Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 3119 | 82.73% | 4 | 13.33% |
Romain Perier | 258 | 6.84% | 10 | 33.33% |
Arnaud Ebalard | 225 | 5.97% | 1 | 3.33% |
Herbert Xu | 76 | 2.02% | 3 | 10.00% |
Corentin Labbe | 38 | 1.01% | 1 | 3.33% |
Ard Biesheuvel | 18 | 0.48% | 3 | 10.00% |
Mikulas Patocka | 12 | 0.32% | 1 | 3.33% |
Thomas Petazzoni | 11 | 0.29% | 1 | 3.33% |
Andreas Westin | 5 | 0.13% | 1 | 3.33% |
Russell King | 4 | 0.11% | 2 | 6.67% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.33% |
SrujanaChalla | 1 | 0.03% | 1 | 3.33% |
Arnd Bergmann | 1 | 0.03% | 1 | 3.33% |
Total | 3770 | 30 |
// SPDX-License-Identifier: GPL-2.0-only /* * Cipher algorithms supported by the CESA: DES, 3DES and AES. * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * Author: Arnaud Ebalard <arno@natisbad.org> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <crypto/aes.h> #include <crypto/internal/des.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include "cesa.h" struct mv_cesa_des_ctx { struct mv_cesa_ctx base; u8 key[DES_KEY_SIZE]; }; struct mv_cesa_des3_ctx { struct mv_cesa_ctx base; u8 key[DES3_EDE_KEY_SIZE]; }; struct mv_cesa_aes_ctx { struct mv_cesa_ctx base; struct crypto_aes_ctx aes; }; struct mv_cesa_skcipher_dma_iter { struct mv_cesa_dma_iter base; struct mv_cesa_sg_dma_iter src; struct mv_cesa_sg_dma_iter dst; }; static inline void mv_cesa_skcipher_req_iter_init(struct mv_cesa_skcipher_dma_iter *iter, struct skcipher_request *req) { mv_cesa_req_dma_iter_init(&iter->base, req->cryptlen); mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE); mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE); } static inline bool mv_cesa_skcipher_req_iter_next_op(struct mv_cesa_skcipher_dma_iter *iter) { iter->src.op_offset = 0; iter->dst.op_offset = 0; return mv_cesa_req_dma_iter_next_op(&iter->base); } static inline void mv_cesa_skcipher_dma_cleanup(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); if (req->dst != req->src) { dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); } else { dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_BIDIRECTIONAL); } mv_cesa_dma_cleanup(&creq->base); } static inline void mv_cesa_skcipher_cleanup(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_skcipher_dma_cleanup(req); } static void mv_cesa_skcipher_std_step(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_engine *engine = creq->base.engine; size_t len = min_t(size_t, req->cryptlen - sreq->offset, CESA_SA_SRAM_PAYLOAD_SIZE); mv_cesa_adjust_op(engine, &sreq->op); if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); len = mv_cesa_sg_copy_to_sram(engine, req->src, creq->src_nents, CESA_SA_DATA_SRAM_OFFSET, len, sreq->offset); sreq->size = len; mv_cesa_set_crypt_op_len(&sreq->op, len); /* FIXME: only update enc_len field */ if (!sreq->skip_ctx) { if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); sreq->skip_ctx = true; } else if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op.desc)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op.desc)); mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE); writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } static int mv_cesa_skcipher_std_process(struct skcipher_request *req, u32 status) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_engine *engine = creq->base.engine; size_t len; len = mv_cesa_sg_copy_from_sram(engine, req->dst, creq->dst_nents, CESA_SA_DATA_SRAM_OFFSET, sreq->size, sreq->offset); sreq->offset += len; if (sreq->offset < req->cryptlen) return -EINPROGRESS; return 0; } static int mv_cesa_skcipher_process(struct crypto_async_request *req, u32 status) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); struct mv_cesa_req *basereq = &creq->base; if (mv_cesa_req_get_type(basereq) == CESA_STD_REQ) return mv_cesa_skcipher_std_process(skreq, status); return mv_cesa_dma_process(basereq, status); } static void mv_cesa_skcipher_step(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_dma_step(&creq->base); else mv_cesa_skcipher_std_step(skreq); } static inline void mv_cesa_skcipher_dma_prepare(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_req *basereq = &creq->base; mv_cesa_dma_prepare(basereq, basereq->engine); } static inline void mv_cesa_skcipher_std_prepare(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; sreq->size = 0; sreq->offset = 0; } static inline void mv_cesa_skcipher_prepare(struct crypto_async_request *req, struct mv_cesa_engine *engine) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); creq->base.engine = engine; if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_skcipher_dma_prepare(skreq); else mv_cesa_skcipher_std_prepare(skreq); } static inline void mv_cesa_skcipher_req_cleanup(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); mv_cesa_skcipher_cleanup(skreq); } static void mv_cesa_skcipher_complete(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); struct mv_cesa_engine *engine = creq->base.engine; unsigned int ivsize; atomic_sub(skreq->cryptlen, &engine->load); ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(skreq)); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) { struct mv_cesa_req *basereq; basereq = &creq->base; memcpy(skreq->iv, basereq->chain.last->op->ctx.skcipher.iv, ivsize); } else if (engine->pool) memcpy(skreq->iv, engine->sram_pool + CESA_SA_CRYPT_IV_SRAM_OFFSET, ivsize); else memcpy_fromio(skreq->iv, engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET, ivsize); } static const struct mv_cesa_req_ops mv_cesa_skcipher_req_ops = { .step = mv_cesa_skcipher_step, .process = mv_cesa_skcipher_process, .cleanup = mv_cesa_skcipher_req_cleanup, .complete = mv_cesa_skcipher_complete, }; static void mv_cesa_skcipher_cra_exit(struct crypto_tfm *tfm) { void *ctx = crypto_tfm_ctx(tfm); memzero_explicit(ctx, tfm->__crt_alg->cra_ctxsize); } static int mv_cesa_skcipher_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops = &mv_cesa_skcipher_req_ops; crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct mv_cesa_skcipher_req)); return 0; } static int mv_cesa_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm); int remaining; int offset; int ret; int i; ret = aes_expandkey(&ctx->aes, key, len); if (ret) return ret; remaining = (ctx->aes.key_length - 16) / 4; offset = ctx->aes.key_length + 24 - remaining; for (i = 0; i < remaining; i++) ctx->aes.key_dec[4 + i] = ctx->aes.key_enc[offset + i]; return 0; } static int mv_cesa_des_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct mv_cesa_des_ctx *ctx = crypto_skcipher_ctx(cipher); int err; err = verify_skcipher_des_key(cipher, key); if (err) return err; memcpy(ctx->key, key, DES_KEY_SIZE); return 0; } static int mv_cesa_des3_ede_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct mv_cesa_des3_ctx *ctx = crypto_skcipher_ctx(cipher); int err; err = verify_skcipher_des3_key(cipher, key); if (err) return err; memcpy(ctx->key, key, DES3_EDE_KEY_SIZE); return 0; } static int mv_cesa_skcipher_dma_req_init(struct skcipher_request *req, const struct mv_cesa_op_ctx *op_templ) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; struct mv_cesa_req *basereq = &creq->base; struct mv_cesa_skcipher_dma_iter iter; bool skip_ctx = false; int ret; basereq->chain.first = NULL; basereq->chain.last = NULL; if (req->src != req->dst) { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); if (!ret) return -ENOMEM; ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); if (!ret) { ret = -ENOMEM; goto err_unmap_src; } } else { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_BIDIRECTIONAL); if (!ret) return -ENOMEM; } mv_cesa_tdma_desc_iter_init(&basereq->chain); mv_cesa_skcipher_req_iter_init(&iter, req); do { struct mv_cesa_op_ctx *op; op = mv_cesa_dma_add_op(&basereq->chain, op_templ, skip_ctx, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } skip_ctx = true; mv_cesa_set_crypt_op_len(op, iter.base.op_len); /* Add input transfers */ ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.src, flags); if (ret) goto err_free_tdma; /* Add dummy desc to launch the crypto operation */ ret = mv_cesa_dma_add_dummy_launch(&basereq->chain, flags); if (ret) goto err_free_tdma; /* Add output transfers */ ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.dst, flags); if (ret) goto err_free_tdma; } while (mv_cesa_skcipher_req_iter_next_op(&iter)); /* Add output data for IV */ ret = mv_cesa_dma_add_result_op(&basereq->chain, CESA_SA_CFG_SRAM_OFFSET, CESA_SA_DATA_SRAM_OFFSET, CESA_TDMA_SRC_IN_SRAM, flags); if (ret) goto err_free_tdma; basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ; return 0; err_free_tdma: mv_cesa_dma_cleanup(basereq); if (req->dst != req->src) dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); err_unmap_src: dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL); return ret; } static inline int mv_cesa_skcipher_std_req_init(struct skcipher_request *req, const struct mv_cesa_op_ctx *op_templ) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_req *basereq = &creq->base; sreq->op = *op_templ; sreq->skip_ctx = false; basereq->chain.first = NULL; basereq->chain.last = NULL; return 0; } static int mv_cesa_skcipher_req_init(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); unsigned int blksize = crypto_skcipher_blocksize(tfm); int ret; if (!IS_ALIGNED(req->cryptlen, blksize)) return -EINVAL; creq->src_nents = sg_nents_for_len(req->src, req->cryptlen); if (creq->src_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of src SG"); return creq->src_nents; } creq->dst_nents = sg_nents_for_len(req->dst, req->cryptlen); if (creq->dst_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of dst SG"); return creq->dst_nents; } mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY, CESA_SA_DESC_CFG_OP_MSK); if (cesa_dev->caps->has_tdma) ret = mv_cesa_skcipher_dma_req_init(req, tmpl); else ret = mv_cesa_skcipher_std_req_init(req, tmpl); return ret; } static int mv_cesa_skcipher_queue_req(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { int ret; struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_engine *engine; ret = mv_cesa_skcipher_req_init(req, tmpl); if (ret) return ret; engine = mv_cesa_select_engine(req->cryptlen); mv_cesa_skcipher_prepare(&req->base, engine); ret = mv_cesa_queue_req(&req->base, &creq->base); if (mv_cesa_req_needs_cleanup(&req->base, ret)) mv_cesa_skcipher_cleanup(req); return ret; } static int mv_cesa_des_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES, CESA_SA_DESC_CFG_CRYPTM_MSK); memcpy(tmpl->ctx.skcipher.key, ctx->key, DES_KEY_SIZE); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_des_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_des_op(req, &tmpl); } static int mv_cesa_ecb_des_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_des_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_des_alg = { .setkey = mv_cesa_des_setkey, .encrypt = mv_cesa_ecb_des_encrypt, .decrypt = mv_cesa_ecb_des_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .base = { .cra_name = "ecb(des)", .cra_driver_name = "mv-ecb-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_des_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, CESA_SA_DESC_CFG_CRYPTCM_MSK); memcpy(tmpl->ctx.skcipher.iv, req->iv, DES_BLOCK_SIZE); return mv_cesa_des_op(req, tmpl); } static int mv_cesa_cbc_des_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_des_op(req, &tmpl); } static int mv_cesa_cbc_des_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_des_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_des_alg = { .setkey = mv_cesa_des_setkey, .encrypt = mv_cesa_cbc_des_encrypt, .decrypt = mv_cesa_cbc_des_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .base = { .cra_name = "cbc(des)", .cra_driver_name = "mv-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_des3_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES, CESA_SA_DESC_CFG_CRYPTM_MSK); memcpy(tmpl->ctx.skcipher.key, ctx->key, DES3_EDE_KEY_SIZE); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_des3_ede_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_des3_op(req, &tmpl); } static int mv_cesa_ecb_des3_ede_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_des3_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_des3_ede_alg = { .setkey = mv_cesa_des3_ede_setkey, .encrypt = mv_cesa_ecb_des3_ede_encrypt, .decrypt = mv_cesa_ecb_des3_ede_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "mv-ecb-des3-ede", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_des3_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { memcpy(tmpl->ctx.skcipher.iv, req->iv, DES3_EDE_BLOCK_SIZE); return mv_cesa_des3_op(req, tmpl); } static int mv_cesa_cbc_des3_ede_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_des3_op(req, &tmpl); } static int mv_cesa_cbc_des3_ede_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_des3_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_des3_ede_alg = { .setkey = mv_cesa_des3_ede_setkey, .encrypt = mv_cesa_cbc_des3_ede_encrypt, .decrypt = mv_cesa_cbc_des3_ede_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "mv-cbc-des3-ede", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_aes_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int i; u32 *key; u32 cfg; cfg = CESA_SA_DESC_CFG_CRYPTM_AES; if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC) key = ctx->aes.key_dec; else key = ctx->aes.key_enc; for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++) tmpl->ctx.skcipher.key[i] = cpu_to_le32(key[i]); if (ctx->aes.key_length == 24) cfg |= CESA_SA_DESC_CFG_AES_LEN_192; else if (ctx->aes.key_length == 32) cfg |= CESA_SA_DESC_CFG_AES_LEN_256; mv_cesa_update_op_cfg(tmpl, cfg, CESA_SA_DESC_CFG_CRYPTM_MSK | CESA_SA_DESC_CFG_AES_LEN_MSK); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_aes_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_aes_op(req, &tmpl); } static int mv_cesa_ecb_aes_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_aes_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_aes_alg = { .setkey = mv_cesa_aes_setkey, .encrypt = mv_cesa_ecb_aes_encrypt, .decrypt = mv_cesa_ecb_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "mv-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_aes_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, CESA_SA_DESC_CFG_CRYPTCM_MSK); memcpy(tmpl->ctx.skcipher.iv, req->iv, AES_BLOCK_SIZE); return mv_cesa_aes_op(req, tmpl); } static int mv_cesa_cbc_aes_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_aes_op(req, &tmpl); } static int mv_cesa_cbc_aes_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_aes_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_aes_alg = { .setkey = mv_cesa_aes_setkey, .encrypt = mv_cesa_cbc_aes_encrypt, .decrypt = mv_cesa_cbc_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "mv-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1