Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evgeniy Polyakov | 10068 | 81.91% | 6 | 12.00% |
Patrick McHardy | 1710 | 13.91% | 17 | 34.00% |
Corentin Labbe | 194 | 1.58% | 2 | 4.00% |
Ard Biesheuvel | 136 | 1.11% | 2 | 4.00% |
Herbert Xu | 88 | 0.72% | 3 | 6.00% |
Christophe Jaillet | 33 | 0.27% | 2 | 4.00% |
Peter Senna Tschudin | 12 | 0.10% | 1 | 2.00% |
David S. Miller | 11 | 0.09% | 1 | 2.00% |
Al Viro | 10 | 0.08% | 1 | 2.00% |
Andrew Morton | 6 | 0.05% | 1 | 2.00% |
Yang Hongyang | 4 | 0.03% | 1 | 2.00% |
Hagen Paul Pfeifer | 2 | 0.02% | 1 | 2.00% |
Alexey Dobriyan | 2 | 0.02% | 1 | 2.00% |
Nikos Mavrogiannopoulos | 2 | 0.02% | 1 | 2.00% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.00% |
Masahiro Yamada | 2 | 0.02% | 1 | 2.00% |
Mike Frysinger | 2 | 0.02% | 1 | 2.00% |
Julia Lawall | 2 | 0.02% | 1 | 2.00% |
Tejun Heo | 1 | 0.01% | 1 | 2.00% |
Robert P. J. Day | 1 | 0.01% | 1 | 2.00% |
Daniel Mack | 1 | 0.01% | 1 | 2.00% |
Christoph Hellwig | 1 | 0.01% | 1 | 2.00% |
Jean Delvare | 1 | 0.01% | 1 | 2.00% |
Jussi Kivilinna | 1 | 0.01% | 1 | 2.00% |
Total | 12292 | 50 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> * All rights reserved. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mod_devicetable.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/crypto.h> #include <linux/hw_random.h> #include <linux/ktime.h> #include <crypto/algapi.h> #include <crypto/internal/des.h> #include <crypto/internal/skcipher.h> static char hifn_pll_ref[sizeof("extNNN")] = "ext"; module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); MODULE_PARM_DESC(hifn_pll_ref, "PLL reference clock (pci[freq] or ext[freq], default ext)"); static atomic_t hifn_dev_number; #define ACRYPTO_OP_DECRYPT 0 #define ACRYPTO_OP_ENCRYPT 1 #define ACRYPTO_OP_HMAC 2 #define ACRYPTO_OP_RNG 3 #define ACRYPTO_MODE_ECB 0 #define ACRYPTO_MODE_CBC 1 #define ACRYPTO_MODE_CFB 2 #define ACRYPTO_MODE_OFB 3 #define ACRYPTO_TYPE_AES_128 0 #define ACRYPTO_TYPE_AES_192 1 #define ACRYPTO_TYPE_AES_256 2 #define ACRYPTO_TYPE_3DES 3 #define ACRYPTO_TYPE_DES 4 #define PCI_VENDOR_ID_HIFN 0x13A3 #define PCI_DEVICE_ID_HIFN_7955 0x0020 #define PCI_DEVICE_ID_HIFN_7956 0x001d /* I/O region sizes */ #define HIFN_BAR0_SIZE 0x1000 #define HIFN_BAR1_SIZE 0x2000 #define HIFN_BAR2_SIZE 0x8000 /* DMA registres */ #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ #define HIFN_CHIP_ID 0x98 /* Chip ID */ /* * Processing Unit Registers (offset from BASEREG0) */ #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ #define HIFN_0_SPACESIZE 0x20 /* Register space size */ /* Processing Unit Control Register (HIFN_0_PUCTRL) */ #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ /* FIFO Status Register (HIFN_0_FIFOSTAT) */ #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ /* * DMA Interface Registers (offset from BASEREG1) */ #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ #define HIFN_1_PLL 0x4c /* 795x: PLL config */ #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ #define HIFN_1_REVID 0x98 /* Revision ID */ #define HIFN_1_UNLOCK_SECRET1 0xf4 #define HIFN_1_UNLOCK_SECRET2 0xfc #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ #define HIFN_1_PUB_OP 0x308 /* Public Operand */ #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ #define HIFN_1_RNG_DATA 0x318 /* RNG data */ #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ #define HIFN_DMACNFG_UNLOCK 0x00000800 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ /* PLL configuration register */ #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ /* Public key reset register (HIFN_1_PUB_RESET) */ #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ /* Public base address register (HIFN_1_PUB_BASE) */ #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ /* Public operand length register (HIFN_1_PUB_OPLEN) */ #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */ #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ /* Public operation register (HIFN_1_PUB_OP) */ #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ /* Public status register (HIFN_1_PUB_STATUS) */ #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ /* Public interrupt enable register (HIFN_1_PUB_IEN) */ #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ /* Random number generator config register (HIFN_1_RNG_CONFIG) */ #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ #define HIFN_NAMESIZE 32 #define HIFN_MAX_RESULT_ORDER 5 #define HIFN_D_CMD_RSIZE (24 * 1) #define HIFN_D_SRC_RSIZE (80 * 1) #define HIFN_D_DST_RSIZE (80 * 1) #define HIFN_D_RES_RSIZE (24 * 1) #define HIFN_D_DST_DALIGN 4 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1) #define AES_MIN_KEY_SIZE 16 #define AES_MAX_KEY_SIZE 32 #define HIFN_DES_KEY_LENGTH 8 #define HIFN_3DES_KEY_LENGTH 24 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE #define HIFN_IV_LENGTH 8 #define HIFN_AES_IV_LENGTH 16 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH #define HIFN_MAC_KEY_LENGTH 64 #define HIFN_MD5_LENGTH 16 #define HIFN_SHA1_LENGTH 20 #define HIFN_MAC_TRUNC_LENGTH 12 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) #define HIFN_USED_RESULT 12 struct hifn_desc { volatile __le32 l; volatile __le32 p; }; struct hifn_dma { struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1]; struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1]; struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1]; struct hifn_desc resr[HIFN_D_RES_RSIZE + 1]; u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; /* * Our current positions for insertion and removal from the descriptor * rings. */ volatile int cmdi, srci, dsti, resi; volatile int cmdu, srcu, dstu, resu; int cmdk, srck, dstk, resk; }; #define HIFN_FLAG_CMD_BUSY (1 << 0) #define HIFN_FLAG_SRC_BUSY (1 << 1) #define HIFN_FLAG_DST_BUSY (1 << 2) #define HIFN_FLAG_RES_BUSY (1 << 3) #define HIFN_FLAG_OLD_KEY (1 << 4) #define HIFN_DEFAULT_ACTIVE_NUM 5 struct hifn_device { char name[HIFN_NAMESIZE]; int irq; struct pci_dev *pdev; void __iomem *bar[3]; void *desc_virt; dma_addr_t desc_dma; u32 dmareg; void *sa[HIFN_D_RES_RSIZE]; spinlock_t lock; u32 flags; int active, started; struct delayed_work work; unsigned long reset; unsigned long success; unsigned long prev_success; u8 snum; struct tasklet_struct tasklet; struct crypto_queue queue; struct list_head alg_list; unsigned int pk_clk_freq; #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG unsigned int rng_wait_time; ktime_t rngtime; struct hwrng rng; #endif }; #define HIFN_D_LENGTH 0x0000ffff #define HIFN_D_NOINVALID 0x01000000 #define HIFN_D_MASKDONEIRQ 0x02000000 #define HIFN_D_DESTOVER 0x04000000 #define HIFN_D_OVER 0x08000000 #define HIFN_D_LAST 0x20000000 #define HIFN_D_JUMP 0x40000000 #define HIFN_D_VALID 0x80000000 struct hifn_base_command { volatile __le16 masks; volatile __le16 session_num; volatile __le16 total_source_count; volatile __le16 total_dest_count; }; #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ #define HIFN_BASE_CMD_DECODE 0x2000 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 #define HIFN_BASE_CMD_SRCLEN_S 14 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 #define HIFN_BASE_CMD_DSTLEN_S 12 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff /* * Structure to help build up the command data structure. */ struct hifn_crypt_command { volatile __le16 masks; volatile __le16 header_skip; volatile __le16 source_count; volatile __le16 reserved; }; #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 #define HIFN_CRYPT_CMD_SRCLEN_S 14 /* * Structure to help build up the command data structure. */ struct hifn_mac_command { volatile __le16 masks; volatile __le16 header_skip; volatile __le16 source_count; volatile __le16 reserved; }; #define HIFN_MAC_CMD_ALG_MASK 0x0001 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 #define HIFN_MAC_CMD_ALG_MD5 0x0001 #define HIFN_MAC_CMD_MODE_MASK 0x000c #define HIFN_MAC_CMD_MODE_HMAC 0x0000 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 #define HIFN_MAC_CMD_MODE_HASH 0x0008 #define HIFN_MAC_CMD_MODE_FULL 0x0004 #define HIFN_MAC_CMD_TRUNC 0x0010 #define HIFN_MAC_CMD_RESULT 0x0020 #define HIFN_MAC_CMD_APPEND 0x0040 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 #define HIFN_MAC_CMD_SRCLEN_S 14 /* * MAC POS IPsec initiates authentication after encryption on encodes * and before decryption on decodes. */ #define HIFN_MAC_CMD_POS_IPSEC 0x0200 #define HIFN_MAC_CMD_NEW_KEY 0x0800 struct hifn_comp_command { volatile __le16 masks; volatile __le16 header_skip; volatile __le16 source_count; volatile __le16 reserved; }; #define HIFN_COMP_CMD_SRCLEN_M 0xc000 #define HIFN_COMP_CMD_SRCLEN_S 14 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ struct hifn_base_result { volatile __le16 flags; volatile __le16 session; volatile __le16 src_cnt; /* 15:0 of source count */ volatile __le16 dst_cnt; /* 15:0 of dest count */ }; #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ #define HIFN_BASE_RES_SRCLEN_S 14 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ #define HIFN_BASE_RES_DSTLEN_S 12 struct hifn_comp_result { volatile __le16 flags; volatile __le16 crc; }; #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ #define HIFN_COMP_RES_LCB_S 8 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ struct hifn_mac_result { volatile __le16 flags; volatile __le16 reserved; /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ }; #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ struct hifn_crypt_result { volatile __le16 flags; volatile __le16 reserved; }; #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ #ifndef HIFN_POLL_FREQUENCY #define HIFN_POLL_FREQUENCY 0x1 #endif #ifndef HIFN_POLL_SCALAR #define HIFN_POLL_SCALAR 0x0 #endif #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ struct hifn_crypto_alg { struct list_head entry; struct skcipher_alg alg; struct hifn_device *dev; }; #define ASYNC_SCATTERLIST_CACHE 16 #define ASYNC_FLAGS_MISALIGNED (1 << 0) struct hifn_cipher_walk { struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; u32 flags; int num; }; struct hifn_context { u8 key[HIFN_MAX_CRYPT_KEY_LENGTH]; struct hifn_device *dev; unsigned int keysize; }; struct hifn_request_context { u8 *iv; unsigned int ivsize; u8 op, type, mode, unused; struct hifn_cipher_walk walk; }; #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) { return readl(dev->bar[0] + reg); } static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) { return readl(dev->bar[1] + reg); } static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) { writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); } static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) { writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); } static void hifn_wait_puc(struct hifn_device *dev) { int i; u32 ret; for (i = 10000; i > 0; --i) { ret = hifn_read_0(dev, HIFN_0_PUCTRL); if (!(ret & HIFN_PUCTRL_RESET)) break; udelay(1); } if (!i) dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n"); } static void hifn_reset_puc(struct hifn_device *dev) { hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); hifn_wait_puc(dev); } static void hifn_stop_device(struct hifn_device *dev) { hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); hifn_write_0(dev, HIFN_0_PUIER, 0); hifn_write_1(dev, HIFN_1_DMA_IER, 0); } static void hifn_reset_dma(struct hifn_device *dev, int full) { hifn_stop_device(dev); /* * Setting poll frequency and others to 0. */ hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); mdelay(1); /* * Reset DMA. */ if (full) { hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); mdelay(1); } else { hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET); hifn_reset_puc(dev); } hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); hifn_reset_puc(dev); } static u32 hifn_next_signature(u32 a, u_int cnt) { int i; u32 v; for (i = 0; i < cnt; i++) { /* get the parity */ v = a & 0x80080125; v ^= v >> 16; v ^= v >> 8; v ^= v >> 4; v ^= v >> 2; v ^= v >> 1; a = (v & 1) ^ (a << 1); } return a; } static struct pci2id { u_short pci_vendor; u_short pci_prod; char card_id[13]; } pci2id[] = { { PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }, { PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }; #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG static int hifn_rng_data_present(struct hwrng *rng, int wait) { struct hifn_device *dev = (struct hifn_device *)rng->priv; s64 nsec; nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); nsec -= dev->rng_wait_time; if (nsec <= 0) return 1; if (!wait) return 0; ndelay(nsec); return 1; } static int hifn_rng_data_read(struct hwrng *rng, u32 *data) { struct hifn_device *dev = (struct hifn_device *)rng->priv; *data = hifn_read_1(dev, HIFN_1_RNG_DATA); dev->rngtime = ktime_get(); return 4; } static int hifn_register_rng(struct hifn_device *dev) { /* * We must wait at least 256 Pk_clk cycles between two reads of the rng. */ dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC, dev->pk_clk_freq) * 256; dev->rng.name = dev->name; dev->rng.data_present = hifn_rng_data_present; dev->rng.data_read = hifn_rng_data_read; dev->rng.priv = (unsigned long)dev; return hwrng_register(&dev->rng); } static void hifn_unregister_rng(struct hifn_device *dev) { hwrng_unregister(&dev->rng); } #else #define hifn_register_rng(dev) 0 #define hifn_unregister_rng(dev) #endif static int hifn_init_pubrng(struct hifn_device *dev) { int i; hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET); for (i = 100; i > 0; --i) { mdelay(1); if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) break; } if (!i) { dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n"); } else { hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); dev->dmareg |= HIFN_DMAIER_PUBDONE; hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n"); } /* Enable RNG engine. */ hifn_write_1(dev, HIFN_1_RNG_CONFIG, hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n"); #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG /* First value must be discarded */ hifn_read_1(dev, HIFN_1_RNG_DATA); dev->rngtime = ktime_get(); #endif return 0; } static int hifn_enable_crypto(struct hifn_device *dev) { u32 dmacfg, addr; char *offtbl = NULL; int i; for (i = 0; i < ARRAY_SIZE(pci2id); i++) { if (pci2id[i].pci_vendor == dev->pdev->vendor && pci2id[i].pci_prod == dev->pdev->device) { offtbl = pci2id[i].card_id; break; } } if (!offtbl) { dev_err(&dev->pdev->dev, "Unknown card!\n"); return -ENODEV; } dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); mdelay(1); addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); mdelay(1); hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); mdelay(1); for (i = 0; i < 12; ++i) { addr = hifn_next_signature(addr, offtbl[i] + 0x101); hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); mdelay(1); } hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev)); return 0; } static void hifn_init_dma(struct hifn_device *dev) { struct hifn_dma *dma = dev->desc_virt; u32 dptr = dev->desc_dma; int i; for (i = 0; i < HIFN_D_CMD_RSIZE; ++i) dma->cmdr[i].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, command_bufs[i][0])); for (i = 0; i < HIFN_D_RES_RSIZE; ++i) dma->resr[i].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, result_bufs[i][0])); /* Setup LAST descriptors. */ dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, cmdr[0])); dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, srcr[0])); dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, dstr[0])); dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + offsetof(struct hifn_dma, resr[0])); dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; } /* * Initialize the PLL. We need to know the frequency of the reference clock * to calculate the optimal multiplier. For PCI we assume 66MHz, since that * allows us to operate without the risk of overclocking the chip. If it * actually uses 33MHz, the chip will operate at half the speed, this can be * overridden by specifying the frequency as module parameter (pci33). * * Unfortunately the PCI clock is not very suitable since the HIFN needs a * stable clock and the PCI clock frequency may vary, so the default is the * external clock. There is no way to find out its frequency, we default to * 66MHz since according to Mike Ham of HiFn, almost every board in existence * has an external crystal populated at 66MHz. */ static void hifn_init_pll(struct hifn_device *dev) { unsigned int freq, m; u32 pllcfg; pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; if (strncmp(hifn_pll_ref, "ext", 3) == 0) pllcfg |= HIFN_PLL_REF_CLK_PLL; else pllcfg |= HIFN_PLL_REF_CLK_HBI; if (hifn_pll_ref[3] != '\0') freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); else { freq = 66; dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n", freq, hifn_pll_ref); } m = HIFN_PLL_FCK_MAX / freq; pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; if (m <= 8) pllcfg |= HIFN_PLL_IS_1_8; else pllcfg |= HIFN_PLL_IS_9_12; /* Select clock source and enable clock bypass */ hifn_write_1(dev, HIFN_1_PLL, pllcfg | HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); /* Let the chip lock to the input clock */ mdelay(10); /* Disable clock bypass */ hifn_write_1(dev, HIFN_1_PLL, pllcfg | HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); /* Switch the engines to the PLL */ hifn_write_1(dev, HIFN_1_PLL, pllcfg | HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); /* * The Fpk_clk runs at half the total speed. Its frequency is needed to * calculate the minimum time between two reads of the rng. Since 33MHz * is actually 33.333... we overestimate the frequency here, resulting * in slightly larger intervals. */ dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; } static void hifn_init_registers(struct hifn_device *dev) { u32 dptr = dev->desc_dma; /* Initialization magic... */ hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); /* write all 4 ring address registers */ hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + offsetof(struct hifn_dma, cmdr[0])); hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + offsetof(struct hifn_dma, srcr[0])); hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + offsetof(struct hifn_dma, dstr[0])); hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + offsetof(struct hifn_dma, resr[0])); mdelay(2); #if 0 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | HIFN_DMACSR_S_WAIT | HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | HIFN_DMACSR_C_WAIT | HIFN_DMACSR_ENGINE | HIFN_DMACSR_PUBDONE); #else hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | HIFN_DMACSR_S_WAIT | HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | HIFN_DMACSR_C_WAIT | HIFN_DMACSR_ENGINE | HIFN_DMACSR_PUBDONE); #endif hifn_read_1(dev, HIFN_1_DMA_CSR); dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | HIFN_DMAIER_ENGINE; dev->dmareg &= ~HIFN_DMAIER_C_WAIT; hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); hifn_read_1(dev, HIFN_1_DMA_IER); #if 0 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | HIFN_PUCNFG_DRAM); #else hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); #endif hifn_init_pll(dev); hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); } static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, unsigned dlen, unsigned slen, u16 mask, u8 snum) { struct hifn_base_command *base_cmd; u8 *buf_pos = buf; base_cmd = (struct hifn_base_command *)buf_pos; base_cmd->masks = __cpu_to_le16(mask); base_cmd->total_source_count = __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); base_cmd->total_dest_count = __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); dlen >>= 16; slen >>= 16; base_cmd->session_num = __cpu_to_le16(snum | ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); return sizeof(struct hifn_base_command); } static int hifn_setup_crypto_command(struct hifn_device *dev, u8 *buf, unsigned dlen, unsigned slen, u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) { struct hifn_dma *dma = dev->desc_virt; struct hifn_crypt_command *cry_cmd; u8 *buf_pos = buf; u16 cmd_len; cry_cmd = (struct hifn_crypt_command *)buf_pos; cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); dlen >>= 16; cry_cmd->masks = __cpu_to_le16(mode | ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M)); cry_cmd->header_skip = 0; cry_cmd->reserved = 0; buf_pos += sizeof(struct hifn_crypt_command); dma->cmdu++; if (dma->cmdu > 1) { dev->dmareg |= HIFN_DMAIER_C_WAIT; hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); } if (keylen) { memcpy(buf_pos, key, keylen); buf_pos += keylen; } if (ivsize) { memcpy(buf_pos, iv, ivsize); buf_pos += ivsize; } cmd_len = buf_pos - buf; return cmd_len; } static int hifn_setup_cmd_desc(struct hifn_device *dev, struct hifn_context *ctx, struct hifn_request_context *rctx, void *priv, unsigned int nbytes) { struct hifn_dma *dma = dev->desc_virt; int cmd_len, sa_idx; u8 *buf, *buf_pos; u16 mask; sa_idx = dma->cmdi; buf_pos = buf = dma->command_bufs[dma->cmdi]; mask = 0; switch (rctx->op) { case ACRYPTO_OP_DECRYPT: mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; break; case ACRYPTO_OP_ENCRYPT: mask = HIFN_BASE_CMD_CRYPT; break; case ACRYPTO_OP_HMAC: mask = HIFN_BASE_CMD_MAC; break; default: goto err_out; } buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, nbytes, mask, dev->snum); if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) { u16 md = 0; if (ctx->keysize) md |= HIFN_CRYPT_CMD_NEW_KEY; if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB) md |= HIFN_CRYPT_CMD_NEW_IV; switch (rctx->mode) { case ACRYPTO_MODE_ECB: md |= HIFN_CRYPT_CMD_MODE_ECB; break; case ACRYPTO_MODE_CBC: md |= HIFN_CRYPT_CMD_MODE_CBC; break; case ACRYPTO_MODE_CFB: md |= HIFN_CRYPT_CMD_MODE_CFB; break; case ACRYPTO_MODE_OFB: md |= HIFN_CRYPT_CMD_MODE_OFB; break; default: goto err_out; } switch (rctx->type) { case ACRYPTO_TYPE_AES_128: if (ctx->keysize != 16) goto err_out; md |= HIFN_CRYPT_CMD_KSZ_128 | HIFN_CRYPT_CMD_ALG_AES; break; case ACRYPTO_TYPE_AES_192: if (ctx->keysize != 24) goto err_out; md |= HIFN_CRYPT_CMD_KSZ_192 | HIFN_CRYPT_CMD_ALG_AES; break; case ACRYPTO_TYPE_AES_256: if (ctx->keysize != 32) goto err_out; md |= HIFN_CRYPT_CMD_KSZ_256 | HIFN_CRYPT_CMD_ALG_AES; break; case ACRYPTO_TYPE_3DES: if (ctx->keysize != 24) goto err_out; md |= HIFN_CRYPT_CMD_ALG_3DES; break; case ACRYPTO_TYPE_DES: if (ctx->keysize != 8) goto err_out; md |= HIFN_CRYPT_CMD_ALG_DES; break; default: goto err_out; } buf_pos += hifn_setup_crypto_command(dev, buf_pos, nbytes, nbytes, ctx->key, ctx->keysize, rctx->iv, rctx->ivsize, md); } dev->sa[sa_idx] = priv; dev->started++; cmd_len = buf_pos - buf; dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ); if (++dma->cmdi == HIFN_D_CMD_RSIZE) { dma->cmdr[dma->cmdi].l = __cpu_to_le32( HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); dma->cmdi = 0; } else { dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID); } if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); dev->flags |= HIFN_FLAG_CMD_BUSY; } return 0; err_out: return -EINVAL; } static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, unsigned int offset, unsigned int size, int last) { struct hifn_dma *dma = dev->desc_virt; int idx; dma_addr_t addr; addr = dma_map_page(&dev->pdev->dev, page, offset, size, DMA_TO_DEVICE); idx = dma->srci; dma->srcr[idx].p = __cpu_to_le32(addr); dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); if (++idx == HIFN_D_SRC_RSIZE) { dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); idx = 0; } dma->srci = idx; dma->srcu++; if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); dev->flags |= HIFN_FLAG_SRC_BUSY; } return size; } static void hifn_setup_res_desc(struct hifn_device *dev) { struct hifn_dma *dma = dev->desc_virt; dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | HIFN_D_VALID | HIFN_D_LAST); /* * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | * HIFN_D_LAST); */ if (++dma->resi == HIFN_D_RES_RSIZE) { dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); dma->resi = 0; } dma->resu++; if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); dev->flags |= HIFN_FLAG_RES_BUSY; } } static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, unsigned offset, unsigned size, int last) { struct hifn_dma *dma = dev->desc_virt; int idx; dma_addr_t addr; addr = dma_map_page(&dev->pdev->dev, page, offset, size, DMA_FROM_DEVICE); idx = dma->dsti; dma->dstr[idx].p = __cpu_to_le32(addr); dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); if (++idx == HIFN_D_DST_RSIZE) { dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); idx = 0; } dma->dsti = idx; dma->dstu++; if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); dev->flags |= HIFN_FLAG_DST_BUSY; } } static int hifn_setup_dma(struct hifn_device *dev, struct hifn_context *ctx, struct hifn_request_context *rctx, struct scatterlist *src, struct scatterlist *dst, unsigned int nbytes, void *priv) { struct scatterlist *t; struct page *spage, *dpage; unsigned int soff, doff; unsigned int n, len; n = nbytes; while (n) { spage = sg_page(src); soff = src->offset; len = min(src->length, n); hifn_setup_src_desc(dev, spage, soff, len, n - len == 0); src++; n -= len; } t = &rctx->walk.cache[0]; n = nbytes; while (n) { if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { BUG_ON(!sg_page(t)); dpage = sg_page(t); doff = 0; len = t->length; } else { BUG_ON(!sg_page(dst)); dpage = sg_page(dst); doff = dst->offset; len = dst->length; } len = min(len, n); hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0); dst++; t++; n -= len; } hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes); hifn_setup_res_desc(dev); return 0; } static int hifn_cipher_walk_init(struct hifn_cipher_walk *w, int num, gfp_t gfp_flags) { int i; num = min(ASYNC_SCATTERLIST_CACHE, num); sg_init_table(w->cache, num); w->num = 0; for (i = 0; i < num; ++i) { struct page *page = alloc_page(gfp_flags); struct scatterlist *s; if (!page) break; s = &w->cache[i]; sg_set_page(s, page, PAGE_SIZE, 0); w->num++; } return i; } static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w) { int i; for (i = 0; i < w->num; ++i) { struct scatterlist *s = &w->cache[i]; __free_page(sg_page(s)); s->length = 0; } w->num = 0; } static int skcipher_add(unsigned int *drestp, struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) { unsigned int copy, drest = *drestp, nbytes = *nbytesp; int idx = 0; if (drest < size || size > nbytes) return -EINVAL; while (size) { copy = min3(drest, size, dst->length); size -= copy; drest -= copy; nbytes -= copy; pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", __func__, copy, size, drest, nbytes); dst++; idx++; } *nbytesp = nbytes; *drestp = drest; return idx; } static int hifn_cipher_walk(struct skcipher_request *req, struct hifn_cipher_walk *w) { struct scatterlist *dst, *t; unsigned int nbytes = req->cryptlen, offset, copy, diff; int idx, tidx, err; tidx = idx = 0; offset = 0; while (nbytes) { if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) return -EINVAL; dst = &req->dst[idx]; pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n", __func__, dst->length, dst->offset, offset, nbytes); if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || offset) { unsigned slen = min(dst->length - offset, nbytes); unsigned dlen = PAGE_SIZE; t = &w->cache[idx]; err = skcipher_add(&dlen, dst, slen, &nbytes); if (err < 0) return err; idx += err; copy = slen & ~(HIFN_D_DST_DALIGN - 1); diff = slen & (HIFN_D_DST_DALIGN - 1); if (dlen < nbytes) { /* * Destination page does not have enough space * to put there additional blocksized chunk, * so we mark that page as containing only * blocksize aligned chunks: * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); * and increase number of bytes to be processed * in next chunk: * nbytes += diff; */ nbytes += diff; /* * Temporary of course... * Kick author if you will catch this one. */ pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n", __func__, dlen, nbytes, slen, offset); pr_err("%s: please contact author to fix this " "issue, generally you should not catch " "this path under any condition but who " "knows how did you use crypto code.\n" "Thank you.\n", __func__); BUG(); } else { copy += diff + nbytes; dst = &req->dst[idx]; err = skcipher_add(&dlen, dst, nbytes, &nbytes); if (err < 0) return err; idx += err; } t->length = copy; t->offset = offset; } else { nbytes -= min(dst->length, nbytes); idx++; } tidx++; } return tidx; } static int hifn_setup_session(struct skcipher_request *req) { struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); struct hifn_request_context *rctx = skcipher_request_ctx(req); struct hifn_device *dev = ctx->dev; unsigned long dlen, flags; unsigned int nbytes = req->cryptlen, idx = 0; int err = -EINVAL, sg_num; struct scatterlist *dst; if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB) goto err_out_exit; rctx->walk.flags = 0; while (nbytes) { dst = &req->dst[idx]; dlen = min(dst->length, nbytes); if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; nbytes -= dlen; idx++; } if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC); if (err < 0) return err; } sg_num = hifn_cipher_walk(req, &rctx->walk); if (sg_num < 0) { err = sg_num; goto err_out_exit; } spin_lock_irqsave(&dev->lock, flags); if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { err = -EAGAIN; goto err_out; } err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req); if (err) goto err_out; dev->snum++; dev->active = HIFN_DEFAULT_ACTIVE_NUM; spin_unlock_irqrestore(&dev->lock, flags); return 0; err_out: spin_unlock_irqrestore(&dev->lock, flags); err_out_exit: if (err) { dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, " "type: %u, err: %d.\n", rctx->iv, rctx->ivsize, ctx->key, ctx->keysize, rctx->mode, rctx->op, rctx->type, err); } return err; } static int hifn_start_device(struct hifn_device *dev) { int err; dev->started = dev->active = 0; hifn_reset_dma(dev, 1); err = hifn_enable_crypto(dev); if (err) return err; hifn_reset_puc(dev); hifn_init_dma(dev); hifn_init_registers(dev); hifn_init_pubrng(dev); return 0; } static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) { unsigned int srest = *srestp, nbytes = *nbytesp, copy; void *daddr; int idx = 0; if (srest < size || size > nbytes) return -EINVAL; while (size) { copy = min3(srest, dst->length, size); daddr = kmap_atomic(sg_page(dst)); memcpy(daddr + dst->offset + offset, saddr, copy); kunmap_atomic(daddr); nbytes -= copy; size -= copy; srest -= copy; saddr += copy; offset = 0; pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", __func__, copy, size, srest, nbytes); dst++; idx++; } *nbytesp = nbytes; *srestp = srest; return idx; } static inline void hifn_complete_sa(struct hifn_device *dev, int i) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); dev->sa[i] = NULL; dev->started--; if (dev->started < 0) dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__, dev->started); spin_unlock_irqrestore(&dev->lock, flags); BUG_ON(dev->started < 0); } static void hifn_process_ready(struct skcipher_request *req, int error) { struct hifn_request_context *rctx = skcipher_request_ctx(req); if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { unsigned int nbytes = req->cryptlen; int idx = 0, err; struct scatterlist *dst, *t; void *saddr; while (nbytes) { t = &rctx->walk.cache[idx]; dst = &req->dst[idx]; pr_debug("\n%s: sg_page(t): %p, t->length: %u, " "sg_page(dst): %p, dst->length: %u, " "nbytes: %u.\n", __func__, sg_page(t), t->length, sg_page(dst), dst->length, nbytes); if (!t->length) { nbytes -= min(dst->length, nbytes); idx++; continue; } saddr = kmap_atomic(sg_page(t)); err = skcipher_get(saddr, &t->length, t->offset, dst, nbytes, &nbytes); if (err < 0) { kunmap_atomic(saddr); break; } idx += err; kunmap_atomic(saddr); } hifn_cipher_walk_exit(&rctx->walk); } skcipher_request_complete(req, error); } static void hifn_clear_rings(struct hifn_device *dev, int error) { struct hifn_dma *dma = dev->desc_virt; int i, u; dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " "k: %d.%d.%d.%d.\n", dma->cmdi, dma->srci, dma->dsti, dma->resi, dma->cmdu, dma->srcu, dma->dstu, dma->resu, dma->cmdk, dma->srck, dma->dstk, dma->resk); i = dma->resk; u = dma->resu; while (u != 0) { if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) break; if (dev->sa[i]) { dev->success++; dev->reset = 0; hifn_process_ready(dev->sa[i], error); hifn_complete_sa(dev, i); } if (++i == HIFN_D_RES_RSIZE) i = 0; u--; } dma->resk = i; dma->resu = u; i = dma->srck; u = dma->srcu; while (u != 0) { if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) break; if (++i == HIFN_D_SRC_RSIZE) i = 0; u--; } dma->srck = i; dma->srcu = u; i = dma->cmdk; u = dma->cmdu; while (u != 0) { if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) break; if (++i == HIFN_D_CMD_RSIZE) i = 0; u--; } dma->cmdk = i; dma->cmdu = u; i = dma->dstk; u = dma->dstu; while (u != 0) { if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) break; if (++i == HIFN_D_DST_RSIZE) i = 0; u--; } dma->dstk = i; dma->dstu = u; dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " "k: %d.%d.%d.%d.\n", dma->cmdi, dma->srci, dma->dsti, dma->resi, dma->cmdu, dma->srcu, dma->dstu, dma->resu, dma->cmdk, dma->srck, dma->dstk, dma->resk); } static void hifn_work(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct hifn_device *dev = container_of(dw, struct hifn_device, work); unsigned long flags; int reset = 0; u32 r = 0; spin_lock_irqsave(&dev->lock, flags); if (dev->active == 0) { struct hifn_dma *dma = dev->desc_virt; if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { dev->flags &= ~HIFN_FLAG_CMD_BUSY; r |= HIFN_DMACSR_C_CTRL_DIS; } if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { dev->flags &= ~HIFN_FLAG_SRC_BUSY; r |= HIFN_DMACSR_S_CTRL_DIS; } if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { dev->flags &= ~HIFN_FLAG_DST_BUSY; r |= HIFN_DMACSR_D_CTRL_DIS; } if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { dev->flags &= ~HIFN_FLAG_RES_BUSY; r |= HIFN_DMACSR_R_CTRL_DIS; } if (r) hifn_write_1(dev, HIFN_1_DMA_CSR, r); } else dev->active--; if ((dev->prev_success == dev->success) && dev->started) reset = 1; dev->prev_success = dev->success; spin_unlock_irqrestore(&dev->lock, flags); if (reset) { if (++dev->reset >= 5) { int i; struct hifn_dma *dma = dev->desc_virt; dev_info(&dev->pdev->dev, "r: %08x, active: %d, started: %d, " "success: %lu: qlen: %u/%u, reset: %d.\n", r, dev->active, dev->started, dev->success, dev->queue.qlen, dev->queue.max_qlen, reset); dev_info(&dev->pdev->dev, "%s: res: ", __func__); for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]); if (dev->sa[i]) { hifn_process_ready(dev->sa[i], -ENODEV); hifn_complete_sa(dev, i); } } pr_info("\n"); hifn_reset_dma(dev, 1); hifn_stop_device(dev); hifn_start_device(dev); dev->reset = 0; } tasklet_schedule(&dev->tasklet); } schedule_delayed_work(&dev->work, HZ); } static irqreturn_t hifn_interrupt(int irq, void *data) { struct hifn_device *dev = data; struct hifn_dma *dma = dev->desc_virt; u32 dmacsr, restart; dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, dma->cmdi, dma->srci, dma->dsti, dma->resi, dma->cmdu, dma->srcu, dma->dstu, dma->resu); if ((dmacsr & dev->dmareg) == 0) return IRQ_NONE; hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); if (dmacsr & HIFN_DMACSR_ENGINE) hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); if (dmacsr & HIFN_DMACSR_PUBDONE) hifn_write_1(dev, HIFN_1_PUB_STATUS, hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); if (restart) { u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", !!(dmacsr & HIFN_DMACSR_R_OVER), !!(dmacsr & HIFN_DMACSR_D_OVER), puisr, !!(puisr & HIFN_PUISR_DSTOVER)); if (!!(puisr & HIFN_PUISR_DSTOVER)) hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER)); } restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); if (restart) { dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n", !!(dmacsr & HIFN_DMACSR_C_ABORT), !!(dmacsr & HIFN_DMACSR_S_ABORT), !!(dmacsr & HIFN_DMACSR_D_ABORT), !!(dmacsr & HIFN_DMACSR_R_ABORT)); hifn_reset_dma(dev, 1); hifn_init_dma(dev); hifn_init_registers(dev); } if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { dev_dbg(&dev->pdev->dev, "wait on command.\n"); dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); } tasklet_schedule(&dev->tasklet); return IRQ_HANDLED; } static void hifn_flush(struct hifn_device *dev) { unsigned long flags; struct crypto_async_request *async_req; struct skcipher_request *req; struct hifn_dma *dma = dev->desc_virt; int i; for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { struct hifn_desc *d = &dma->resr[i]; if (dev->sa[i]) { hifn_process_ready(dev->sa[i], (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0); hifn_complete_sa(dev, i); } } spin_lock_irqsave(&dev->lock, flags); while ((async_req = crypto_dequeue_request(&dev->queue))) { req = skcipher_request_cast(async_req); spin_unlock_irqrestore(&dev->lock, flags); hifn_process_ready(req, -ENODEV); spin_lock_irqsave(&dev->lock, flags); } spin_unlock_irqrestore(&dev->lock, flags); } static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct hifn_context *ctx = crypto_skcipher_ctx(cipher); struct hifn_device *dev = ctx->dev; int err; err = verify_skcipher_des_key(cipher, key); if (err) return err; dev->flags &= ~HIFN_FLAG_OLD_KEY; memcpy(ctx->key, key, len); ctx->keysize = len; return 0; } static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct hifn_context *ctx = crypto_skcipher_ctx(cipher); struct hifn_device *dev = ctx->dev; int err; err = verify_skcipher_des3_key(cipher, key); if (err) return err; dev->flags &= ~HIFN_FLAG_OLD_KEY; memcpy(ctx->key, key, len); ctx->keysize = len; return 0; } static int hifn_handle_req(struct skcipher_request *req) { struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); struct hifn_device *dev = ctx->dev; int err = -EAGAIN; if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) err = hifn_setup_session(req); if (err == -EAGAIN) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); err = crypto_enqueue_request(&dev->queue, &req->base); spin_unlock_irqrestore(&dev->lock, flags); } return err; } static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op, u8 type, u8 mode) { struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); struct hifn_request_context *rctx = skcipher_request_ctx(req); unsigned ivsize; ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req)); if (req->iv && mode != ACRYPTO_MODE_ECB) { if (type == ACRYPTO_TYPE_AES_128) ivsize = HIFN_AES_IV_LENGTH; else if (type == ACRYPTO_TYPE_DES) ivsize = HIFN_DES_KEY_LENGTH; else if (type == ACRYPTO_TYPE_3DES) ivsize = HIFN_3DES_KEY_LENGTH; } if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { if (ctx->keysize == 24) type = ACRYPTO_TYPE_AES_192; else if (ctx->keysize == 32) type = ACRYPTO_TYPE_AES_256; } rctx->op = op; rctx->mode = mode; rctx->type = type; rctx->iv = req->iv; rctx->ivsize = ivsize; /* * HEAVY TODO: needs to kick Herbert XU to write documentation. * HEAVY TODO: needs to kick Herbert XU to write documentation. * HEAVY TODO: needs to kick Herbert XU to write documentation. */ return hifn_handle_req(req); } static int hifn_process_queue(struct hifn_device *dev) { struct crypto_async_request *async_req, *backlog; struct skcipher_request *req; unsigned long flags; int err = 0; while (dev->started < HIFN_QUEUE_LENGTH) { spin_lock_irqsave(&dev->lock, flags); backlog = crypto_get_backlog(&dev->queue); async_req = crypto_dequeue_request(&dev->queue); spin_unlock_irqrestore(&dev->lock, flags); if (!async_req) break; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); req = skcipher_request_cast(async_req); err = hifn_handle_req(req); if (err) break; } return err; } static int hifn_setup_crypto(struct skcipher_request *req, u8 op, u8 type, u8 mode) { int err; struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); struct hifn_device *dev = ctx->dev; err = hifn_setup_crypto_req(req, op, type, mode); if (err) return err; if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) hifn_process_queue(dev); return -EINPROGRESS; } /* * AES ecryption functions. */ static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); } static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); } static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); } static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); } /* * AES decryption functions. */ static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); } static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); } static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); } static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); } /* * DES ecryption functions. */ static inline int hifn_encrypt_des_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); } static inline int hifn_encrypt_des_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); } static inline int hifn_encrypt_des_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); } static inline int hifn_encrypt_des_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); } /* * DES decryption functions. */ static inline int hifn_decrypt_des_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); } static inline int hifn_decrypt_des_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); } static inline int hifn_decrypt_des_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); } static inline int hifn_decrypt_des_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); } /* * 3DES ecryption functions. */ static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); } static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); } static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); } static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); } /* 3DES decryption functions. */ static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); } static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); } static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); } static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req) { return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); } struct hifn_alg_template { char name[CRYPTO_MAX_ALG_NAME]; char drv_name[CRYPTO_MAX_ALG_NAME]; unsigned int bsize; struct skcipher_alg skcipher; }; static const struct hifn_alg_template hifn_alg_templates[] = { /* * 3DES ECB, CBC, CFB and OFB modes. */ { .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, .skcipher = { .min_keysize = HIFN_3DES_KEY_LENGTH, .max_keysize = HIFN_3DES_KEY_LENGTH, .setkey = hifn_des3_setkey, .encrypt = hifn_encrypt_3des_cfb, .decrypt = hifn_decrypt_3des_cfb, }, }, { .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, .skcipher = { .min_keysize = HIFN_3DES_KEY_LENGTH, .max_keysize = HIFN_3DES_KEY_LENGTH, .setkey = hifn_des3_setkey, .encrypt = hifn_encrypt_3des_ofb, .decrypt = hifn_decrypt_3des_ofb, }, }, { .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, .skcipher = { .ivsize = HIFN_IV_LENGTH, .min_keysize = HIFN_3DES_KEY_LENGTH, .max_keysize = HIFN_3DES_KEY_LENGTH, .setkey = hifn_des3_setkey, .encrypt = hifn_encrypt_3des_cbc, .decrypt = hifn_decrypt_3des_cbc, }, }, { .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, .skcipher = { .min_keysize = HIFN_3DES_KEY_LENGTH, .max_keysize = HIFN_3DES_KEY_LENGTH, .setkey = hifn_des3_setkey, .encrypt = hifn_encrypt_3des_ecb, .decrypt = hifn_decrypt_3des_ecb, }, }, /* * DES ECB, CBC, CFB and OFB modes. */ { .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, .skcipher = { .min_keysize = HIFN_DES_KEY_LENGTH, .max_keysize = HIFN_DES_KEY_LENGTH, .setkey = hifn_setkey, .encrypt = hifn_encrypt_des_cfb, .decrypt = hifn_decrypt_des_cfb, }, }, { .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, .skcipher = { .min_keysize = HIFN_DES_KEY_LENGTH, .max_keysize = HIFN_DES_KEY_LENGTH, .setkey = hifn_setkey, .encrypt = hifn_encrypt_des_ofb, .decrypt = hifn_decrypt_des_ofb, }, }, { .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, .skcipher = { .ivsize = HIFN_IV_LENGTH, .min_keysize = HIFN_DES_KEY_LENGTH, .max_keysize = HIFN_DES_KEY_LENGTH, .setkey = hifn_setkey, .encrypt = hifn_encrypt_des_cbc, .decrypt = hifn_decrypt_des_cbc, }, }, { .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, .skcipher = { .min_keysize = HIFN_DES_KEY_LENGTH, .max_keysize = HIFN_DES_KEY_LENGTH, .setkey = hifn_setkey, .encrypt = hifn_encrypt_des_ecb, .decrypt = hifn_decrypt_des_ecb, }, }, /* * AES ECB, CBC, CFB and OFB modes. */ { .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, .skcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = hifn_setkey, .encrypt = hifn_encrypt_aes_ecb, .decrypt = hifn_decrypt_aes_ecb, }, }, { .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, .skcipher = { .ivsize = HIFN_AES_IV_LENGTH, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = hifn_setkey, .encrypt = hifn_encrypt_aes_cbc, .decrypt = hifn_decrypt_aes_cbc, }, }, { .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, .skcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = hifn_setkey, .encrypt = hifn_encrypt_aes_cfb, .decrypt = hifn_decrypt_aes_cfb, }, }, { .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, .skcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = hifn_setkey, .encrypt = hifn_encrypt_aes_ofb, .decrypt = hifn_decrypt_aes_ofb, }, }, }; static int hifn_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); struct hifn_context *ctx = crypto_skcipher_ctx(tfm); ctx->dev = ha->dev; crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context)); return 0; } static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t) { struct hifn_crypto_alg *alg; int err; alg = kzalloc(sizeof(*alg), GFP_KERNEL); if (!alg) return -ENOMEM; alg->alg = t->skcipher; alg->alg.init = hifn_init_tfm; snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", t->drv_name, dev->name); alg->alg.base.cra_priority = 300; alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; alg->alg.base.cra_blocksize = t->bsize; alg->alg.base.cra_ctxsize = sizeof(struct hifn_context); alg->alg.base.cra_alignmask = 0; alg->alg.base.cra_module = THIS_MODULE; alg->dev = dev; list_add_tail(&alg->entry, &dev->alg_list); err = crypto_register_skcipher(&alg->alg); if (err) { list_del(&alg->entry); kfree(alg); } return err; } static void hifn_unregister_alg(struct hifn_device *dev) { struct hifn_crypto_alg *a, *n; list_for_each_entry_safe(a, n, &dev->alg_list, entry) { list_del(&a->entry); crypto_unregister_skcipher(&a->alg); kfree(a); } } static int hifn_register_alg(struct hifn_device *dev) { int i, err; for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) { err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); if (err) goto err_out_exit; } return 0; err_out_exit: hifn_unregister_alg(dev); return err; } static void hifn_tasklet_callback(unsigned long data) { struct hifn_device *dev = (struct hifn_device *)data; /* * This is ok to call this without lock being held, * althogh it modifies some parameters used in parallel, * (like dev->success), but they are used in process * context or update is atomic (like setting dev->sa[i] to NULL). */ hifn_clear_rings(dev, 0); if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) hifn_process_queue(dev); } static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int err, i; struct hifn_device *dev; char name[8]; err = pci_enable_device(pdev); if (err) return err; pci_set_master(pdev); err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) goto err_out_disable_pci_device; snprintf(name, sizeof(name), "hifn%d", atomic_inc_return(&hifn_dev_number) - 1); err = pci_request_regions(pdev, name); if (err) goto err_out_disable_pci_device; if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n"); err = -ENODEV; goto err_out_free_regions; } dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), GFP_KERNEL); if (!dev) { err = -ENOMEM; goto err_out_free_regions; } INIT_LIST_HEAD(&dev->alg_list); snprintf(dev->name, sizeof(dev->name), "%s", name); spin_lock_init(&dev->lock); for (i = 0; i < 3; ++i) { unsigned long addr, size; addr = pci_resource_start(pdev, i); size = pci_resource_len(pdev, i); dev->bar[i] = ioremap(addr, size); if (!dev->bar[i]) { err = -ENOMEM; goto err_out_unmap_bars; } } dev->desc_virt = dma_alloc_coherent(&pdev->dev, sizeof(struct hifn_dma), &dev->desc_dma, GFP_KERNEL); if (!dev->desc_virt) { dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n"); err = -ENOMEM; goto err_out_unmap_bars; } dev->pdev = pdev; dev->irq = pdev->irq; for (i = 0; i < HIFN_D_RES_RSIZE; ++i) dev->sa[i] = NULL; pci_set_drvdata(pdev, dev); tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); crypto_init_queue(&dev->queue, 1); err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); if (err) { dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n", dev->irq, err); dev->irq = 0; goto err_out_free_desc; } err = hifn_start_device(dev); if (err) goto err_out_free_irq; err = hifn_register_rng(dev); if (err) goto err_out_stop_device; err = hifn_register_alg(dev); if (err) goto err_out_unregister_rng; INIT_DELAYED_WORK(&dev->work, hifn_work); schedule_delayed_work(&dev->work, HZ); dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been " "successfully registered as %s.\n", pci_name(pdev), dev->name); return 0; err_out_unregister_rng: hifn_unregister_rng(dev); err_out_stop_device: hifn_reset_dma(dev, 1); hifn_stop_device(dev); err_out_free_irq: free_irq(dev->irq, dev); tasklet_kill(&dev->tasklet); err_out_free_desc: dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt, dev->desc_dma); err_out_unmap_bars: for (i = 0; i < 3; ++i) if (dev->bar[i]) iounmap(dev->bar[i]); kfree(dev); err_out_free_regions: pci_release_regions(pdev); err_out_disable_pci_device: pci_disable_device(pdev); return err; } static void hifn_remove(struct pci_dev *pdev) { int i; struct hifn_device *dev; dev = pci_get_drvdata(pdev); if (dev) { cancel_delayed_work_sync(&dev->work); hifn_unregister_rng(dev); hifn_unregister_alg(dev); hifn_reset_dma(dev, 1); hifn_stop_device(dev); free_irq(dev->irq, dev); tasklet_kill(&dev->tasklet); hifn_flush(dev); dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt, dev->desc_dma); for (i = 0; i < 3; ++i) if (dev->bar[i]) iounmap(dev->bar[i]); kfree(dev); } pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_device_id hifn_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, { 0 } }; MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); static struct pci_driver hifn_pci_driver = { .name = "hifn795x", .id_table = hifn_pci_tbl, .probe = hifn_probe, .remove = hifn_remove, }; static int __init hifn_init(void) { unsigned int freq; int err; if (strncmp(hifn_pll_ref, "ext", 3) && strncmp(hifn_pll_ref, "pci", 3)) { pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext"); return -EINVAL; } /* * For the 7955/7956 the reference clock frequency must be in the * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, * but this chip is currently not supported. */ if (hifn_pll_ref[3] != '\0') { freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); if (freq < 20 || freq > 100) { pr_err("hifn795x: invalid hifn_pll_ref frequency, must" "be in the range of 20-100"); return -EINVAL; } } err = pci_register_driver(&hifn_pci_driver); if (err < 0) { pr_err("Failed to register PCI driver for %s device.\n", hifn_pci_driver.name); return -ENODEV; } pr_info("Driver for HIFN 795x crypto accelerator chip " "has been successfully registered.\n"); return 0; } static void __exit hifn_fini(void) { pci_unregister_driver(&hifn_pci_driver); pr_info("Driver for HIFN 795x crypto accelerator chip " "has been successfully unregistered.\n"); } module_init(hifn_init); module_exit(hifn_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1