; } static int __maybe_unused clk_wzrd_resume(struct device *dev) { int ret; struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); ret = clk_prepare_enable(clk_wzrd->axi_clk); if (ret) { dev_err(dev, "unable to enable s_axi_aclk\n"); return ret; } clk_wzrd->suspended = false; return 0; } static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend, clk_wzrd_resume); static int clk_wzrd_probe(struct platform_device *pdev) { int i, ret; u32 reg, reg_f, mult; unsigned long rate; const char *clk_name; void __iomem *ctrl_reg; struct clk_wzrd *clk_wzrd; const char *clkout_name; struct device_node *np = pdev->dev.of_node; int nr_outputs; unsigned long flags = 0; clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL); if (!clk_wzrd) return -ENOMEM; platform_set_drvdata(pdev, clk_wzrd); clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(clk_wzrd->base)) return PTR_ERR(clk_wzrd->base); ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade); if (!ret) { if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) { dev_warn(&pdev->dev, "invalid speed grade '%d'\n", clk_wzrd->speed_grade); clk_wzrd->speed_grade = 0; } } clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1"); if (IS_ERR(clk_wzrd->clk_in1)) return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1), "clk_in1 not found\n"); clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); if (IS_ERR(clk_wzrd->axi_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk), "s_axi_aclk not found\n"); ret = clk_prepare_enable(clk_wzrd->axi_clk); if (ret) { dev_err(&pdev->dev, "enabling s_axi_aclk failed\n"); return ret; } rate = clk_get_rate(clk_wzrd->axi_clk); if (rate > WZRD_ACLK_MAX_FREQ) { dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n", rate); ret = -EINVAL; goto err_disable_clk; } ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs); if (ret || nr_outputs > WZRD_NUM_OUTPUTS) { ret = -EINVAL; goto err_disable_clk; } clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev)); if (!clkout_name) { ret = -ENOMEM; goto err_disable_clk; } if (nr_outputs == 1) { clk_wzrd->clkout[0] = clk_wzrd_register_divider (&pdev->dev, clkout_name, __clk_get_name(clk_wzrd->clk_in1), 0, clk_wzrd->base, WZRD_CLK_CFG_REG(3), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_ALL, &clkwzrd_lock); goto out; } reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(0)); reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK; reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT; reg = reg & WZRD_CLKFBOUT_MULT_MASK; reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT; mult = (reg * 1000) + reg_f; clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev)); if (!clk_name) { ret = -ENOMEM; goto err_disable_clk; } clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor (&pdev->dev, clk_name, __clk_get_name(clk_wzrd->clk_in1), 0, mult, 1000); if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) { dev_err(&pdev->dev, "unable to register fixed-factor clock\n"); ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]); goto err_disable_clk; } clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev)); if (!clk_name) { ret = -ENOMEM; goto err_rm_int_clk; } ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(0); /* register div */ clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider (&pdev->dev, clk_name, __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]), flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock); if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) { dev_err(&pdev->dev, "unable to register divider clock\n"); ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]); goto err_rm_int_clk; } /* register div per output */ for (i = nr_outputs - 1; i >= 0 ; i--) { clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out%d", dev_name(&pdev->dev), i); if (!clkout_name) { ret = -ENOMEM; goto err_rm_int_clk; } if (!i) clk_wzrd->clkout[i] = clk_wzrd_register_divf (&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_O, &clkwzrd_lock); else clk_wzrd->clkout[i] = clk_wzrd_register_divider (&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), WZRD_CLKOUT_DIVIDE_SHIFT, WZRD_CLKOUT_DIVIDE_WIDTH, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, DIV_O, &clkwzrd_lock); if (IS_ERR(clk_wzrd->clkout[i])) { int j; for (j = i + 1; j < nr_outputs; j++) clk_unregister(clk_wzrd->clkout[j]); dev_err(&pdev->dev, "unable to register divider clock\n"); ret = PTR_ERR(clk_wzrd->clkout[i]); goto err_rm_int_clks; } } out: clk_wzrd->clk_data.clks = clk_wzrd->clkout; clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data); if (clk_wzrd->speed_grade) { clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier; ret = clk_notifier_register(clk_wzrd->clk_in1, &clk_wzrd->nb); if (ret) dev_warn(&pdev->dev, "unable to register clock notifier\n"); ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb); if (ret) dev_warn(&pdev->dev, "unable to register clock notifier\n"); } return 0; err_rm_int_clks: clk_unregister(clk_wzrd->clks_internal[1]); err_rm_int_clk: clk_unregister(clk_wzrd->clks_internal[0]); err_disable_clk: clk_disable_unprepare(clk_wzrd->axi_clk); return ret; } static void clk_wzrd_remove(struct platform_device *pdev) { int i; struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev); of_clk_del_provider(pdev->dev.of_node); for (i = 0; i < WZRD_NUM_OUTPUTS; i++) clk_unregister(clk_wzrd->clkout[i]); for (i = 0; i < wzrd_clk_int_max; i++) clk_unregister(clk_wzrd->clks_internal[i]); if (clk_wzrd->speed_grade) { clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb); clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb); } clk_disable_unprepare(clk_wzrd->axi_clk); } static const struct of_device_id clk_wzrd_ids[] = { { .compatible = "xlnx,clocking-wizard" }, { .compatible = "xlnx,clocking-wizard-v5.2" }, { .compatible = "xlnx,clocking-wizard-v6.0" }, { }, }; MODULE_DEVICE_TABLE(of, clk_wzrd_ids); static struct platform_driver clk_wzrd_driver = { .driver = { .name = "clk-wizard", .of_match_table = clk_wzrd_ids, .pm = &clk_wzrd_dev_pm_ops, }, .probe = clk_wzrd_probe, .remove_new = clk_wzrd_remove, }; module_platform_driver(clk_wzrd_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com"); MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1