Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 2506 | 83.73% | 10 | 32.26% |
Romain Perier | 304 | 10.16% | 8 | 25.81% |
Sven Auhagen | 63 | 2.10% | 1 | 3.23% |
Arnaud Ebalard | 57 | 1.90% | 4 | 12.90% |
Robin Murphy | 49 | 1.64% | 1 | 3.23% |
Herbert Xu | 5 | 0.17% | 2 | 6.45% |
Qilong Zhang | 3 | 0.10% | 1 | 3.23% |
Kees Cook | 2 | 0.07% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.23% |
Thomas Petazzoni | 1 | 0.03% | 1 | 3.23% |
Vladimir Zapolskiy | 1 | 0.03% | 1 | 3.23% |
Total | 2993 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * Support for Marvell's Cryptographic Engine and Security Accelerator (CESA) * that can be found on the following platform: Orion, Kirkwood, Armada. This * driver supports the TDMA engine on platforms on which it is available. * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * Author: Arnaud Ebalard <arno@natisbad.org> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/genalloc.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kthread.h> #include <linux/mbus.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/of_irq.h> #include "cesa.h" /* Limit of the crypto queue before reaching the backlog */ #define CESA_CRYPTO_DEFAULT_MAX_QLEN 128 struct mv_cesa_dev *cesa_dev; struct crypto_async_request * mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine, struct crypto_async_request **backlog) { struct crypto_async_request *req; *backlog = crypto_get_backlog(&engine->queue); req = crypto_dequeue_request(&engine->queue); if (!req) return NULL; return req; } static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine) { struct crypto_async_request *req = NULL, *backlog = NULL; struct mv_cesa_ctx *ctx; spin_lock_bh(&engine->lock); if (!engine->req) { req = mv_cesa_dequeue_req_locked(engine, &backlog); engine->req = req; } spin_unlock_bh(&engine->lock); if (!req) return; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); ctx = crypto_tfm_ctx(req->tfm); ctx->ops->step(req); } static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status) { struct crypto_async_request *req; struct mv_cesa_ctx *ctx; int res; req = engine->req; ctx = crypto_tfm_ctx(req->tfm); res = ctx->ops->process(req, status); if (res == 0) { ctx->ops->complete(req); mv_cesa_engine_enqueue_complete_request(engine, req); } else if (res == -EINPROGRESS) { ctx->ops->step(req); } return res; } static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status) { if (engine->chain.first && engine->chain.last) return mv_cesa_tdma_process(engine, status); return mv_cesa_std_process(engine, status); } static inline void mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req, int res) { ctx->ops->cleanup(req); local_bh_disable(); crypto_request_complete(req, res); local_bh_enable(); } static irqreturn_t mv_cesa_int(int irq, void *priv) { struct mv_cesa_engine *engine = priv; struct crypto_async_request *req; struct mv_cesa_ctx *ctx; u32 status, mask; irqreturn_t ret = IRQ_NONE; while (true) { int res; mask = mv_cesa_get_int_mask(engine); status = readl(engine->regs + CESA_SA_INT_STATUS); if (!(status & mask)) break; /* * TODO: avoid clearing the FPGA_INT_STATUS if this not * relevant on some platforms. */ writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS); writel(~status, engine->regs + CESA_SA_INT_STATUS); /* Process fetched requests */ res = mv_cesa_int_process(engine, status & mask); ret = IRQ_HANDLED; spin_lock_bh(&engine->lock); req = engine->req; if (res != -EINPROGRESS) engine->req = NULL; spin_unlock_bh(&engine->lock); ctx = crypto_tfm_ctx(req->tfm); if (res && res != -EINPROGRESS) mv_cesa_complete_req(ctx, req, res); /* Launch the next pending request */ mv_cesa_rearm_engine(engine); /* Iterate over the complete queue */ while (true) { req = mv_cesa_engine_dequeue_complete_request(engine); if (!req) break; ctx = crypto_tfm_ctx(req->tfm); mv_cesa_complete_req(ctx, req, 0); } } return ret; } int mv_cesa_queue_req(struct crypto_async_request *req, struct mv_cesa_req *creq) { int ret; struct mv_cesa_engine *engine = creq->engine; spin_lock_bh(&engine->lock); ret = crypto_enqueue_request(&engine->queue, req); if ((mv_cesa_req_get_type(creq) == CESA_DMA_REQ) && (ret == -EINPROGRESS || ret == -EBUSY)) mv_cesa_tdma_chain(engine, creq); spin_unlock_bh(&engine->lock); if (ret != -EINPROGRESS) return ret; mv_cesa_rearm_engine(engine); return -EINPROGRESS; } static int mv_cesa_add_algs(struct mv_cesa_dev *cesa) { int ret; int i, j; for (i = 0; i < cesa->caps->ncipher_algs; i++) { ret = crypto_register_skcipher(cesa->caps->cipher_algs[i]); if (ret) goto err_unregister_crypto; } for (i = 0; i < cesa->caps->nahash_algs; i++) { ret = crypto_register_ahash(cesa->caps->ahash_algs[i]); if (ret) goto err_unregister_ahash; } return 0; err_unregister_ahash: for (j = 0; j < i; j++) crypto_unregister_ahash(cesa->caps->ahash_algs[j]); i = cesa->caps->ncipher_algs; err_unregister_crypto: for (j = 0; j < i; j++) crypto_unregister_skcipher(cesa->caps->cipher_algs[j]); return ret; } static void mv_cesa_remove_algs(struct mv_cesa_dev *cesa) { int i; for (i = 0; i < cesa->caps->nahash_algs; i++) crypto_unregister_ahash(cesa->caps->ahash_algs[i]); for (i = 0; i < cesa->caps->ncipher_algs; i++) crypto_unregister_skcipher(cesa->caps->cipher_algs[i]); } static struct skcipher_alg *orion_cipher_algs[] = { &mv_cesa_ecb_des_alg, &mv_cesa_cbc_des_alg, &mv_cesa_ecb_des3_ede_alg, &mv_cesa_cbc_des3_ede_alg, &mv_cesa_ecb_aes_alg, &mv_cesa_cbc_aes_alg, }; static struct ahash_alg *orion_ahash_algs[] = { &mv_md5_alg, &mv_sha1_alg, &mv_ahmac_md5_alg, &mv_ahmac_sha1_alg, }; static struct skcipher_alg *armada_370_cipher_algs[] = { &mv_cesa_ecb_des_alg, &mv_cesa_cbc_des_alg, &mv_cesa_ecb_des3_ede_alg, &mv_cesa_cbc_des3_ede_alg, &mv_cesa_ecb_aes_alg, &mv_cesa_cbc_aes_alg, }; static struct ahash_alg *armada_370_ahash_algs[] = { &mv_md5_alg, &mv_sha1_alg, &mv_sha256_alg, &mv_ahmac_md5_alg, &mv_ahmac_sha1_alg, &mv_ahmac_sha256_alg, }; static const struct mv_cesa_caps orion_caps = { .nengines = 1, .cipher_algs = orion_cipher_algs, .ncipher_algs = ARRAY_SIZE(orion_cipher_algs), .ahash_algs = orion_ahash_algs, .nahash_algs = ARRAY_SIZE(orion_ahash_algs), .has_tdma = false, }; static const struct mv_cesa_caps kirkwood_caps = { .nengines = 1, .cipher_algs = orion_cipher_algs, .ncipher_algs = ARRAY_SIZE(orion_cipher_algs), .ahash_algs = orion_ahash_algs, .nahash_algs = ARRAY_SIZE(orion_ahash_algs), .has_tdma = true, }; static const struct mv_cesa_caps armada_370_caps = { .nengines = 1, .cipher_algs = armada_370_cipher_algs, .ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs), .ahash_algs = armada_370_ahash_algs, .nahash_algs = ARRAY_SIZE(armada_370_ahash_algs), .has_tdma = true, }; static const struct mv_cesa_caps armada_xp_caps = { .nengines = 2, .cipher_algs = armada_370_cipher_algs, .ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs), .ahash_algs = armada_370_ahash_algs, .nahash_algs = ARRAY_SIZE(armada_370_ahash_algs), .has_tdma = true, }; static const struct of_device_id mv_cesa_of_match_table[] = { { .compatible = "marvell,orion-crypto", .data = &orion_caps }, { .compatible = "marvell,kirkwood-crypto", .data = &kirkwood_caps }, { .compatible = "marvell,dove-crypto", .data = &kirkwood_caps }, { .compatible = "marvell,armada-370-crypto", .data = &armada_370_caps }, { .compatible = "marvell,armada-xp-crypto", .data = &armada_xp_caps }, { .compatible = "marvell,armada-375-crypto", .data = &armada_xp_caps }, { .compatible = "marvell,armada-38x-crypto", .data = &armada_xp_caps }, {} }; MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table); static void mv_cesa_conf_mbus_windows(struct mv_cesa_engine *engine, const struct mbus_dram_target_info *dram) { void __iomem *iobase = engine->regs; int i; for (i = 0; i < 4; i++) { writel(0, iobase + CESA_TDMA_WINDOW_CTRL(i)); writel(0, iobase + CESA_TDMA_WINDOW_BASE(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, iobase + CESA_TDMA_WINDOW_CTRL(i)); writel(cs->base, iobase + CESA_TDMA_WINDOW_BASE(i)); } } static int mv_cesa_dev_dma_init(struct mv_cesa_dev *cesa) { struct device *dev = cesa->dev; struct mv_cesa_dev_dma *dma; if (!cesa->caps->has_tdma) return 0; dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->tdma_desc_pool = dmam_pool_create("tdma_desc", dev, sizeof(struct mv_cesa_tdma_desc), 16, 0); if (!dma->tdma_desc_pool) return -ENOMEM; dma->op_pool = dmam_pool_create("cesa_op", dev, sizeof(struct mv_cesa_op_ctx), 16, 0); if (!dma->op_pool) return -ENOMEM; dma->cache_pool = dmam_pool_create("cesa_cache", dev, CESA_MAX_HASH_BLOCK_SIZE, 1, 0); if (!dma->cache_pool) return -ENOMEM; dma->padding_pool = dmam_pool_create("cesa_padding", dev, 72, 1, 0); if (!dma->padding_pool) return -ENOMEM; cesa->dma = dma; return 0; } static int mv_cesa_get_sram(struct platform_device *pdev, int idx) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); struct mv_cesa_engine *engine = &cesa->engines[idx]; const char *res_name = "sram"; struct resource *res; engine->pool = of_gen_pool_get(cesa->dev->of_node, "marvell,crypto-srams", idx); if (engine->pool) { engine->sram_pool = gen_pool_dma_alloc(engine->pool, cesa->sram_size, &engine->sram_dma); if (engine->sram_pool) return 0; engine->pool = NULL; return -ENOMEM; } if (cesa->caps->nengines > 1) { if (!idx) res_name = "sram0"; else res_name = "sram1"; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); if (!res || resource_size(res) < cesa->sram_size) return -EINVAL; engine->sram = devm_ioremap_resource(cesa->dev, res); if (IS_ERR(engine->sram)) return PTR_ERR(engine->sram); engine->sram_dma = dma_map_resource(cesa->dev, res->start, cesa->sram_size, DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(cesa->dev, engine->sram_dma)) return -ENOMEM; return 0; } static void mv_cesa_put_sram(struct platform_device *pdev, int idx) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); struct mv_cesa_engine *engine = &cesa->engines[idx]; if (engine->pool) gen_pool_free(engine->pool, (unsigned long)engine->sram_pool, cesa->sram_size); else dma_unmap_resource(cesa->dev, engine->sram_dma, cesa->sram_size, DMA_BIDIRECTIONAL, 0); } static int mv_cesa_probe(struct platform_device *pdev) { const struct mv_cesa_caps *caps = &orion_caps; const struct mbus_dram_target_info *dram; const struct of_device_id *match; struct device *dev = &pdev->dev; struct mv_cesa_dev *cesa; struct mv_cesa_engine *engines; int irq, ret, i, cpu; u32 sram_size; if (cesa_dev) { dev_err(&pdev->dev, "Only one CESA device authorized\n"); return -EEXIST; } if (dev->of_node) { match = of_match_node(mv_cesa_of_match_table, dev->of_node); if (!match || !match->data) return -ENOTSUPP; caps = match->data; } cesa = devm_kzalloc(dev, sizeof(*cesa), GFP_KERNEL); if (!cesa) return -ENOMEM; cesa->caps = caps; cesa->dev = dev; sram_size = CESA_SA_DEFAULT_SRAM_SIZE; of_property_read_u32(cesa->dev->of_node, "marvell,crypto-sram-size", &sram_size); if (sram_size < CESA_SA_MIN_SRAM_SIZE) sram_size = CESA_SA_MIN_SRAM_SIZE; cesa->sram_size = sram_size; cesa->engines = devm_kcalloc(dev, caps->nengines, sizeof(*engines), GFP_KERNEL); if (!cesa->engines) return -ENOMEM; spin_lock_init(&cesa->lock); cesa->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); if (IS_ERR(cesa->regs)) return PTR_ERR(cesa->regs); ret = mv_cesa_dev_dma_init(cesa); if (ret) return ret; dram = mv_mbus_dram_info_nooverlap(); platform_set_drvdata(pdev, cesa); for (i = 0; i < caps->nengines; i++) { struct mv_cesa_engine *engine = &cesa->engines[i]; char res_name[7]; engine->id = i; spin_lock_init(&engine->lock); ret = mv_cesa_get_sram(pdev, i); if (ret) goto err_cleanup; irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err_cleanup; } engine->irq = irq; /* * Not all platforms can gate the CESA clocks: do not complain * if the clock does not exist. */ snprintf(res_name, sizeof(res_name), "cesa%d", i); engine->clk = devm_clk_get(dev, res_name); if (IS_ERR(engine->clk)) { engine->clk = devm_clk_get(dev, NULL); if (IS_ERR(engine->clk)) engine->clk = NULL; } snprintf(res_name, sizeof(res_name), "cesaz%d", i); engine->zclk = devm_clk_get(dev, res_name); if (IS_ERR(engine->zclk)) engine->zclk = NULL; ret = clk_prepare_enable(engine->clk); if (ret) goto err_cleanup; ret = clk_prepare_enable(engine->zclk); if (ret) goto err_cleanup; engine->regs = cesa->regs + CESA_ENGINE_OFF(i); if (dram && cesa->caps->has_tdma) mv_cesa_conf_mbus_windows(engine, dram); writel(0, engine->regs + CESA_SA_INT_STATUS); writel(CESA_SA_CFG_STOP_DIG_ERR, engine->regs + CESA_SA_CFG); writel(engine->sram_dma & CESA_SA_SRAM_MSK, engine->regs + CESA_SA_DESC_P0); ret = devm_request_threaded_irq(dev, irq, NULL, mv_cesa_int, IRQF_ONESHOT, dev_name(&pdev->dev), engine); if (ret) goto err_cleanup; /* Set affinity */ cpu = cpumask_local_spread(engine->id, NUMA_NO_NODE); irq_set_affinity_hint(irq, get_cpu_mask(cpu)); crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN); atomic_set(&engine->load, 0); INIT_LIST_HEAD(&engine->complete_queue); } cesa_dev = cesa; ret = mv_cesa_add_algs(cesa); if (ret) { cesa_dev = NULL; goto err_cleanup; } dev_info(dev, "CESA device successfully registered\n"); return 0; err_cleanup: for (i = 0; i < caps->nengines; i++) { clk_disable_unprepare(cesa->engines[i].zclk); clk_disable_unprepare(cesa->engines[i].clk); mv_cesa_put_sram(pdev, i); if (cesa->engines[i].irq > 0) irq_set_affinity_hint(cesa->engines[i].irq, NULL); } return ret; } static int mv_cesa_remove(struct platform_device *pdev) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); int i; mv_cesa_remove_algs(cesa); for (i = 0; i < cesa->caps->nengines; i++) { clk_disable_unprepare(cesa->engines[i].zclk); clk_disable_unprepare(cesa->engines[i].clk); mv_cesa_put_sram(pdev, i); irq_set_affinity_hint(cesa->engines[i].irq, NULL); } return 0; } static const struct platform_device_id mv_cesa_plat_id_table[] = { { .name = "mv_crypto" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, mv_cesa_plat_id_table); static struct platform_driver marvell_cesa = { .probe = mv_cesa_probe, .remove = mv_cesa_remove, .id_table = mv_cesa_plat_id_table, .driver = { .name = "marvell-cesa", .of_match_table = mv_cesa_of_match_table, }, }; module_platform_driver(marvell_cesa); MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); MODULE_AUTHOR("Arnaud Ebalard <arno@natisbad.org>"); MODULE_DESCRIPTION("Support for Marvell's cryptographic engine"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1