Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tom Lendacky | 1583 | 87.36% | 1 | 10.00% |
Ard Biesheuvel | 116 | 6.40% | 1 | 10.00% |
Gary R Hook | 85 | 4.69% | 3 | 30.00% |
Herbert Xu | 19 | 1.05% | 1 | 10.00% |
Mikulas Patocka | 4 | 0.22% | 1 | 10.00% |
Fengguang Wu | 3 | 0.17% | 1 | 10.00% |
Thomas Gleixner | 1 | 0.06% | 1 | 10.00% |
Chi Minghao | 1 | 0.06% | 1 | 10.00% |
Total | 1812 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) AES crypto API support * * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> */ #include <linux/module.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/scatterwalk.h> #include "ccp-crypto.h" static int ccp_aes_complete(struct crypto_async_request *async_req, int ret) { struct skcipher_request *req = skcipher_request_cast(async_req); struct ccp_ctx *ctx = crypto_skcipher_ctx_dma( crypto_skcipher_reqtfm(req)); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx_dma(req); if (ret) return ret; if (ctx->u.aes.mode != CCP_AES_MODE_ECB) memcpy(req->iv, rctx->iv, AES_BLOCK_SIZE); return 0; } static int ccp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct ccp_crypto_skcipher_alg *alg = ccp_crypto_skcipher_alg(tfm); struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); switch (key_len) { case AES_KEYSIZE_128: ctx->u.aes.type = CCP_AES_TYPE_128; break; case AES_KEYSIZE_192: ctx->u.aes.type = CCP_AES_TYPE_192; break; case AES_KEYSIZE_256: ctx->u.aes.type = CCP_AES_TYPE_256; break; default: return -EINVAL; } ctx->u.aes.mode = alg->mode; ctx->u.aes.key_len = key_len; memcpy(ctx->u.aes.key, key, key_len); sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); return 0; } static int ccp_aes_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx_dma(req); struct scatterlist *iv_sg = NULL; unsigned int iv_len = 0; if (!ctx->u.aes.key_len) return -EINVAL; if (((ctx->u.aes.mode == CCP_AES_MODE_ECB) || (ctx->u.aes.mode == CCP_AES_MODE_CBC)) && (req->cryptlen & (AES_BLOCK_SIZE - 1))) return -EINVAL; if (ctx->u.aes.mode != CCP_AES_MODE_ECB) { if (!req->iv) return -EINVAL; memcpy(rctx->iv, req->iv, AES_BLOCK_SIZE); iv_sg = &rctx->iv_sg; iv_len = AES_BLOCK_SIZE; sg_init_one(iv_sg, rctx->iv, iv_len); } memset(&rctx->cmd, 0, sizeof(rctx->cmd)); INIT_LIST_HEAD(&rctx->cmd.entry); rctx->cmd.engine = CCP_ENGINE_AES; rctx->cmd.u.aes.type = ctx->u.aes.type; rctx->cmd.u.aes.mode = ctx->u.aes.mode; rctx->cmd.u.aes.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT : CCP_AES_ACTION_DECRYPT; rctx->cmd.u.aes.key = &ctx->u.aes.key_sg; rctx->cmd.u.aes.key_len = ctx->u.aes.key_len; rctx->cmd.u.aes.iv = iv_sg; rctx->cmd.u.aes.iv_len = iv_len; rctx->cmd.u.aes.src = req->src; rctx->cmd.u.aes.src_len = req->cryptlen; rctx->cmd.u.aes.dst = req->dst; return ccp_crypto_enqueue_request(&req->base, &rctx->cmd); } static int ccp_aes_encrypt(struct skcipher_request *req) { return ccp_aes_crypt(req, true); } static int ccp_aes_decrypt(struct skcipher_request *req) { return ccp_aes_crypt(req, false); } static int ccp_aes_init_tfm(struct crypto_skcipher *tfm) { struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); ctx->complete = ccp_aes_complete; ctx->u.aes.key_len = 0; crypto_skcipher_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx)); return 0; } static int ccp_aes_rfc3686_complete(struct crypto_async_request *async_req, int ret) { struct skcipher_request *req = skcipher_request_cast(async_req); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx_dma(req); /* Restore the original pointer */ req->iv = rctx->rfc3686_info; return ccp_aes_complete(async_req, ret); } static int ccp_aes_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); if (key_len < CTR_RFC3686_NONCE_SIZE) return -EINVAL; key_len -= CTR_RFC3686_NONCE_SIZE; memcpy(ctx->u.aes.nonce, key + key_len, CTR_RFC3686_NONCE_SIZE); return ccp_aes_setkey(tfm, key, key_len); } static int ccp_aes_rfc3686_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx_dma(req); u8 *iv; /* Initialize the CTR block */ iv = rctx->rfc3686_iv; memcpy(iv, ctx->u.aes.nonce, CTR_RFC3686_NONCE_SIZE); iv += CTR_RFC3686_NONCE_SIZE; memcpy(iv, req->iv, CTR_RFC3686_IV_SIZE); iv += CTR_RFC3686_IV_SIZE; *(__be32 *)iv = cpu_to_be32(1); /* Point to the new IV */ rctx->rfc3686_info = req->iv; req->iv = rctx->rfc3686_iv; return ccp_aes_crypt(req, encrypt); } static int ccp_aes_rfc3686_encrypt(struct skcipher_request *req) { return ccp_aes_rfc3686_crypt(req, true); } static int ccp_aes_rfc3686_decrypt(struct skcipher_request *req) { return ccp_aes_rfc3686_crypt(req, false); } static int ccp_aes_rfc3686_init_tfm(struct crypto_skcipher *tfm) { struct ccp_ctx *ctx = crypto_skcipher_ctx_dma(tfm); ctx->complete = ccp_aes_rfc3686_complete; ctx->u.aes.key_len = 0; crypto_skcipher_set_reqsize_dma(tfm, sizeof(struct ccp_aes_req_ctx)); return 0; } static const struct skcipher_alg ccp_aes_defaults = { .setkey = ccp_aes_setkey, .encrypt = ccp_aes_encrypt, .decrypt = ccp_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .init = ccp_aes_init_tfm, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ccp_ctx) + CRYPTO_DMA_PADDING, .base.cra_priority = CCP_CRA_PRIORITY, .base.cra_module = THIS_MODULE, }; static const struct skcipher_alg ccp_aes_rfc3686_defaults = { .setkey = ccp_aes_rfc3686_setkey, .encrypt = ccp_aes_rfc3686_encrypt, .decrypt = ccp_aes_rfc3686_decrypt, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .init = ccp_aes_rfc3686_init_tfm, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = CTR_RFC3686_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ccp_ctx) + CRYPTO_DMA_PADDING, .base.cra_priority = CCP_CRA_PRIORITY, .base.cra_module = THIS_MODULE, }; struct ccp_aes_def { enum ccp_aes_mode mode; unsigned int version; const char *name; const char *driver_name; unsigned int blocksize; unsigned int ivsize; const struct skcipher_alg *alg_defaults; }; static struct ccp_aes_def aes_algs[] = { { .mode = CCP_AES_MODE_ECB, .version = CCP_VERSION(3, 0), .name = "ecb(aes)", .driver_name = "ecb-aes-ccp", .blocksize = AES_BLOCK_SIZE, .ivsize = 0, .alg_defaults = &ccp_aes_defaults, }, { .mode = CCP_AES_MODE_CBC, .version = CCP_VERSION(3, 0), .name = "cbc(aes)", .driver_name = "cbc-aes-ccp", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .alg_defaults = &ccp_aes_defaults, }, { .mode = CCP_AES_MODE_CFB, .version = CCP_VERSION(3, 0), .name = "cfb(aes)", .driver_name = "cfb-aes-ccp", .blocksize = 1, .ivsize = AES_BLOCK_SIZE, .alg_defaults = &ccp_aes_defaults, }, { .mode = CCP_AES_MODE_OFB, .version = CCP_VERSION(3, 0), .name = "ofb(aes)", .driver_name = "ofb-aes-ccp", .blocksize = 1, .ivsize = AES_BLOCK_SIZE, .alg_defaults = &ccp_aes_defaults, }, { .mode = CCP_AES_MODE_CTR, .version = CCP_VERSION(3, 0), .name = "ctr(aes)", .driver_name = "ctr-aes-ccp", .blocksize = 1, .ivsize = AES_BLOCK_SIZE, .alg_defaults = &ccp_aes_defaults, }, { .mode = CCP_AES_MODE_CTR, .version = CCP_VERSION(3, 0), .name = "rfc3686(ctr(aes))", .driver_name = "rfc3686-ctr-aes-ccp", .blocksize = 1, .ivsize = CTR_RFC3686_IV_SIZE, .alg_defaults = &ccp_aes_rfc3686_defaults, }, }; static int ccp_register_aes_alg(struct list_head *head, const struct ccp_aes_def *def) { struct ccp_crypto_skcipher_alg *ccp_alg; struct skcipher_alg *alg; int ret; ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); if (!ccp_alg) return -ENOMEM; INIT_LIST_HEAD(&ccp_alg->entry); ccp_alg->mode = def->mode; /* Copy the defaults and override as necessary */ alg = &ccp_alg->alg; *alg = *def->alg_defaults; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->driver_name); alg->base.cra_blocksize = def->blocksize; alg->ivsize = def->ivsize; ret = crypto_register_skcipher(alg); if (ret) { pr_err("%s skcipher algorithm registration error (%d)\n", alg->base.cra_name, ret); kfree(ccp_alg); return ret; } list_add(&ccp_alg->entry, head); return 0; } int ccp_register_aes_algs(struct list_head *head) { int i, ret; unsigned int ccpversion = ccp_version(); for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { if (aes_algs[i].version > ccpversion) continue; ret = ccp_register_aes_alg(head, &aes_algs[i]); if (ret) return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1