Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gilad Ben-Yossef | 7211 | 98.50% | 22 | 59.46% |
Ofir Drang | 74 | 1.01% | 1 | 2.70% |
Ard Biesheuvel | 10 | 0.14% | 2 | 5.41% |
Geert Uytterhoeven | 6 | 0.08% | 2 | 5.41% |
Gustavo A. R. Silva | 4 | 0.05% | 2 | 5.41% |
Eric Biggers | 3 | 0.04% | 1 | 2.70% |
Fengguang Wu | 3 | 0.04% | 1 | 2.70% |
Waiman Long | 2 | 0.03% | 1 | 2.70% |
Vladis Dronov | 2 | 0.03% | 1 | 2.70% |
Uri Shir | 2 | 0.03% | 1 | 2.70% |
Jianglei Nie | 2 | 0.03% | 1 | 2.70% |
Colin Ian King | 1 | 0.01% | 1 | 2.70% |
dingsenjie | 1 | 0.01% | 1 | 2.70% |
Total | 7321 | 37 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */ #include <linux/kernel.h> #include <linux/module.h> #include <crypto/algapi.h> #include <crypto/internal/skcipher.h> #include <crypto/internal/des.h> #include <crypto/xts.h> #include <crypto/sm4.h> #include <crypto/scatterwalk.h> #include "cc_driver.h" #include "cc_lli_defs.h" #include "cc_buffer_mgr.h" #include "cc_cipher.h" #include "cc_request_mgr.h" #define MAX_SKCIPHER_SEQ_LEN 6 #define template_skcipher template_u.skcipher struct cc_user_key_info { u8 *key; dma_addr_t key_dma_addr; }; struct cc_hw_key_info { enum cc_hw_crypto_key key1_slot; enum cc_hw_crypto_key key2_slot; }; struct cc_cpp_key_info { u8 slot; enum cc_cpp_alg alg; }; enum cc_key_type { CC_UNPROTECTED_KEY, /* User key */ CC_HW_PROTECTED_KEY, /* HW (FDE) key */ CC_POLICY_PROTECTED_KEY, /* CPP key */ CC_INVALID_PROTECTED_KEY /* Invalid key */ }; struct cc_cipher_ctx { struct cc_drvdata *drvdata; int keylen; int cipher_mode; int flow_mode; unsigned int flags; enum cc_key_type key_type; struct cc_user_key_info user; union { struct cc_hw_key_info hw; struct cc_cpp_key_info cpp; }; struct crypto_shash *shash_tfm; struct crypto_skcipher *fallback_tfm; bool fallback_on; }; static void cc_cipher_complete(struct device *dev, void *cc_req, int err); static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); return ctx_p->key_type; } static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: switch (size) { case CC_AES_128_BIT_KEY_SIZE: case CC_AES_192_BIT_KEY_SIZE: if (ctx_p->cipher_mode != DRV_CIPHER_XTS) return 0; break; case CC_AES_256_BIT_KEY_SIZE: return 0; case (CC_AES_192_BIT_KEY_SIZE * 2): case (CC_AES_256_BIT_KEY_SIZE * 2): if (ctx_p->cipher_mode == DRV_CIPHER_XTS || ctx_p->cipher_mode == DRV_CIPHER_ESSIV) return 0; break; default: break; } break; case S_DIN_to_DES: if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE) return 0; break; case S_DIN_to_SM4: if (size == SM4_KEY_SIZE) return 0; break; default: break; } return -EINVAL; } static int validate_data_size(struct cc_cipher_ctx *ctx_p, unsigned int size) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: switch (ctx_p->cipher_mode) { case DRV_CIPHER_XTS: case DRV_CIPHER_CBC_CTS: if (size >= AES_BLOCK_SIZE) return 0; break; case DRV_CIPHER_OFB: case DRV_CIPHER_CTR: return 0; case DRV_CIPHER_ECB: case DRV_CIPHER_CBC: case DRV_CIPHER_ESSIV: if (IS_ALIGNED(size, AES_BLOCK_SIZE)) return 0; break; default: break; } break; case S_DIN_to_DES: if (IS_ALIGNED(size, DES_BLOCK_SIZE)) return 0; break; case S_DIN_to_SM4: switch (ctx_p->cipher_mode) { case DRV_CIPHER_CTR: return 0; case DRV_CIPHER_ECB: case DRV_CIPHER_CBC: if (IS_ALIGNED(size, SM4_BLOCK_SIZE)) return 0; break; default: break; } break; default: break; } return -EINVAL; } static int cc_cipher_init(struct crypto_tfm *tfm) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct cc_crypto_alg *cc_alg = container_of(tfm->__crt_alg, struct cc_crypto_alg, skcipher_alg.base); struct device *dev = drvdata_to_dev(cc_alg->drvdata); unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; unsigned int fallback_req_size = 0; dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p, crypto_tfm_alg_name(tfm)); ctx_p->cipher_mode = cc_alg->cipher_mode; ctx_p->flow_mode = cc_alg->flow_mode; ctx_p->drvdata = cc_alg->drvdata; if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { const char *name = crypto_tfm_alg_name(tfm); /* Alloc hash tfm for essiv */ ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(ctx_p->shash_tfm)) { dev_err(dev, "Error allocating hash tfm for ESSIV.\n"); return PTR_ERR(ctx_p->shash_tfm); } max_key_buf_size <<= 1; /* Alloc fallabck tfm or essiv when key size != 256 bit */ ctx_p->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(ctx_p->fallback_tfm)) { /* Note we're still allowing registration with no fallback since it's * better to have most modes supported than none at all. */ dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n", name); ctx_p->fallback_tfm = NULL; } else { fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm); } } crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct cipher_req_ctx) + fallback_req_size); /* Allocate key buffer, cache line aligned */ ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL); if (!ctx_p->user.key) goto free_fallback; dev_dbg(dev, "Allocated key buffer in context. key=@%p\n", ctx_p->user.key); /* Map key buffer */ ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key, max_key_buf_size, DMA_TO_DEVICE); if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) { dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n", max_key_buf_size, ctx_p->user.key); goto free_key; } dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n", max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr); return 0; free_key: kfree(ctx_p->user.key); free_fallback: crypto_free_skcipher(ctx_p->fallback_tfm); crypto_free_shash(ctx_p->shash_tfm); return -ENOMEM; } static void cc_cipher_exit(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct cc_crypto_alg *cc_alg = container_of(alg, struct cc_crypto_alg, skcipher_alg.base); unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); dev_dbg(dev, "Clearing context @%p for %s\n", crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm)); if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* Free hash tfm for essiv */ crypto_free_shash(ctx_p->shash_tfm); ctx_p->shash_tfm = NULL; crypto_free_skcipher(ctx_p->fallback_tfm); ctx_p->fallback_tfm = NULL; } /* Unmap key buffer */ dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n", &ctx_p->user.key_dma_addr); /* Free key buffer in context */ dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key); kfree_sensitive(ctx_p->user.key); } struct tdes_keys { u8 key1[DES_KEY_SIZE]; u8 key2[DES_KEY_SIZE]; u8 key3[DES_KEY_SIZE]; }; static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num) { switch (slot_num) { case 0: return KFDE0_KEY; case 1: return KFDE1_KEY; case 2: return KFDE2_KEY; case 3: return KFDE3_KEY; } return END_OF_KEYS; } static u8 cc_slot_to_cpp_key(u8 slot_num) { return (slot_num - CC_FIRST_CPP_KEY_SLOT); } static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num) { if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT) return CC_HW_PROTECTED_KEY; else if (slot_num >= CC_FIRST_CPP_KEY_SLOT && slot_num <= CC_LAST_CPP_KEY_SLOT) return CC_POLICY_PROTECTED_KEY; else return CC_INVALID_PROTECTED_KEY; } static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm); struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); struct cc_hkey_info hki; dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n", ctx_p, crypto_tfm_alg_name(tfm), keylen); dump_byte_array("key", key, keylen); /* STAT_PHASE_0: Init and sanity checks */ /* This check the size of the protected key token */ if (keylen != sizeof(hki)) { dev_err(dev, "Unsupported protected key size %d.\n", keylen); return -EINVAL; } memcpy(&hki, key, keylen); /* The real key len for crypto op is the size of the HW key * referenced by the HW key slot, not the hardware key token */ keylen = hki.keylen; if (validate_keys_sizes(ctx_p, keylen)) { dev_dbg(dev, "Unsupported key size %d.\n", keylen); return -EINVAL; } ctx_p->keylen = keylen; ctx_p->fallback_on = false; switch (cc_slot_to_key_type(hki.hw_key1)) { case CC_HW_PROTECTED_KEY: if (ctx_p->flow_mode == S_DIN_to_SM4) { dev_err(dev, "Only AES HW protected keys are supported\n"); return -EINVAL; } ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1); if (ctx_p->hw.key1_slot == END_OF_KEYS) { dev_err(dev, "Unsupported hw key1 number (%d)\n", hki.hw_key1); return -EINVAL; } if (ctx_p->cipher_mode == DRV_CIPHER_XTS || ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { if (hki.hw_key1 == hki.hw_key2) { dev_err(dev, "Illegal hw key numbers (%d,%d)\n", hki.hw_key1, hki.hw_key2); return -EINVAL; } ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2); if (ctx_p->hw.key2_slot == END_OF_KEYS) { dev_err(dev, "Unsupported hw key2 number (%d)\n", hki.hw_key2); return -EINVAL; } } ctx_p->key_type = CC_HW_PROTECTED_KEY; dev_dbg(dev, "HW protected key %d/%d set\n.", ctx_p->hw.key1_slot, ctx_p->hw.key2_slot); break; case CC_POLICY_PROTECTED_KEY: if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) { dev_err(dev, "CPP keys not supported in this hardware revision.\n"); return -EINVAL; } if (ctx_p->cipher_mode != DRV_CIPHER_CBC && ctx_p->cipher_mode != DRV_CIPHER_CTR) { dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n"); return -EINVAL; } ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1); if (ctx_p->flow_mode == S_DIN_to_AES) ctx_p->cpp.alg = CC_CPP_AES; else /* Must be SM4 since due to sethkey registration */ ctx_p->cpp.alg = CC_CPP_SM4; ctx_p->key_type = CC_POLICY_PROTECTED_KEY; dev_dbg(dev, "policy protected key alg: %d slot: %d.\n", ctx_p->cpp.alg, ctx_p->cpp.slot); break; default: dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1); return -EINVAL; } return 0; } static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm); struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); struct cc_crypto_alg *cc_alg = container_of(tfm->__crt_alg, struct cc_crypto_alg, skcipher_alg.base); unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n", ctx_p, crypto_tfm_alg_name(tfm), keylen); dump_byte_array("key", key, keylen); /* STAT_PHASE_0: Init and sanity checks */ if (validate_keys_sizes(ctx_p, keylen)) { dev_dbg(dev, "Invalid key size %d.\n", keylen); return -EINVAL; } if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* We only support 256 bit ESSIV-CBC-AES keys */ if (keylen != AES_KEYSIZE_256) { unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK; if (likely(ctx_p->fallback_tfm)) { ctx_p->fallback_on = true; crypto_skcipher_clear_flags(ctx_p->fallback_tfm, CRYPTO_TFM_REQ_MASK); crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags); return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen); } dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen); return -EINVAL; } /* Internal ESSIV key buffer is double sized */ max_key_buf_size <<= 1; } ctx_p->fallback_on = false; ctx_p->key_type = CC_UNPROTECTED_KEY; /* * Verify DES weak keys * Note that we're dropping the expanded key since the * HW does the expansion on its own. */ if (ctx_p->flow_mode == S_DIN_to_DES) { if ((keylen == DES3_EDE_KEY_SIZE && verify_skcipher_des3_key(sktfm, key)) || verify_skcipher_des_key(sktfm, key)) { dev_dbg(dev, "weak DES key"); return -EINVAL; } } if (ctx_p->cipher_mode == DRV_CIPHER_XTS && xts_verify_key(sktfm, key, keylen)) { dev_dbg(dev, "weak XTS key"); return -EINVAL; } /* STAT_PHASE_1: Copy key to ctx */ dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); memcpy(ctx_p->user.key, key, keylen); if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* sha256 for key2 - use sw implementation */ int err; err = crypto_shash_tfm_digest(ctx_p->shash_tfm, ctx_p->user.key, keylen, ctx_p->user.key + keylen); if (err) { dev_err(dev, "Failed to hash ESSIV key.\n"); return err; } keylen <<= 1; } dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); ctx_p->keylen = keylen; dev_dbg(dev, "return safely"); return 0; } static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: return S_AES_to_DOUT; case S_DIN_to_DES: return S_DES_to_DOUT; case S_DIN_to_SM4: return S_SM4_to_DOUT; default: return ctx_p->flow_mode; } } static void cc_setup_readiv_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, unsigned int ivsize, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); int cipher_mode = ctx_p->cipher_mode; int flow_mode = cc_out_setup_mode(ctx_p); int direction = req_ctx->gen_ctx.op_type; dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) return; switch (cipher_mode) { case DRV_CIPHER_ECB: break; case DRV_CIPHER_CBC: case DRV_CIPHER_CBC_CTS: case DRV_CIPHER_CTR: case DRV_CIPHER_OFB: /* Read next IV */ hw_desc_init(&desc[*seq_size]); set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1); set_cipher_config0(&desc[*seq_size], direction); set_flow_mode(&desc[*seq_size], flow_mode); set_cipher_mode(&desc[*seq_size], cipher_mode); if (cipher_mode == DRV_CIPHER_CTR || cipher_mode == DRV_CIPHER_OFB) { set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1); } else { set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0); } set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); (*seq_size)++; break; case DRV_CIPHER_XTS: case DRV_CIPHER_ESSIV: /* IV */ hw_desc_init(&desc[*seq_size]); set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); set_flow_mode(&desc[*seq_size], flow_mode); set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT, 1); set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); (*seq_size)++; break; default: dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); } } static void cc_setup_state_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, unsigned int ivsize, unsigned int nbytes, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); int cipher_mode = ctx_p->cipher_mode; int flow_mode = ctx_p->flow_mode; int direction = req_ctx->gen_ctx.op_type; dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; switch (cipher_mode) { case DRV_CIPHER_ECB: break; case DRV_CIPHER_CBC: case DRV_CIPHER_CBC_CTS: case DRV_CIPHER_CTR: case DRV_CIPHER_OFB: /* Load IV */ hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize, NS_BIT); set_cipher_config0(&desc[*seq_size], direction); set_flow_mode(&desc[*seq_size], flow_mode); set_cipher_mode(&desc[*seq_size], cipher_mode); if (cipher_mode == DRV_CIPHER_CTR || cipher_mode == DRV_CIPHER_OFB) { set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); } else { set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0); } (*seq_size)++; break; case DRV_CIPHER_XTS: case DRV_CIPHER_ESSIV: break; default: dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); } } static void cc_setup_xex_state_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, unsigned int ivsize, unsigned int nbytes, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); int cipher_mode = ctx_p->cipher_mode; int flow_mode = ctx_p->flow_mode; int direction = req_ctx->gen_ctx.op_type; dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr; unsigned int key_len = (ctx_p->keylen / 2); dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; unsigned int key_offset = key_len; switch (cipher_mode) { case DRV_CIPHER_ECB: break; case DRV_CIPHER_CBC: case DRV_CIPHER_CBC_CTS: case DRV_CIPHER_CTR: case DRV_CIPHER_OFB: break; case DRV_CIPHER_XTS: case DRV_CIPHER_ESSIV: if (cipher_mode == DRV_CIPHER_ESSIV) key_len = SHA256_DIGEST_SIZE; /* load XEX key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key2_slot); } else { set_din_type(&desc[*seq_size], DMA_DLLI, (key_dma_addr + key_offset), key_len, NS_BIT); } set_xex_data_unit_size(&desc[*seq_size], nbytes); set_flow_mode(&desc[*seq_size], S_DIN_to_AES2); set_key_size_aes(&desc[*seq_size], key_len); set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY); (*seq_size)++; /* Load IV */ hw_desc_init(&desc[*seq_size]); set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); set_key_size_aes(&desc[*seq_size], key_len); set_flow_mode(&desc[*seq_size], flow_mode); set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT); (*seq_size)++; break; default: dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); } } static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: return DIN_AES_DOUT; case S_DIN_to_DES: return DIN_DES_DOUT; case S_DIN_to_SM4: return DIN_SM4_DOUT; default: return ctx_p->flow_mode; } } static void cc_setup_key_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, unsigned int nbytes, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); int cipher_mode = ctx_p->cipher_mode; int flow_mode = ctx_p->flow_mode; int direction = req_ctx->gen_ctx.op_type; dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr; unsigned int key_len = ctx_p->keylen; unsigned int din_size; switch (cipher_mode) { case DRV_CIPHER_CBC: case DRV_CIPHER_CBC_CTS: case DRV_CIPHER_CTR: case DRV_CIPHER_OFB: case DRV_CIPHER_ECB: /* Load key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) { /* We use the AES key size coding for all CPP algs */ set_key_size_aes(&desc[*seq_size], key_len); set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot); flow_mode = cc_out_flow_mode(ctx_p); } else { if (flow_mode == S_DIN_to_AES) { if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key1_slot); } else { /* CC_POLICY_UNPROTECTED_KEY * Invalid keys are filtered out in * sethkey() */ din_size = (key_len == 24) ? AES_MAX_KEY_SIZE : key_len; set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, din_size, NS_BIT); } set_key_size_aes(&desc[*seq_size], key_len); } else { /*des*/ set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, key_len, NS_BIT); set_key_size_des(&desc[*seq_size], key_len); } set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); } set_flow_mode(&desc[*seq_size], flow_mode); (*seq_size)++; break; case DRV_CIPHER_XTS: case DRV_CIPHER_ESSIV: /* Load AES key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key1_slot); } else { set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, (key_len / 2), NS_BIT); } set_key_size_aes(&desc[*seq_size], (key_len / 2)); set_flow_mode(&desc[*seq_size], flow_mode); set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); (*seq_size)++; break; default: dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); } } static void cc_setup_mlli_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes, void *areq, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) { /* bypass */ dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n", &req_ctx->mlli_params.mlli_dma_addr, req_ctx->mlli_params.mlli_len, ctx_p->drvdata->mlli_sram_addr); hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, req_ctx->mlli_params.mlli_dma_addr, req_ctx->mlli_params.mlli_len, NS_BIT); set_dout_sram(&desc[*seq_size], ctx_p->drvdata->mlli_sram_addr, req_ctx->mlli_params.mlli_len); set_flow_mode(&desc[*seq_size], BYPASS); (*seq_size)++; } } static void cc_setup_flow_desc(struct crypto_tfm *tfm, struct cipher_req_ctx *req_ctx, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes, struct cc_hw_desc desc[], unsigned int *seq_size) { struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); unsigned int flow_mode = cc_out_flow_mode(ctx_p); bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY || ctx_p->cipher_mode == DRV_CIPHER_ECB); /* Process */ if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) { dev_dbg(dev, " data params addr %pad length 0x%X\n", &sg_dma_address(src), nbytes); dev_dbg(dev, " data params addr %pad length 0x%X\n", &sg_dma_address(dst), nbytes); hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src), nbytes, NS_BIT); set_dout_dlli(&desc[*seq_size], sg_dma_address(dst), nbytes, NS_BIT, (!last_desc ? 0 : 1)); if (last_desc) set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); set_flow_mode(&desc[*seq_size], flow_mode); (*seq_size)++; } else { hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_MLLI, ctx_p->drvdata->mlli_sram_addr, req_ctx->in_mlli_nents, NS_BIT); if (req_ctx->out_nents == 0) { dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", ctx_p->drvdata->mlli_sram_addr, ctx_p->drvdata->mlli_sram_addr); set_dout_mlli(&desc[*seq_size], ctx_p->drvdata->mlli_sram_addr, req_ctx->in_mlli_nents, NS_BIT, (!last_desc ? 0 : 1)); } else { dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", ctx_p->drvdata->mlli_sram_addr, ctx_p->drvdata->mlli_sram_addr + (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents); set_dout_mlli(&desc[*seq_size], (ctx_p->drvdata->mlli_sram_addr + (LLI_ENTRY_BYTE_SIZE * req_ctx->in_mlli_nents)), req_ctx->out_mlli_nents, NS_BIT, (!last_desc ? 0 : 1)); } if (last_desc) set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); set_flow_mode(&desc[*seq_size], flow_mode); (*seq_size)++; } } static void cc_cipher_complete(struct device *dev, void *cc_req, int err) { struct skcipher_request *req = (struct skcipher_request *)cc_req; struct scatterlist *dst = req->dst; struct scatterlist *src = req->src; struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req); unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm); if (err != -EINPROGRESS) { /* Not a BACKLOG notification */ cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst); memcpy(req->iv, req_ctx->iv, ivsize); kfree_sensitive(req_ctx->iv); } skcipher_request_complete(req, err); } static int cc_cipher_process(struct skcipher_request *req, enum drv_crypto_direction direction) { struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm); struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm); struct scatterlist *dst = req->dst; struct scatterlist *src = req->src; unsigned int nbytes = req->cryptlen; void *iv = req->iv; struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN]; struct cc_crypto_req cc_req = {}; int rc; unsigned int seq_len = 0; gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n", ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Encrypt" : "Decrypt"), req, iv, nbytes); /* STAT_PHASE_0: Init and sanity checks */ if (validate_data_size(ctx_p, nbytes)) { dev_dbg(dev, "Unsupported data size %d.\n", nbytes); rc = -EINVAL; goto exit_process; } if (nbytes == 0) { /* No data to process is valid */ rc = 0; goto exit_process; } if (ctx_p->fallback_on) { struct skcipher_request *subreq = skcipher_request_ctx(req); *subreq = *req; skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm); if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT) return crypto_skcipher_encrypt(subreq); else return crypto_skcipher_decrypt(subreq); } /* The IV we are handed may be allocated from the stack so * we must copy it to a DMAable buffer before use. */ req_ctx->iv = kmemdup(iv, ivsize, flags); if (!req_ctx->iv) { rc = -ENOMEM; goto exit_process; } /* Setup request structure */ cc_req.user_cb = cc_cipher_complete; cc_req.user_arg = req; /* Setup CPP operation details */ if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) { cc_req.cpp.is_cpp = true; cc_req.cpp.alg = ctx_p->cpp.alg; cc_req.cpp.slot = ctx_p->cpp.slot; } /* Setup request context */ req_ctx->gen_ctx.op_type = direction; /* STAT_PHASE_1: Map buffers */ rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes, req_ctx->iv, src, dst, flags); if (rc) { dev_err(dev, "map_request() failed\n"); goto exit_process; } /* STAT_PHASE_2: Create sequence */ /* Setup state (IV) */ cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len); /* Setup MLLI line, if needed */ cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len); /* Setup key */ cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len); /* Setup state (IV and XEX key) */ cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len); /* Data processing */ cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len); /* Read next IV */ cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len); /* STAT_PHASE_3: Lock HW and push sequence */ rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { /* Failed to send the request or request completed * synchronously */ cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst); } exit_process: if (rc != -EINPROGRESS && rc != -EBUSY) { kfree_sensitive(req_ctx->iv); } return rc; } static int cc_cipher_encrypt(struct skcipher_request *req) { struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); memset(req_ctx, 0, sizeof(*req_ctx)); return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT); } static int cc_cipher_decrypt(struct skcipher_request *req) { struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); memset(req_ctx, 0, sizeof(*req_ctx)); return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT); } /* Block cipher alg */ static const struct cc_alg_template skcipher_algs[] = { { .name = "xts(paes)", .driver_name = "xts-paes-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_XTS, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "essiv(cbc(paes),sha256)", .driver_name = "essiv-paes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_ESSIV, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "ecb(paes)", .driver_name = "ecb-paes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "cbc(paes)", .driver_name = "cbc-paes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "ofb(paes)", .driver_name = "ofb-paes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_OFB, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "cts(cbc(paes))", .driver_name = "cts-cbc-paes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC_CTS, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { .name = "ctr(paes)", .driver_name = "ctr-paes-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, .sec_func = true, }, { /* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html * for the reason why this differs from the generic * implementation. */ .name = "xts(aes)", .driver_name = "xts-aes-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_XTS, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "essiv(cbc(aes),sha256)", .driver_name = "essiv-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_ESSIV, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, }, { .name = "ecb(aes)", .driver_name = "ecb-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "cbc(aes)", .driver_name = "cbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "ofb(aes)", .driver_name = "ofb-aes-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_OFB, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "cts(cbc(aes))", .driver_name = "cts-cbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC_CTS, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "ctr(aes)", .driver_name = "ctr-aes-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "cbc(des3_ede)", .driver_name = "cbc-3des-ccree", .blocksize = DES3_EDE_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "ecb(des3_ede)", .driver_name = "ecb-3des-ccree", .blocksize = DES3_EDE_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_DES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "cbc(des)", .driver_name = "cbc-des-ccree", .blocksize = DES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "ecb(des)", .driver_name = "ecb-des-ccree", .blocksize = DES_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_DES, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "cbc(sm4)", .driver_name = "cbc-sm4-ccree", .blocksize = SM4_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_SM4, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, }, { .name = "ecb(sm4)", .driver_name = "ecb-sm4-ccree", .blocksize = SM4_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_SM4, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, }, { .name = "ctr(sm4)", .driver_name = "ctr-sm4-ccree", .blocksize = 1, .template_skcipher = { .setkey = cc_cipher_setkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_SM4, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, }, { .name = "cbc(psm4)", .driver_name = "cbc-psm4-ccree", .blocksize = SM4_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_SM4, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, .sec_func = true, }, { .name = "ctr(psm4)", .driver_name = "ctr-psm4-ccree", .blocksize = SM4_BLOCK_SIZE, .template_skcipher = { .setkey = cc_cipher_sethkey, .encrypt = cc_cipher_encrypt, .decrypt = cc_cipher_decrypt, .min_keysize = CC_HW_KEY_SIZE, .max_keysize = CC_HW_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_SM4, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, .sec_func = true, }, }; static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl, struct device *dev) { struct cc_crypto_alg *t_alg; struct skcipher_alg *alg; t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); alg = &t_alg->skcipher_alg; memcpy(alg, &tmpl->template_skcipher, sizeof(*alg)); snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->driver_name); alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CC_CRA_PRIO; alg->base.cra_blocksize = tmpl->blocksize; alg->base.cra_alignmask = 0; alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx); alg->base.cra_init = cc_cipher_init; alg->base.cra_exit = cc_cipher_exit; alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; t_alg->cipher_mode = tmpl->cipher_mode; t_alg->flow_mode = tmpl->flow_mode; return t_alg; } int cc_cipher_free(struct cc_drvdata *drvdata) { struct cc_crypto_alg *t_alg, *n; /* Remove registered algs */ list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) { crypto_unregister_skcipher(&t_alg->skcipher_alg); list_del(&t_alg->entry); } return 0; } int cc_cipher_alloc(struct cc_drvdata *drvdata) { struct cc_crypto_alg *t_alg; struct device *dev = drvdata_to_dev(drvdata); int rc = -ENOMEM; int alg; INIT_LIST_HEAD(&drvdata->alg_list); /* Linux crypto */ dev_dbg(dev, "Number of algorithms = %zu\n", ARRAY_SIZE(skcipher_algs)); for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) { if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) || !(drvdata->std_bodies & skcipher_algs[alg].std_body) || (drvdata->sec_disabled && skcipher_algs[alg].sec_func)) continue; dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name); t_alg = cc_create_alg(&skcipher_algs[alg], dev); if (IS_ERR(t_alg)) { rc = PTR_ERR(t_alg); dev_err(dev, "%s alg allocation failed\n", skcipher_algs[alg].driver_name); goto fail0; } t_alg->drvdata = drvdata; dev_dbg(dev, "registering %s\n", skcipher_algs[alg].driver_name); rc = crypto_register_skcipher(&t_alg->skcipher_alg); dev_dbg(dev, "%s alg registration rc = %x\n", t_alg->skcipher_alg.base.cra_driver_name, rc); if (rc) { dev_err(dev, "%s alg registration failed\n", t_alg->skcipher_alg.base.cra_driver_name); goto fail0; } list_add_tail(&t_alg->entry, &drvdata->alg_list); dev_dbg(dev, "Registered %s\n", t_alg->skcipher_alg.base.cra_driver_name); } return 0; fail0: cc_cipher_free(drvdata); return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1