Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Simek | 586 | 28.52% | 5 | 20.00% |
Julia Cartwright | 446 | 21.70% | 1 | 4.00% |
Sören Brinkmann | 419 | 20.39% | 6 | 24.00% |
John Linn | 339 | 16.50% | 1 | 4.00% |
Daniel Lezcano | 75 | 3.65% | 1 | 4.00% |
Rajan Vaja | 69 | 3.36% | 1 | 4.00% |
Viresh Kumar | 51 | 2.48% | 1 | 4.00% |
Feng Mingxi | 44 | 2.14% | 1 | 4.00% |
yu kuai | 11 | 0.54% | 1 | 4.00% |
Thomas Gleixner | 4 | 0.19% | 2 | 8.00% |
Gustavo A. R. Silva | 4 | 0.19% | 1 | 4.00% |
Stephen Rothwell | 3 | 0.15% | 1 | 4.00% |
Stephen Boyd | 2 | 0.10% | 1 | 4.00% |
Rob Herring | 1 | 0.05% | 1 | 4.00% |
Christophe Jaillet | 1 | 0.05% | 1 | 4.00% |
Total | 2055 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * This file contains driver for the Cadence Triple Timer Counter Rev 06 * * Copyright (C) 2011-2013 Xilinx * * based on arch/mips/kernel/time.c timer driver */ #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/slab.h> #include <linux/sched_clock.h> #include <linux/module.h> #include <linux/of_platform.h> /* * This driver configures the 2 16/32-bit count-up timers as follows: * * T1: Timer 1, clocksource for generic timekeeping * T2: Timer 2, clockevent source for hrtimers * T3: Timer 3, <unused> * * The input frequency to the timer module for emulation is 2.5MHz which is * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32, * the timers are clocked at 78.125KHz (12.8 us resolution). * The input frequency to the timer module in silicon is configurable and * obtained from device tree. The pre-scaler of 32 is used. */ /* * Timer Register Offset Definitions of Timer 1, Increment base address by 4 * and use same offsets for Timer 2 */ #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */ #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */ #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */ #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */ #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */ #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */ #define TTC_CNT_CNTRL_DISABLE_MASK 0x1 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */ #define TTC_CLK_CNTRL_PSV_MASK 0x1e #define TTC_CLK_CNTRL_PSV_SHIFT 1 /* * Setup the timers to use pre-scaling, using a fixed value for now that will * work across most input frequency, but it may need to be more dynamic */ #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */ #define PRESCALE 2048 /* The exponent must match this */ #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1) #define CLK_CNTRL_PRESCALE_EN 1 #define CNT_CNTRL_RESET (1 << 4) #define MAX_F_ERR 50 /** * struct ttc_timer - This definition defines local timer structure * * @base_addr: Base address of timer * @freq: Timer input clock frequency * @clk: Associated clock source * @clk_rate_change_nb Notifier block for clock rate changes */ struct ttc_timer { void __iomem *base_addr; unsigned long freq; struct clk *clk; struct notifier_block clk_rate_change_nb; }; #define to_ttc_timer(x) \ container_of(x, struct ttc_timer, clk_rate_change_nb) struct ttc_timer_clocksource { u32 scale_clk_ctrl_reg_old; u32 scale_clk_ctrl_reg_new; struct ttc_timer ttc; struct clocksource cs; }; #define to_ttc_timer_clksrc(x) \ container_of(x, struct ttc_timer_clocksource, cs) struct ttc_timer_clockevent { struct ttc_timer ttc; struct clock_event_device ce; }; #define to_ttc_timer_clkevent(x) \ container_of(x, struct ttc_timer_clockevent, ce) static void __iomem *ttc_sched_clock_val_reg; /** * ttc_set_interval - Set the timer interval value * * @timer: Pointer to the timer instance * @cycles: Timer interval ticks **/ static void ttc_set_interval(struct ttc_timer *timer, unsigned long cycles) { u32 ctrl_reg; /* Disable the counter, set the counter value and re-enable counter */ ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET); /* * Reset the counter (0x10) so that it starts from 0, one-shot * mode makes this needed for timing to be right. */ ctrl_reg |= CNT_CNTRL_RESET; ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); } /** * ttc_clock_event_interrupt - Clock event timer interrupt handler * * @irq: IRQ number of the Timer * @dev_id: void pointer to the ttc_timer instance * * returns: Always IRQ_HANDLED - success **/ static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id) { struct ttc_timer_clockevent *ttce = dev_id; struct ttc_timer *timer = &ttce->ttc; /* Acknowledge the interrupt and call event handler */ readl_relaxed(timer->base_addr + TTC_ISR_OFFSET); ttce->ce.event_handler(&ttce->ce); return IRQ_HANDLED; } /** * __ttc_clocksource_read - Reads the timer counter register * * returns: Current timer counter register value **/ static u64 __ttc_clocksource_read(struct clocksource *cs) { struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc; return (u64)readl_relaxed(timer->base_addr + TTC_COUNT_VAL_OFFSET); } static u64 notrace ttc_sched_clock_read(void) { return readl_relaxed(ttc_sched_clock_val_reg); } /** * ttc_set_next_event - Sets the time interval for next event * * @cycles: Timer interval ticks * @evt: Address of clock event instance * * returns: Always 0 - success **/ static int ttc_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; ttc_set_interval(timer, cycles); return 0; } /** * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer * * @evt: Address of clock event instance **/ static int ttc_shutdown(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; u32 ctrl_reg; ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); return 0; } static int ttc_set_periodic(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ)); return 0; } static int ttc_resume(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; u32 ctrl_reg; ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); return 0; } static int ttc_rate_change_clocksource_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct ttc_timer *ttc = to_ttc_timer(nb); struct ttc_timer_clocksource *ttccs = container_of(ttc, struct ttc_timer_clocksource, ttc); switch (event) { case PRE_RATE_CHANGE: { u32 psv; unsigned long factor, rate_low, rate_high; if (ndata->new_rate > ndata->old_rate) { factor = DIV_ROUND_CLOSEST(ndata->new_rate, ndata->old_rate); rate_low = ndata->old_rate; rate_high = ndata->new_rate; } else { factor = DIV_ROUND_CLOSEST(ndata->old_rate, ndata->new_rate); rate_low = ndata->new_rate; rate_high = ndata->old_rate; } if (!is_power_of_2(factor)) return NOTIFY_BAD; if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR) return NOTIFY_BAD; factor = __ilog2_u32(factor); /* * store timer clock ctrl register so we can restore it in case * of an abort. */ ttccs->scale_clk_ctrl_reg_old = readl_relaxed(ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); psv = (ttccs->scale_clk_ctrl_reg_old & TTC_CLK_CNTRL_PSV_MASK) >> TTC_CLK_CNTRL_PSV_SHIFT; if (ndata->new_rate < ndata->old_rate) psv -= factor; else psv += factor; /* prescaler within legal range? */ if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT)) return NOTIFY_BAD; ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old & ~TTC_CLK_CNTRL_PSV_MASK; ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT; /* scale down: adjust divider in post-change notification */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_DONE; /* scale up: adjust divider now - before frequency change */ writel_relaxed(ttccs->scale_clk_ctrl_reg_new, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); break; } case POST_RATE_CHANGE: /* scale up: pre-change notification did the adjustment */ if (ndata->new_rate > ndata->old_rate) return NOTIFY_OK; /* scale down: adjust divider now - after frequency change */ writel_relaxed(ttccs->scale_clk_ctrl_reg_new, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); break; case ABORT_RATE_CHANGE: /* we have to undo the adjustment in case we scale up */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_OK; /* restore original register value */ writel_relaxed(ttccs->scale_clk_ctrl_reg_old, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); fallthrough; default: return NOTIFY_DONE; } return NOTIFY_DONE; } static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base, u32 timer_width) { struct ttc_timer_clocksource *ttccs; int err; ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL); if (!ttccs) return -ENOMEM; ttccs->ttc.clk = clk; err = clk_prepare_enable(ttccs->ttc.clk); if (err) { kfree(ttccs); return err; } ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk); ttccs->ttc.clk_rate_change_nb.notifier_call = ttc_rate_change_clocksource_cb; ttccs->ttc.clk_rate_change_nb.next = NULL; err = clk_notifier_register(ttccs->ttc.clk, &ttccs->ttc.clk_rate_change_nb); if (err) pr_warn("Unable to register clock notifier.\n"); ttccs->ttc.base_addr = base; ttccs->cs.name = "ttc_clocksource"; ttccs->cs.rating = 200; ttccs->cs.read = __ttc_clocksource_read; ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width); ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; /* * Setup the clock source counter to be an incrementing counter * with no interrupt and it rolls over at 0xFFFF. Pre-scale * it by 32 also. Let it start running now. */ writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET); writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); writel_relaxed(CNT_CNTRL_RESET, ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET); err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE); if (err) { kfree(ttccs); return err; } ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET; sched_clock_register(ttc_sched_clock_read, timer_width, ttccs->ttc.freq / PRESCALE); return 0; } static int ttc_rate_change_clockevent_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct ttc_timer *ttc = to_ttc_timer(nb); struct ttc_timer_clockevent *ttcce = container_of(ttc, struct ttc_timer_clockevent, ttc); switch (event) { case POST_RATE_CHANGE: /* update cached frequency */ ttc->freq = ndata->new_rate; clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE); fallthrough; case PRE_RATE_CHANGE: case ABORT_RATE_CHANGE: default: return NOTIFY_DONE; } } static int __init ttc_setup_clockevent(struct clk *clk, void __iomem *base, u32 irq) { struct ttc_timer_clockevent *ttcce; int err; ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL); if (!ttcce) return -ENOMEM; ttcce->ttc.clk = clk; err = clk_prepare_enable(ttcce->ttc.clk); if (err) goto out_kfree; ttcce->ttc.clk_rate_change_nb.notifier_call = ttc_rate_change_clockevent_cb; ttcce->ttc.clk_rate_change_nb.next = NULL; err = clk_notifier_register(ttcce->ttc.clk, &ttcce->ttc.clk_rate_change_nb); if (err) { pr_warn("Unable to register clock notifier.\n"); goto out_kfree; } ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk); ttcce->ttc.base_addr = base; ttcce->ce.name = "ttc_clockevent"; ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; ttcce->ce.set_next_event = ttc_set_next_event; ttcce->ce.set_state_shutdown = ttc_shutdown; ttcce->ce.set_state_periodic = ttc_set_periodic; ttcce->ce.set_state_oneshot = ttc_shutdown; ttcce->ce.tick_resume = ttc_resume; ttcce->ce.rating = 200; ttcce->ce.irq = irq; ttcce->ce.cpumask = cpu_possible_mask; /* * Setup the clock event timer to be an interval timer which * is prescaled by 32 using the interval interrupt. Leave it * disabled for now. */ writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET); writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN, ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET); err = request_irq(irq, ttc_clock_event_interrupt, IRQF_TIMER, ttcce->ce.name, ttcce); if (err) goto out_kfree; clockevents_config_and_register(&ttcce->ce, ttcce->ttc.freq / PRESCALE, 1, 0xfffe); return 0; out_kfree: kfree(ttcce); return err; } static int __init ttc_timer_probe(struct platform_device *pdev) { unsigned int irq; void __iomem *timer_baseaddr; struct clk *clk_cs, *clk_ce; static int initialized; int clksel, ret; u32 timer_width = 16; struct device_node *timer = pdev->dev.of_node; if (initialized) return 0; initialized = 1; /* * Get the 1st Triple Timer Counter (TTC) block from the device tree * and use it. Note that the event timer uses the interrupt and it's the * 2nd TTC hence the irq_of_parse_and_map(,1) */ timer_baseaddr = devm_of_iomap(&pdev->dev, timer, 0, NULL); if (IS_ERR(timer_baseaddr)) { pr_err("ERROR: invalid timer base address\n"); return PTR_ERR(timer_baseaddr); } irq = irq_of_parse_and_map(timer, 1); if (irq <= 0) { pr_err("ERROR: invalid interrupt number\n"); return -EINVAL; } of_property_read_u32(timer, "timer-width", &timer_width); clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET); clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK); clk_cs = of_clk_get(timer, clksel); if (IS_ERR(clk_cs)) { pr_err("ERROR: timer input clock not found\n"); return PTR_ERR(clk_cs); } clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET); clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK); clk_ce = of_clk_get(timer, clksel); if (IS_ERR(clk_ce)) { pr_err("ERROR: timer input clock not found\n"); ret = PTR_ERR(clk_ce); goto put_clk_cs; } ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width); if (ret) goto put_clk_ce; ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq); if (ret) goto put_clk_ce; pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq); return 0; put_clk_ce: clk_put(clk_ce); put_clk_cs: clk_put(clk_cs); return ret; } static const struct of_device_id ttc_timer_of_match[] = { {.compatible = "cdns,ttc"}, {}, }; MODULE_DEVICE_TABLE(of, ttc_timer_of_match); static struct platform_driver ttc_timer_driver = { .driver = { .name = "cdns_ttc_timer", .of_match_table = ttc_timer_of_match, }, }; builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1