Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kim Phillips | 1818 | 56.27% | 2 | 4.76% |
Horia Geantă | 552 | 17.08% | 10 | 23.81% |
Andrey Smirnov | 373 | 11.54% | 8 | 19.05% |
Ruchika Gupta | 253 | 7.83% | 5 | 11.90% |
Alex Porosanu | 72 | 2.23% | 6 | 14.29% |
Meenakshi Aggarwal | 40 | 1.24% | 1 | 2.38% |
Nitesh Narayan Lal | 32 | 0.99% | 1 | 2.38% |
Fabio Estevam | 24 | 0.74% | 1 | 2.38% |
Victoria Milhoan | 17 | 0.53% | 1 | 2.38% |
Nikolaus Voss | 12 | 0.37% | 1 | 2.38% |
Franck LENORMAND | 12 | 0.37% | 1 | 2.38% |
Ahmad Fatoum | 8 | 0.25% | 1 | 2.38% |
Vakul Garg | 8 | 0.25% | 1 | 2.38% |
Michael Walle | 5 | 0.15% | 1 | 2.38% |
Steffen Trumtrar | 4 | 0.12% | 1 | 2.38% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 2.38% |
Total | 3231 | 42 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * CAAM hardware register-level view * * Copyright 2008-2011 Freescale Semiconductor, Inc. * Copyright 2018, 2023 NXP */ #ifndef REGS_H #define REGS_H #include <linux/types.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/io-64-nonatomic-hi-lo.h> /* * Architecture-specific register access methods * * CAAM's bus-addressable registers are 64 bits internally. * They have been wired to be safely accessible on 32-bit * architectures, however. Registers were organized such * that (a) they can be contained in 32 bits, (b) if not, then they * can be treated as two 32-bit entities, or finally (c) if they * must be treated as a single 64-bit value, then this can safely * be done with two 32-bit cycles. * * For 32-bit operations on 64-bit values, CAAM follows the same * 64-bit register access conventions as it's predecessors, in that * writes are "triggered" by a write to the register at the numerically * higher address, thus, a full 64-bit write cycle requires a write * to the lower address, followed by a write to the higher address, * which will latch/execute the write cycle. * * For example, let's assume a SW reset of CAAM through the master * configuration register. * - SWRST is in bit 31 of MCFG. * - MCFG begins at base+0x0000. * - Bits 63-32 are a 32-bit word at base+0x0000 (numerically-lower) * - Bits 31-0 are a 32-bit word at base+0x0004 (numerically-higher) * * (and on Power, the convention is 0-31, 32-63, I know...) * * Assuming a 64-bit write to this MCFG to perform a software reset * would then require a write of 0 to base+0x0000, followed by a * write of 0x80000000 to base+0x0004, which would "execute" the * reset. * * Of course, since MCFG 63-32 is all zero, we could cheat and simply * write 0x8000000 to base+0x0004, and the reset would work fine. * However, since CAAM does contain some write-and-read-intended * 64-bit registers, this code defines 64-bit access methods for * the sake of internal consistency and simplicity, and so that a * clean transition to 64-bit is possible when it becomes necessary. * * There are limitations to this that the developer must recognize. * 32-bit architectures cannot enforce an atomic-64 operation, * Therefore: * * - On writes, since the HW is assumed to latch the cycle on the * write of the higher-numeric-address word, then ordered * writes work OK. * * - For reads, where a register contains a relevant value of more * that 32 bits, the hardware employs logic to latch the other * "half" of the data until read, ensuring an accurate value. * This is of particular relevance when dealing with CAAM's * performance counters. * */ extern bool caam_little_end; extern bool caam_imx; extern size_t caam_ptr_sz; #define caam_to_cpu(len) \ static inline u##len caam##len ## _to_cpu(u##len val) \ { \ if (caam_little_end) \ return le##len ## _to_cpu((__force __le##len)val); \ else \ return be##len ## _to_cpu((__force __be##len)val); \ } #define cpu_to_caam(len) \ static inline u##len cpu_to_caam##len(u##len val) \ { \ if (caam_little_end) \ return (__force u##len)cpu_to_le##len(val); \ else \ return (__force u##len)cpu_to_be##len(val); \ } caam_to_cpu(16) caam_to_cpu(32) caam_to_cpu(64) cpu_to_caam(16) cpu_to_caam(32) cpu_to_caam(64) static inline void wr_reg32(void __iomem *reg, u32 data) { if (caam_little_end) iowrite32(data, reg); else iowrite32be(data, reg); } static inline u32 rd_reg32(void __iomem *reg) { if (caam_little_end) return ioread32(reg); return ioread32be(reg); } static inline void clrsetbits_32(void __iomem *reg, u32 clear, u32 set) { if (caam_little_end) iowrite32((ioread32(reg) & ~clear) | set, reg); else iowrite32be((ioread32be(reg) & ~clear) | set, reg); } /* * The only users of these wr/rd_reg64 functions is the Job Ring (JR). * The DMA address registers in the JR are handled differently depending on * platform: * * 1. All BE CAAM platforms and i.MX platforms (LE CAAM): * * base + 0x0000 : most-significant 32 bits * base + 0x0004 : least-significant 32 bits * * The 32-bit version of this core therefore has to write to base + 0x0004 * to set the 32-bit wide DMA address. * * 2. All other LE CAAM platforms (LS1021A etc.) * base + 0x0000 : least-significant 32 bits * base + 0x0004 : most-significant 32 bits */ static inline void wr_reg64(void __iomem *reg, u64 data) { if (caam_little_end) { if (caam_imx) { iowrite32(data >> 32, (u32 __iomem *)(reg)); iowrite32(data, (u32 __iomem *)(reg) + 1); } else { iowrite64(data, reg); } } else { iowrite64be(data, reg); } } static inline u64 rd_reg64(void __iomem *reg) { if (caam_little_end) { if (caam_imx) { u32 low, high; high = ioread32(reg); low = ioread32(reg + sizeof(u32)); return low + ((u64)high << 32); } else { return ioread64(reg); } } else { return ioread64be(reg); } } static inline u64 cpu_to_caam_dma64(dma_addr_t value) { if (caam_imx) { u64 ret_val = (u64)cpu_to_caam32(lower_32_bits(value)) << 32; if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) ret_val |= (u64)cpu_to_caam32(upper_32_bits(value)); return ret_val; } return cpu_to_caam64(value); } static inline u64 caam_dma64_to_cpu(u64 value) { if (caam_imx) return (((u64)caam32_to_cpu(lower_32_bits(value)) << 32) | (u64)caam32_to_cpu(upper_32_bits(value))); return caam64_to_cpu(value); } static inline u64 cpu_to_caam_dma(u64 value) { if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && caam_ptr_sz == sizeof(u64)) return cpu_to_caam_dma64(value); else return cpu_to_caam32(value); } static inline u64 caam_dma_to_cpu(u64 value) { if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && caam_ptr_sz == sizeof(u64)) return caam_dma64_to_cpu(value); else return caam32_to_cpu(value); } /* * jr_outentry * Represents each entry in a JobR output ring */ static inline void jr_outentry_get(void *outring, int hw_idx, dma_addr_t *desc, u32 *jrstatus) { if (caam_ptr_sz == sizeof(u32)) { struct { u32 desc; u32 jrstatus; } __packed *outentry = outring; *desc = outentry[hw_idx].desc; *jrstatus = outentry[hw_idx].jrstatus; } else { struct { dma_addr_t desc;/* Pointer to completed descriptor */ u32 jrstatus; /* Status for completed descriptor */ } __packed *outentry = outring; *desc = outentry[hw_idx].desc; *jrstatus = outentry[hw_idx].jrstatus; } } #define SIZEOF_JR_OUTENTRY (caam_ptr_sz + sizeof(u32)) static inline dma_addr_t jr_outentry_desc(void *outring, int hw_idx) { dma_addr_t desc; u32 unused; jr_outentry_get(outring, hw_idx, &desc, &unused); return desc; } static inline u32 jr_outentry_jrstatus(void *outring, int hw_idx) { dma_addr_t unused; u32 jrstatus; jr_outentry_get(outring, hw_idx, &unused, &jrstatus); return jrstatus; } static inline void jr_inpentry_set(void *inpring, int hw_idx, dma_addr_t val) { if (caam_ptr_sz == sizeof(u32)) { u32 *inpentry = inpring; inpentry[hw_idx] = val; } else { dma_addr_t *inpentry = inpring; inpentry[hw_idx] = val; } } #define SIZEOF_JR_INPENTRY caam_ptr_sz /* Version registers (Era 10+) e80-eff */ struct version_regs { u32 crca; /* CRCA_VERSION */ u32 afha; /* AFHA_VERSION */ u32 kfha; /* KFHA_VERSION */ u32 pkha; /* PKHA_VERSION */ u32 aesa; /* AESA_VERSION */ u32 mdha; /* MDHA_VERSION */ u32 desa; /* DESA_VERSION */ u32 snw8a; /* SNW8A_VERSION */ u32 snw9a; /* SNW9A_VERSION */ u32 zuce; /* ZUCE_VERSION */ u32 zuca; /* ZUCA_VERSION */ u32 ccha; /* CCHA_VERSION */ u32 ptha; /* PTHA_VERSION */ u32 rng; /* RNG_VERSION */ u32 trng; /* TRNG_VERSION */ u32 aaha; /* AAHA_VERSION */ u32 rsvd[10]; u32 sr; /* SR_VERSION */ u32 dma; /* DMA_VERSION */ u32 ai; /* AI_VERSION */ u32 qi; /* QI_VERSION */ u32 jr; /* JR_VERSION */ u32 deco; /* DECO_VERSION */ }; /* Version registers bitfields */ /* Number of CHAs instantiated */ #define CHA_VER_NUM_MASK 0xffull /* CHA Miscellaneous Information */ #define CHA_VER_MISC_SHIFT 8 #define CHA_VER_MISC_MASK (0xffull << CHA_VER_MISC_SHIFT) /* CHA Revision Number */ #define CHA_VER_REV_SHIFT 16 #define CHA_VER_REV_MASK (0xffull << CHA_VER_REV_SHIFT) /* CHA Version ID */ #define CHA_VER_VID_SHIFT 24 #define CHA_VER_VID_MASK (0xffull << CHA_VER_VID_SHIFT) /* CHA Miscellaneous Information - AESA_MISC specific */ #define CHA_VER_MISC_AES_NUM_MASK GENMASK(7, 0) #define CHA_VER_MISC_AES_GCM BIT(1 + CHA_VER_MISC_SHIFT) /* CHA Miscellaneous Information - PKHA_MISC specific */ #define CHA_VER_MISC_PKHA_NO_CRYPT BIT(7 + CHA_VER_MISC_SHIFT) /* * caam_perfmon - Performance Monitor/Secure Memory Status/ * CAAM Global Status/Component Version IDs * * Spans f00-fff wherever instantiated */ /* Number of DECOs */ #define CHA_NUM_MS_DECONUM_SHIFT 24 #define CHA_NUM_MS_DECONUM_MASK (0xfull << CHA_NUM_MS_DECONUM_SHIFT) /* * CHA version IDs / instantiation bitfields (< Era 10) * Defined for use with the cha_id fields in perfmon, but the same shift/mask * selectors can be used to pull out the number of instantiated blocks within * cha_num fields in perfmon because the locations are the same. */ #define CHA_ID_LS_AES_SHIFT 0 #define CHA_ID_LS_AES_MASK (0xfull << CHA_ID_LS_AES_SHIFT) #define CHA_ID_LS_DES_SHIFT 4 #define CHA_ID_LS_DES_MASK (0xfull << CHA_ID_LS_DES_SHIFT) #define CHA_ID_LS_ARC4_SHIFT 8 #define CHA_ID_LS_ARC4_MASK (0xfull << CHA_ID_LS_ARC4_SHIFT) #define CHA_ID_LS_MD_SHIFT 12 #define CHA_ID_LS_MD_MASK (0xfull << CHA_ID_LS_MD_SHIFT) #define CHA_ID_LS_RNG_SHIFT 16 #define CHA_ID_LS_RNG_MASK (0xfull << CHA_ID_LS_RNG_SHIFT) #define CHA_ID_LS_SNW8_SHIFT 20 #define CHA_ID_LS_SNW8_MASK (0xfull << CHA_ID_LS_SNW8_SHIFT) #define CHA_ID_LS_KAS_SHIFT 24 #define CHA_ID_LS_KAS_MASK (0xfull << CHA_ID_LS_KAS_SHIFT) #define CHA_ID_LS_PK_SHIFT 28 #define CHA_ID_LS_PK_MASK (0xfull << CHA_ID_LS_PK_SHIFT) #define CHA_ID_MS_CRC_SHIFT 0 #define CHA_ID_MS_CRC_MASK (0xfull << CHA_ID_MS_CRC_SHIFT) #define CHA_ID_MS_SNW9_SHIFT 4 #define CHA_ID_MS_SNW9_MASK (0xfull << CHA_ID_MS_SNW9_SHIFT) #define CHA_ID_MS_DECO_SHIFT 24 #define CHA_ID_MS_DECO_MASK (0xfull << CHA_ID_MS_DECO_SHIFT) #define CHA_ID_MS_JR_SHIFT 28 #define CHA_ID_MS_JR_MASK (0xfull << CHA_ID_MS_JR_SHIFT) /* Specific CHA version IDs */ #define CHA_VER_VID_AES_LP 0x3ull #define CHA_VER_VID_AES_HP 0x4ull #define CHA_VER_VID_MD_LP256 0x0ull #define CHA_VER_VID_MD_LP512 0x1ull #define CHA_VER_VID_MD_HP 0x2ull struct sec_vid { u16 ip_id; u8 maj_rev; u8 min_rev; }; struct caam_perfmon { /* Performance Monitor Registers f00-f9f */ u64 req_dequeued; /* PC_REQ_DEQ - Dequeued Requests */ u64 ob_enc_req; /* PC_OB_ENC_REQ - Outbound Encrypt Requests */ u64 ib_dec_req; /* PC_IB_DEC_REQ - Inbound Decrypt Requests */ u64 ob_enc_bytes; /* PC_OB_ENCRYPT - Outbound Bytes Encrypted */ u64 ob_prot_bytes; /* PC_OB_PROTECT - Outbound Bytes Protected */ u64 ib_dec_bytes; /* PC_IB_DECRYPT - Inbound Bytes Decrypted */ u64 ib_valid_bytes; /* PC_IB_VALIDATED Inbound Bytes Validated */ u64 rsvd[13]; /* CAAM Hardware Instantiation Parameters fa0-fbf */ u32 cha_rev_ms; /* CRNR - CHA Rev No. Most significant half*/ u32 cha_rev_ls; /* CRNR - CHA Rev No. Least significant half*/ #define CTPR_MS_QI_SHIFT 25 #define CTPR_MS_QI_MASK (0x1ull << CTPR_MS_QI_SHIFT) #define CTPR_MS_PS BIT(17) #define CTPR_MS_DPAA2 BIT(13) #define CTPR_MS_VIRT_EN_INCL 0x00000001 #define CTPR_MS_VIRT_EN_POR 0x00000002 #define CTPR_MS_PG_SZ_MASK 0x10 #define CTPR_MS_PG_SZ_SHIFT 4 u32 comp_parms_ms; /* CTPR - Compile Parameters Register */ #define CTPR_LS_BLOB BIT(1) u32 comp_parms_ls; /* CTPR - Compile Parameters Register */ u64 rsvd1[2]; /* CAAM Global Status fc0-fdf */ u64 faultaddr; /* FAR - Fault Address */ u32 faultliodn; /* FALR - Fault Address LIODN */ u32 faultdetail; /* FADR - Fault Addr Detail */ u32 rsvd2; #define CSTA_PLEND BIT(10) #define CSTA_ALT_PLEND BIT(18) #define CSTA_MOO GENMASK(9, 8) #define CSTA_MOO_SECURE 1 #define CSTA_MOO_TRUSTED 2 u32 status; /* CSTA - CAAM Status */ u64 rsvd3; /* Component Instantiation Parameters fe0-fff */ u32 rtic_id; /* RVID - RTIC Version ID */ #define CCBVID_ERA_MASK 0xff000000 #define CCBVID_ERA_SHIFT 24 u32 ccb_id; /* CCBVID - CCB Version ID */ u32 cha_id_ms; /* CHAVID - CHA Version ID Most Significant*/ u32 cha_id_ls; /* CHAVID - CHA Version ID Least Significant*/ u32 cha_num_ms; /* CHANUM - CHA Number Most Significant */ u32 cha_num_ls; /* CHANUM - CHA Number Least Significant*/ #define SECVID_MS_IPID_MASK 0xffff0000 #define SECVID_MS_IPID_SHIFT 16 #define SECVID_MS_MAJ_REV_MASK 0x0000ff00 #define SECVID_MS_MAJ_REV_SHIFT 8 u32 caam_id_ms; /* CAAMVID - CAAM Version ID MS */ u32 caam_id_ls; /* CAAMVID - CAAM Version ID LS */ }; /* LIODN programming for DMA configuration */ #define MSTRID_LOCK_LIODN 0x80000000 #define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */ #define MSTRID_LIODN_MASK 0x0fff struct masterid { u32 liodn_ms; /* lock and make-trusted control bits */ u32 liodn_ls; /* LIODN for non-sequence and seq access */ }; /* Partition ID for DMA configuration */ struct partid { u32 rsvd1; u32 pidr; /* partition ID, DECO */ }; /* RNGB test mode (replicated twice in some configurations) */ /* Padded out to 0x100 */ struct rngtst { u32 mode; /* RTSTMODEx - Test mode */ u32 rsvd1[3]; u32 reset; /* RTSTRESETx - Test reset control */ u32 rsvd2[3]; u32 status; /* RTSTSSTATUSx - Test status */ u32 rsvd3; u32 errstat; /* RTSTERRSTATx - Test error status */ u32 rsvd4; u32 errctl; /* RTSTERRCTLx - Test error control */ u32 rsvd5; u32 entropy; /* RTSTENTROPYx - Test entropy */ u32 rsvd6[15]; u32 verifctl; /* RTSTVERIFCTLx - Test verification control */ u32 rsvd7; u32 verifstat; /* RTSTVERIFSTATx - Test verification status */ u32 rsvd8; u32 verifdata; /* RTSTVERIFDx - Test verification data */ u32 rsvd9; u32 xkey; /* RTSTXKEYx - Test XKEY */ u32 rsvd10; u32 oscctctl; /* RTSTOSCCTCTLx - Test osc. counter control */ u32 rsvd11; u32 oscct; /* RTSTOSCCTx - Test oscillator counter */ u32 rsvd12; u32 oscctstat; /* RTSTODCCTSTATx - Test osc counter status */ u32 rsvd13[2]; u32 ofifo[4]; /* RTSTOFIFOx - Test output FIFO */ u32 rsvd14[15]; }; /* RNG4 TRNG test registers */ struct rng4tst { #define RTMCTL_ACC BIT(5) /* TRNG access mode */ #define RTMCTL_PRGM BIT(16) /* 1 -> program mode, 0 -> run mode */ #define RTMCTL_SAMP_MODE_VON_NEUMANN_ES_SC 0 /* use von Neumann data in both entropy shifter and statistical checker */ #define RTMCTL_SAMP_MODE_RAW_ES_SC 1 /* use raw data in both entropy shifter and statistical checker */ #define RTMCTL_SAMP_MODE_VON_NEUMANN_ES_RAW_SC 2 /* use von Neumann data in entropy shifter, raw data in statistical checker */ #define RTMCTL_SAMP_MODE_INVALID 3 /* invalid combination */ u32 rtmctl; /* misc. control register */ u32 rtscmisc; /* statistical check misc. register */ u32 rtpkrrng; /* poker range register */ union { u32 rtpkrmax; /* PRGM=1: poker max. limit register */ u32 rtpkrsq; /* PRGM=0: poker square calc. result register */ }; #define RTSDCTL_ENT_DLY_SHIFT 16 #define RTSDCTL_ENT_DLY_MASK (0xffff << RTSDCTL_ENT_DLY_SHIFT) #define RTSDCTL_ENT_DLY_MIN 3200 #define RTSDCTL_ENT_DLY_MAX 12800 #define RTSDCTL_SAMP_SIZE_MASK 0xffff #define RTSDCTL_SAMP_SIZE_VAL 512 u32 rtsdctl; /* seed control register */ union { u32 rtsblim; /* PRGM=1: sparse bit limit register */ u32 rttotsam; /* PRGM=0: total samples register */ }; u32 rtfrqmin; /* frequency count min. limit register */ #define RTFRQMAX_DISABLE (1 << 20) union { u32 rtfrqmax; /* PRGM=1: freq. count max. limit register */ u32 rtfrqcnt; /* PRGM=0: freq. count register */ }; union { u32 rtscmc; /* statistical check run monobit count */ u32 rtscml; /* statistical check run monobit limit */ }; union { u32 rtscrc[6]; /* statistical check run length count */ u32 rtscrl[6]; /* statistical check run length limit */ }; u32 rsvd1[33]; #define RDSTA_SKVT 0x80000000 #define RDSTA_SKVN 0x40000000 #define RDSTA_PR0 BIT(4) #define RDSTA_PR1 BIT(5) #define RDSTA_IF0 0x00000001 #define RDSTA_IF1 0x00000002 #define RDSTA_MASK (RDSTA_PR1 | RDSTA_PR0 | RDSTA_IF1 | RDSTA_IF0) u32 rdsta; u32 rsvd2[15]; }; /* * caam_ctrl - basic core configuration * starts base + 0x0000 padded out to 0x1000 */ #define KEK_KEY_SIZE 8 #define TKEK_KEY_SIZE 8 #define TDSK_KEY_SIZE 8 #define DECO_RESET 1 /* Use with DECO reset/availability regs */ #define DECO_RESET_0 (DECO_RESET << 0) #define DECO_RESET_1 (DECO_RESET << 1) #define DECO_RESET_2 (DECO_RESET << 2) #define DECO_RESET_3 (DECO_RESET << 3) #define DECO_RESET_4 (DECO_RESET << 4) struct caam_ctrl { /* Basic Configuration Section 000-01f */ /* Read/Writable */ u32 rsvd1; u32 mcr; /* MCFG Master Config Register */ u32 rsvd2; u32 scfgr; /* SCFGR, Security Config Register */ /* Bus Access Configuration Section 010-11f */ /* Read/Writable */ struct masterid jr_mid[4]; /* JRxLIODNR - JobR LIODN setup */ u32 rsvd3[11]; u32 jrstart; /* JRSTART - Job Ring Start Register */ struct masterid rtic_mid[4]; /* RTICxLIODNR - RTIC LIODN setup */ u32 rsvd4[5]; u32 deco_rsr; /* DECORSR - Deco Request Source */ u32 rsvd11; u32 deco_rq; /* DECORR - DECO Request */ struct partid deco_mid[5]; /* DECOxLIODNR - 1 per DECO */ u32 rsvd5[22]; /* DECO Availability/Reset Section 120-3ff */ u32 deco_avail; /* DAR - DECO availability */ u32 deco_reset; /* DRR - DECO reset */ u32 rsvd6[182]; /* Key Encryption/Decryption Configuration 400-5ff */ /* Read/Writable only while in Non-secure mode */ u32 kek[KEK_KEY_SIZE]; /* JDKEKR - Key Encryption Key */ u32 tkek[TKEK_KEY_SIZE]; /* TDKEKR - Trusted Desc KEK */ u32 tdsk[TDSK_KEY_SIZE]; /* TDSKR - Trusted Desc Signing Key */ u32 rsvd7[32]; u64 sknonce; /* SKNR - Secure Key Nonce */ u32 rsvd8[70]; /* RNG Test/Verification/Debug Access 600-7ff */ /* (Useful in Test/Debug modes only...) */ union { struct rngtst rtst[2]; struct rng4tst r4tst[2]; }; u32 rsvd9[416]; /* Version registers - introduced with era 10 e80-eff */ struct version_regs vreg; /* Performance Monitor f00-fff */ struct caam_perfmon perfmon; }; /* * Controller master config register defs */ #define MCFGR_SWRESET 0x80000000 /* software reset */ #define MCFGR_WDENABLE 0x40000000 /* DECO watchdog enable */ #define MCFGR_WDFAIL 0x20000000 /* DECO watchdog force-fail */ #define MCFGR_DMA_RESET 0x10000000 #define MCFGR_LONG_PTR 0x00010000 /* Use >32-bit desc addressing */ #define SCFGR_RDBENABLE 0x00000400 #define SCFGR_VIRT_EN 0x00008000 #define DECORR_RQD0ENABLE 0x00000001 /* Enable DECO0 for direct access */ #define DECORSR_JR0 0x00000001 /* JR to supply TZ, SDID, ICID */ #define DECORSR_VALID 0x80000000 #define DECORR_DEN0 0x00010000 /* DECO0 available for access*/ /* AXI read cache control */ #define MCFGR_ARCACHE_SHIFT 12 #define MCFGR_ARCACHE_MASK (0xf << MCFGR_ARCACHE_SHIFT) #define MCFGR_ARCACHE_BUFF (0x1 << MCFGR_ARCACHE_SHIFT) #define MCFGR_ARCACHE_CACH (0x2 << MCFGR_ARCACHE_SHIFT) #define MCFGR_ARCACHE_RALL (0x4 << MCFGR_ARCACHE_SHIFT) /* AXI write cache control */ #define MCFGR_AWCACHE_SHIFT 8 #define MCFGR_AWCACHE_MASK (0xf << MCFGR_AWCACHE_SHIFT) #define MCFGR_AWCACHE_BUFF (0x1 << MCFGR_AWCACHE_SHIFT) #define MCFGR_AWCACHE_CACH (0x2 << MCFGR_AWCACHE_SHIFT) #define MCFGR_AWCACHE_WALL (0x8 << MCFGR_AWCACHE_SHIFT) /* AXI pipeline depth */ #define MCFGR_AXIPIPE_SHIFT 4 #define MCFGR_AXIPIPE_MASK (0xf << MCFGR_AXIPIPE_SHIFT) #define MCFGR_AXIPRI 0x00000008 /* Assert AXI priority sideband */ #define MCFGR_LARGE_BURST 0x00000004 /* 128/256-byte burst size */ #define MCFGR_BURST_64 0x00000001 /* 64-byte burst size */ /* JRSTART register offsets */ #define JRSTART_JR0_START 0x00000001 /* Start Job ring 0 */ #define JRSTART_JR1_START 0x00000002 /* Start Job ring 1 */ #define JRSTART_JR2_START 0x00000004 /* Start Job ring 2 */ #define JRSTART_JR3_START 0x00000008 /* Start Job ring 3 */ /* * caam_job_ring - direct job ring setup * 1-4 possible per instantiation, base + 1000/2000/3000/4000 * Padded out to 0x1000 */ struct caam_job_ring { /* Input ring */ u64 inpring_base; /* IRBAx - Input desc ring baseaddr */ u32 rsvd1; u32 inpring_size; /* IRSx - Input ring size */ u32 rsvd2; u32 inpring_avail; /* IRSAx - Input ring room remaining */ u32 rsvd3; u32 inpring_jobadd; /* IRJAx - Input ring jobs added */ /* Output Ring */ u64 outring_base; /* ORBAx - Output status ring base addr */ u32 rsvd4; u32 outring_size; /* ORSx - Output ring size */ u32 rsvd5; u32 outring_rmvd; /* ORJRx - Output ring jobs removed */ u32 rsvd6; u32 outring_used; /* ORSFx - Output ring slots full */ /* Status/Configuration */ u32 rsvd7; u32 jroutstatus; /* JRSTAx - JobR output status */ u32 rsvd8; u32 jrintstatus; /* JRINTx - JobR interrupt status */ u32 rconfig_hi; /* JRxCFG - Ring configuration */ u32 rconfig_lo; /* Indices. CAAM maintains as "heads" of each queue */ u32 rsvd9; u32 inp_rdidx; /* IRRIx - Input ring read index */ u32 rsvd10; u32 out_wtidx; /* ORWIx - Output ring write index */ /* Command/control */ u32 rsvd11; u32 jrcommand; /* JRCRx - JobR command */ u32 rsvd12[900]; /* Version registers - introduced with era 10 e80-eff */ struct version_regs vreg; /* Performance Monitor f00-fff */ struct caam_perfmon perfmon; }; #define JR_RINGSIZE_MASK 0x03ff /* * jrstatus - Job Ring Output Status * All values in lo word * Also note, same values written out as status through QI * in the command/status field of a frame descriptor */ #define JRSTA_SSRC_SHIFT 28 #define JRSTA_SSRC_MASK 0xf0000000 #define JRSTA_SSRC_NONE 0x00000000 #define JRSTA_SSRC_CCB_ERROR 0x20000000 #define JRSTA_SSRC_JUMP_HALT_USER 0x30000000 #define JRSTA_SSRC_DECO 0x40000000 #define JRSTA_SSRC_QI 0x50000000 #define JRSTA_SSRC_JRERROR 0x60000000 #define JRSTA_SSRC_JUMP_HALT_CC 0x70000000 #define JRSTA_DECOERR_JUMP 0x08000000 #define JRSTA_DECOERR_INDEX_SHIFT 8 #define JRSTA_DECOERR_INDEX_MASK 0xff00 #define JRSTA_DECOERR_ERROR_MASK 0x00ff #define JRSTA_DECOERR_NONE 0x00 #define JRSTA_DECOERR_LINKLEN 0x01 #define JRSTA_DECOERR_LINKPTR 0x02 #define JRSTA_DECOERR_JRCTRL 0x03 #define JRSTA_DECOERR_DESCCMD 0x04 #define JRSTA_DECOERR_ORDER 0x05 #define JRSTA_DECOERR_KEYCMD 0x06 #define JRSTA_DECOERR_LOADCMD 0x07 #define JRSTA_DECOERR_STORECMD 0x08 #define JRSTA_DECOERR_OPCMD 0x09 #define JRSTA_DECOERR_FIFOLDCMD 0x0a #define JRSTA_DECOERR_FIFOSTCMD 0x0b #define JRSTA_DECOERR_MOVECMD 0x0c #define JRSTA_DECOERR_JUMPCMD 0x0d #define JRSTA_DECOERR_MATHCMD 0x0e #define JRSTA_DECOERR_SHASHCMD 0x0f #define JRSTA_DECOERR_SEQCMD 0x10 #define JRSTA_DECOERR_DECOINTERNAL 0x11 #define JRSTA_DECOERR_SHDESCHDR 0x12 #define JRSTA_DECOERR_HDRLEN 0x13 #define JRSTA_DECOERR_BURSTER 0x14 #define JRSTA_DECOERR_DESCSIGNATURE 0x15 #define JRSTA_DECOERR_DMA 0x16 #define JRSTA_DECOERR_BURSTFIFO 0x17 #define JRSTA_DECOERR_JRRESET 0x1a #define JRSTA_DECOERR_JOBFAIL 0x1b #define JRSTA_DECOERR_DNRERR 0x80 #define JRSTA_DECOERR_UNDEFPCL 0x81 #define JRSTA_DECOERR_PDBERR 0x82 #define JRSTA_DECOERR_ANRPLY_LATE 0x83 #define JRSTA_DECOERR_ANRPLY_REPLAY 0x84 #define JRSTA_DECOERR_SEQOVF 0x85 #define JRSTA_DECOERR_INVSIGN 0x86 #define JRSTA_DECOERR_DSASIGN 0x87 #define JRSTA_QIERR_ERROR_MASK 0x00ff #define JRSTA_CCBERR_JUMP 0x08000000 #define JRSTA_CCBERR_INDEX_MASK 0xff00 #define JRSTA_CCBERR_INDEX_SHIFT 8 #define JRSTA_CCBERR_CHAID_MASK 0x00f0 #define JRSTA_CCBERR_CHAID_SHIFT 4 #define JRSTA_CCBERR_ERRID_MASK 0x000f #define JRSTA_CCBERR_CHAID_AES (0x01 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_DES (0x02 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_ARC4 (0x03 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_MD (0x04 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_RNG (0x05 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_SNOW (0x06 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_KASUMI (0x07 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_PK (0x08 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_CHAID_CRC (0x09 << JRSTA_CCBERR_CHAID_SHIFT) #define JRSTA_CCBERR_ERRID_NONE 0x00 #define JRSTA_CCBERR_ERRID_MODE 0x01 #define JRSTA_CCBERR_ERRID_DATASIZ 0x02 #define JRSTA_CCBERR_ERRID_KEYSIZ 0x03 #define JRSTA_CCBERR_ERRID_PKAMEMSZ 0x04 #define JRSTA_CCBERR_ERRID_PKBMEMSZ 0x05 #define JRSTA_CCBERR_ERRID_SEQUENCE 0x06 #define JRSTA_CCBERR_ERRID_PKDIVZRO 0x07 #define JRSTA_CCBERR_ERRID_PKMODEVN 0x08 #define JRSTA_CCBERR_ERRID_KEYPARIT 0x09 #define JRSTA_CCBERR_ERRID_ICVCHK 0x0a #define JRSTA_CCBERR_ERRID_HARDWARE 0x0b #define JRSTA_CCBERR_ERRID_CCMAAD 0x0c #define JRSTA_CCBERR_ERRID_INVCHA 0x0f #define JRINT_ERR_INDEX_MASK 0x3fff0000 #define JRINT_ERR_INDEX_SHIFT 16 #define JRINT_ERR_TYPE_MASK 0xf00 #define JRINT_ERR_TYPE_SHIFT 8 #define JRINT_ERR_HALT_MASK 0xc #define JRINT_ERR_HALT_SHIFT 2 #define JRINT_ERR_HALT_INPROGRESS 0x4 #define JRINT_ERR_HALT_COMPLETE 0x8 #define JRINT_JR_ERROR 0x02 #define JRINT_JR_INT 0x01 #define JRINT_ERR_TYPE_WRITE 1 #define JRINT_ERR_TYPE_BAD_INPADDR 3 #define JRINT_ERR_TYPE_BAD_OUTADDR 4 #define JRINT_ERR_TYPE_INV_INPWRT 5 #define JRINT_ERR_TYPE_INV_OUTWRT 6 #define JRINT_ERR_TYPE_RESET 7 #define JRINT_ERR_TYPE_REMOVE_OFL 8 #define JRINT_ERR_TYPE_ADD_OFL 9 #define JRCFG_SOE 0x04 #define JRCFG_ICEN 0x02 #define JRCFG_IMSK 0x01 #define JRCFG_ICDCT_SHIFT 8 #define JRCFG_ICTT_SHIFT 16 #define JRCR_RESET 0x01 /* * caam_assurance - Assurance Controller View * base + 0x6000 padded out to 0x1000 */ struct rtic_element { u64 address; u32 rsvd; u32 length; }; struct rtic_block { struct rtic_element element[2]; }; struct rtic_memhash { u32 memhash_be[32]; u32 memhash_le[32]; }; struct caam_assurance { /* Status/Command/Watchdog */ u32 rsvd1; u32 status; /* RSTA - Status */ u32 rsvd2; u32 cmd; /* RCMD - Command */ u32 rsvd3; u32 ctrl; /* RCTL - Control */ u32 rsvd4; u32 throttle; /* RTHR - Throttle */ u32 rsvd5[2]; u64 watchdog; /* RWDOG - Watchdog Timer */ u32 rsvd6; u32 rend; /* REND - Endian corrections */ u32 rsvd7[50]; /* Block access/configuration @ 100/110/120/130 */ struct rtic_block memblk[4]; /* Memory Blocks A-D */ u32 rsvd8[32]; /* Block hashes @ 200/300/400/500 */ struct rtic_memhash hash[4]; /* Block hash values A-D */ u32 rsvd_3[640]; }; /* * caam_queue_if - QI configuration and control * starts base + 0x7000, padded out to 0x1000 long */ struct caam_queue_if { u32 qi_control_hi; /* QICTL - QI Control */ u32 qi_control_lo; u32 rsvd1; u32 qi_status; /* QISTA - QI Status */ u32 qi_deq_cfg_hi; /* QIDQC - QI Dequeue Configuration */ u32 qi_deq_cfg_lo; u32 qi_enq_cfg_hi; /* QISEQC - QI Enqueue Command */ u32 qi_enq_cfg_lo; u32 rsvd2[1016]; }; /* QI control bits - low word */ #define QICTL_DQEN 0x01 /* Enable frame pop */ #define QICTL_STOP 0x02 /* Stop dequeue/enqueue */ #define QICTL_SOE 0x04 /* Stop on error */ /* QI control bits - high word */ #define QICTL_MBSI 0x01 #define QICTL_MHWSI 0x02 #define QICTL_MWSI 0x04 #define QICTL_MDWSI 0x08 #define QICTL_CBSI 0x10 /* CtrlDataByteSwapInput */ #define QICTL_CHWSI 0x20 /* CtrlDataHalfSwapInput */ #define QICTL_CWSI 0x40 /* CtrlDataWordSwapInput */ #define QICTL_CDWSI 0x80 /* CtrlDataDWordSwapInput */ #define QICTL_MBSO 0x0100 #define QICTL_MHWSO 0x0200 #define QICTL_MWSO 0x0400 #define QICTL_MDWSO 0x0800 #define QICTL_CBSO 0x1000 /* CtrlDataByteSwapOutput */ #define QICTL_CHWSO 0x2000 /* CtrlDataHalfSwapOutput */ #define QICTL_CWSO 0x4000 /* CtrlDataWordSwapOutput */ #define QICTL_CDWSO 0x8000 /* CtrlDataDWordSwapOutput */ #define QICTL_DMBS 0x010000 #define QICTL_EPO 0x020000 /* QI status bits */ #define QISTA_PHRDERR 0x01 /* PreHeader Read Error */ #define QISTA_CFRDERR 0x02 /* Compound Frame Read Error */ #define QISTA_OFWRERR 0x04 /* Output Frame Read Error */ #define QISTA_BPDERR 0x08 /* Buffer Pool Depleted */ #define QISTA_BTSERR 0x10 /* Buffer Undersize */ #define QISTA_CFWRERR 0x20 /* Compound Frame Write Err */ #define QISTA_STOPD 0x80000000 /* QI Stopped (see QICTL) */ /* deco_sg_table - DECO view of scatter/gather table */ struct deco_sg_table { u64 addr; /* Segment Address */ u32 elen; /* E, F bits + 30-bit length */ u32 bpid_offset; /* Buffer Pool ID + 16-bit length */ }; /* * caam_deco - descriptor controller - CHA cluster block * * Only accessible when direct DECO access is turned on * (done in DECORR, via MID programmed in DECOxMID * * 5 typical, base + 0x8000/9000/a000/b000 * Padded out to 0x1000 long */ struct caam_deco { u32 rsvd1; u32 cls1_mode; /* CxC1MR - Class 1 Mode */ u32 rsvd2; u32 cls1_keysize; /* CxC1KSR - Class 1 Key Size */ u32 cls1_datasize_hi; /* CxC1DSR - Class 1 Data Size */ u32 cls1_datasize_lo; u32 rsvd3; u32 cls1_icvsize; /* CxC1ICVSR - Class 1 ICV size */ u32 rsvd4[5]; u32 cha_ctrl; /* CCTLR - CHA control */ u32 rsvd5; u32 irq_crtl; /* CxCIRQ - CCB interrupt done/error/clear */ u32 rsvd6; u32 clr_written; /* CxCWR - Clear-Written */ u32 ccb_status_hi; /* CxCSTA - CCB Status/Error */ u32 ccb_status_lo; u32 rsvd7[3]; u32 aad_size; /* CxAADSZR - Current AAD Size */ u32 rsvd8; u32 cls1_iv_size; /* CxC1IVSZR - Current Class 1 IV Size */ u32 rsvd9[7]; u32 pkha_a_size; /* PKASZRx - Size of PKHA A */ u32 rsvd10; u32 pkha_b_size; /* PKBSZRx - Size of PKHA B */ u32 rsvd11; u32 pkha_n_size; /* PKNSZRx - Size of PKHA N */ u32 rsvd12; u32 pkha_e_size; /* PKESZRx - Size of PKHA E */ u32 rsvd13[24]; u32 cls1_ctx[16]; /* CxC1CTXR - Class 1 Context @100 */ u32 rsvd14[48]; u32 cls1_key[8]; /* CxC1KEYR - Class 1 Key @200 */ u32 rsvd15[121]; u32 cls2_mode; /* CxC2MR - Class 2 Mode */ u32 rsvd16; u32 cls2_keysize; /* CxX2KSR - Class 2 Key Size */ u32 cls2_datasize_hi; /* CxC2DSR - Class 2 Data Size */ u32 cls2_datasize_lo; u32 rsvd17; u32 cls2_icvsize; /* CxC2ICVSZR - Class 2 ICV Size */ u32 rsvd18[56]; u32 cls2_ctx[18]; /* CxC2CTXR - Class 2 Context @500 */ u32 rsvd19[46]; u32 cls2_key[32]; /* CxC2KEYR - Class2 Key @600 */ u32 rsvd20[84]; u32 inp_infofifo_hi; /* CxIFIFO - Input Info FIFO @7d0 */ u32 inp_infofifo_lo; u32 rsvd21[2]; u64 inp_datafifo; /* CxDFIFO - Input Data FIFO */ u32 rsvd22[2]; u64 out_datafifo; /* CxOFIFO - Output Data FIFO */ u32 rsvd23[2]; u32 jr_ctl_hi; /* CxJRR - JobR Control Register @800 */ u32 jr_ctl_lo; u64 jr_descaddr; /* CxDADR - JobR Descriptor Address */ #define DECO_OP_STATUS_HI_ERR_MASK 0xF00000FF u32 op_status_hi; /* DxOPSTA - DECO Operation Status */ u32 op_status_lo; u32 rsvd24[2]; u32 liodn; /* DxLSR - DECO LIODN Status - non-seq */ u32 td_liodn; /* DxLSR - DECO LIODN Status - trustdesc */ u32 rsvd26[6]; u64 math[4]; /* DxMTH - Math register */ u32 rsvd27[8]; struct deco_sg_table gthr_tbl[4]; /* DxGTR - Gather Tables */ u32 rsvd28[16]; struct deco_sg_table sctr_tbl[4]; /* DxSTR - Scatter Tables */ u32 rsvd29[48]; u32 descbuf[64]; /* DxDESB - Descriptor buffer */ u32 rscvd30[193]; #define DESC_DBG_DECO_STAT_VALID 0x80000000 #define DESC_DBG_DECO_STAT_MASK 0x00F00000 #define DESC_DBG_DECO_STAT_SHIFT 20 u32 desc_dbg; /* DxDDR - DECO Debug Register */ u32 rsvd31[13]; #define DESC_DER_DECO_STAT_MASK 0x000F0000 #define DESC_DER_DECO_STAT_SHIFT 16 u32 dbg_exec; /* DxDER - DECO Debug Exec Register */ u32 rsvd32[112]; }; #define DECO_STAT_HOST_ERR 0xD #define DECO_JQCR_WHL 0x20000000 #define DECO_JQCR_FOUR 0x10000000 #define JR_BLOCK_NUMBER 1 #define ASSURE_BLOCK_NUMBER 6 #define QI_BLOCK_NUMBER 7 #define DECO_BLOCK_NUMBER 8 #define PG_SIZE_4K 0x1000 #define PG_SIZE_64K 0x10000 #endif /* REGS_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1