Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Gaignard | 1307 | 73.84% | 1 | 5.88% |
Fabrice Gasnier | 218 | 12.32% | 4 | 23.53% |
William Breathitt Gray | 167 | 9.44% | 9 | 52.94% |
Uwe Kleine-König | 78 | 4.41% | 3 | 17.65% |
Total | 1770 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * STM32 Timer Encoder and Counter driver * * Copyright (C) STMicroelectronics 2018 * * Author: Benjamin Gaignard <benjamin.gaignard@st.com> * */ #include <linux/counter.h> #include <linux/mfd/stm32-timers.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/types.h> #define TIM_CCMR_CCXS (BIT(8) | BIT(0)) #define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \ TIM_CCMR_IC1F | TIM_CCMR_IC2F) #define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \ TIM_CCER_CC2P | TIM_CCER_CC2NP) struct stm32_timer_regs { u32 cr1; u32 cnt; u32 smcr; u32 arr; }; struct stm32_timer_cnt { struct regmap *regmap; struct clk *clk; u32 max_arr; bool enabled; struct stm32_timer_regs bak; }; static const enum counter_function stm32_count_functions[] = { COUNTER_FUNCTION_INCREASE, COUNTER_FUNCTION_QUADRATURE_X2_A, COUNTER_FUNCTION_QUADRATURE_X2_B, COUNTER_FUNCTION_QUADRATURE_X4, }; static int stm32_count_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cnt; regmap_read(priv->regmap, TIM_CNT, &cnt); *val = cnt; return 0; } static int stm32_count_write(struct counter_device *counter, struct counter_count *count, const u64 val) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 ceiling; regmap_read(priv->regmap, TIM_ARR, &ceiling); if (val > ceiling) return -EINVAL; return regmap_write(priv->regmap, TIM_CNT, val); } static int stm32_count_function_read(struct counter_device *counter, struct counter_count *count, enum counter_function *function) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 smcr; regmap_read(priv->regmap, TIM_SMCR, &smcr); switch (smcr & TIM_SMCR_SMS) { case TIM_SMCR_SMS_SLAVE_MODE_DISABLED: *function = COUNTER_FUNCTION_INCREASE; return 0; case TIM_SMCR_SMS_ENCODER_MODE_1: *function = COUNTER_FUNCTION_QUADRATURE_X2_A; return 0; case TIM_SMCR_SMS_ENCODER_MODE_2: *function = COUNTER_FUNCTION_QUADRATURE_X2_B; return 0; case TIM_SMCR_SMS_ENCODER_MODE_3: *function = COUNTER_FUNCTION_QUADRATURE_X4; return 0; default: return -EINVAL; } } static int stm32_count_function_write(struct counter_device *counter, struct counter_count *count, enum counter_function function) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1, sms; switch (function) { case COUNTER_FUNCTION_INCREASE: sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED; break; case COUNTER_FUNCTION_QUADRATURE_X2_A: sms = TIM_SMCR_SMS_ENCODER_MODE_1; break; case COUNTER_FUNCTION_QUADRATURE_X2_B: sms = TIM_SMCR_SMS_ENCODER_MODE_2; break; case COUNTER_FUNCTION_QUADRATURE_X4: sms = TIM_SMCR_SMS_ENCODER_MODE_3; break; default: return -EINVAL; } /* Store enable status */ regmap_read(priv->regmap, TIM_CR1, &cr1); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms); /* Make sure that registers are updated */ regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); /* Restore the enable status */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1); return 0; } static int stm32_count_direction_read(struct counter_device *counter, struct counter_count *count, enum counter_count_direction *direction) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; regmap_read(priv->regmap, TIM_CR1, &cr1); *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD : COUNTER_COUNT_DIRECTION_FORWARD; return 0; } static int stm32_count_ceiling_read(struct counter_device *counter, struct counter_count *count, u64 *ceiling) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 arr; regmap_read(priv->regmap, TIM_ARR, &arr); *ceiling = arr; return 0; } static int stm32_count_ceiling_write(struct counter_device *counter, struct counter_count *count, u64 ceiling) { struct stm32_timer_cnt *const priv = counter_priv(counter); if (ceiling > priv->max_arr) return -ERANGE; /* TIMx_ARR register shouldn't be buffered (ARPE=0) */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0); regmap_write(priv->regmap, TIM_ARR, ceiling); return 0; } static int stm32_count_enable_read(struct counter_device *counter, struct counter_count *count, u8 *enable) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; regmap_read(priv->regmap, TIM_CR1, &cr1); *enable = cr1 & TIM_CR1_CEN; return 0; } static int stm32_count_enable_write(struct counter_device *counter, struct counter_count *count, u8 enable) { struct stm32_timer_cnt *const priv = counter_priv(counter); u32 cr1; if (enable) { regmap_read(priv->regmap, TIM_CR1, &cr1); if (!(cr1 & TIM_CR1_CEN)) clk_enable(priv->clk); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); } else { regmap_read(priv->regmap, TIM_CR1, &cr1); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); if (cr1 & TIM_CR1_CEN) clk_disable(priv->clk); } /* Keep enabled state to properly handle low power states */ priv->enabled = enable; return 0; } static struct counter_comp stm32_count_ext[] = { COUNTER_COMP_DIRECTION(stm32_count_direction_read), COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write), COUNTER_COMP_CEILING(stm32_count_ceiling_read, stm32_count_ceiling_write), }; static const enum counter_synapse_action stm32_synapse_actions[] = { COUNTER_SYNAPSE_ACTION_NONE, COUNTER_SYNAPSE_ACTION_BOTH_EDGES }; static int stm32_action_read(struct counter_device *counter, struct counter_count *count, struct counter_synapse *synapse, enum counter_synapse_action *action) { enum counter_function function; int err; err = stm32_count_function_read(counter, count, &function); if (err) return err; switch (function) { case COUNTER_FUNCTION_INCREASE: /* counts on internal clock when CEN=1 */ *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X2_A: /* counts up/down on TI1FP1 edge depending on TI2FP2 level */ if (synapse->signal->id == count->synapses[0].signal->id) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X2_B: /* counts up/down on TI2FP2 edge depending on TI1FP1 level */ if (synapse->signal->id == count->synapses[1].signal->id) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; else *action = COUNTER_SYNAPSE_ACTION_NONE; return 0; case COUNTER_FUNCTION_QUADRATURE_X4: /* counts up/down on both TI1FP1 and TI2FP2 edges */ *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; return 0; default: return -EINVAL; } } static const struct counter_ops stm32_timer_cnt_ops = { .count_read = stm32_count_read, .count_write = stm32_count_write, .function_read = stm32_count_function_read, .function_write = stm32_count_function_write, .action_read = stm32_action_read, }; static struct counter_signal stm32_signals[] = { { .id = 0, .name = "Channel 1 Quadrature A" }, { .id = 1, .name = "Channel 1 Quadrature B" } }; static struct counter_synapse stm32_count_synapses[] = { { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[0] }, { .actions_list = stm32_synapse_actions, .num_actions = ARRAY_SIZE(stm32_synapse_actions), .signal = &stm32_signals[1] } }; static struct counter_count stm32_counts = { .id = 0, .name = "Channel 1 Count", .functions_list = stm32_count_functions, .num_functions = ARRAY_SIZE(stm32_count_functions), .synapses = stm32_count_synapses, .num_synapses = ARRAY_SIZE(stm32_count_synapses), .ext = stm32_count_ext, .num_ext = ARRAY_SIZE(stm32_count_ext) }; static int stm32_timer_cnt_probe(struct platform_device *pdev) { struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct stm32_timer_cnt *priv; struct counter_device *counter; int ret; if (IS_ERR_OR_NULL(ddata)) return -EINVAL; counter = devm_counter_alloc(dev, sizeof(*priv)); if (!counter) return -ENOMEM; priv = counter_priv(counter); priv->regmap = ddata->regmap; priv->clk = ddata->clk; priv->max_arr = ddata->max_arr; counter->name = dev_name(dev); counter->parent = dev; counter->ops = &stm32_timer_cnt_ops; counter->counts = &stm32_counts; counter->num_counts = 1; counter->signals = stm32_signals; counter->num_signals = ARRAY_SIZE(stm32_signals); platform_set_drvdata(pdev, priv); /* Reset input selector to its default input */ regmap_write(priv->regmap, TIM_TISEL, 0x0); /* Register Counter device */ ret = devm_counter_add(dev, counter); if (ret < 0) dev_err_probe(dev, ret, "Failed to add counter\n"); return ret; } static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev) { struct stm32_timer_cnt *priv = dev_get_drvdata(dev); /* Only take care of enabled counter: don't disturb other MFD child */ if (priv->enabled) { /* Backup registers that may get lost in low power mode */ regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr); regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr); regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt); regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1); /* Disable the counter */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); clk_disable(priv->clk); } return pinctrl_pm_select_sleep_state(dev); } static int __maybe_unused stm32_timer_cnt_resume(struct device *dev) { struct stm32_timer_cnt *priv = dev_get_drvdata(dev); int ret; ret = pinctrl_pm_select_default_state(dev); if (ret) return ret; if (priv->enabled) { clk_enable(priv->clk); /* Restore registers that may have been lost */ regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr); regmap_write(priv->regmap, TIM_ARR, priv->bak.arr); regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt); /* Also re-enables the counter */ regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1); } return 0; } static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend, stm32_timer_cnt_resume); static const struct of_device_id stm32_timer_cnt_of_match[] = { { .compatible = "st,stm32-timer-counter", }, {}, }; MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match); static struct platform_driver stm32_timer_cnt_driver = { .probe = stm32_timer_cnt_probe, .driver = { .name = "stm32-timer-counter", .of_match_table = stm32_timer_cnt_of_match, .pm = &stm32_timer_cnt_pm_ops, }, }; module_platform_driver(stm32_timer_cnt_driver); MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>"); MODULE_ALIAS("platform:stm32-timer-counter"); MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(COUNTER);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1