Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johnson Wang | 1984 | 98.51% | 1 | 33.33% |
Angelo G. Del Regno | 21 | 1.04% | 1 | 33.33% |
Sukrut Bellary | 9 | 0.45% | 1 | 33.33% |
Total | 2014 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/clk.h> #include <linux/devfreq.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/regulator/consumer.h> struct mtk_ccifreq_platform_data { int min_volt_shift; int max_volt_shift; int proc_max_volt; int sram_min_volt; int sram_max_volt; }; struct mtk_ccifreq_drv { struct device *dev; struct devfreq *devfreq; struct regulator *proc_reg; struct regulator *sram_reg; struct clk *cci_clk; struct clk *inter_clk; int inter_voltage; unsigned long pre_freq; /* Avoid race condition for regulators between notify and policy */ struct mutex reg_lock; struct notifier_block opp_nb; const struct mtk_ccifreq_platform_data *soc_data; int vtrack_max; }; static int mtk_ccifreq_set_voltage(struct mtk_ccifreq_drv *drv, int new_voltage) { const struct mtk_ccifreq_platform_data *soc_data = drv->soc_data; struct device *dev = drv->dev; int pre_voltage, pre_vsram, new_vsram, vsram, voltage, ret; int retry_max = drv->vtrack_max; if (!drv->sram_reg) { ret = regulator_set_voltage(drv->proc_reg, new_voltage, drv->soc_data->proc_max_volt); return ret; } pre_voltage = regulator_get_voltage(drv->proc_reg); if (pre_voltage < 0) { dev_err(dev, "invalid vproc value: %d\n", pre_voltage); return pre_voltage; } pre_vsram = regulator_get_voltage(drv->sram_reg); if (pre_vsram < 0) { dev_err(dev, "invalid vsram value: %d\n", pre_vsram); return pre_vsram; } new_vsram = clamp(new_voltage + soc_data->min_volt_shift, soc_data->sram_min_volt, soc_data->sram_max_volt); do { if (pre_voltage <= new_voltage) { vsram = clamp(pre_voltage + soc_data->max_volt_shift, soc_data->sram_min_volt, new_vsram); ret = regulator_set_voltage(drv->sram_reg, vsram, soc_data->sram_max_volt); if (ret) return ret; if (vsram == soc_data->sram_max_volt || new_vsram == soc_data->sram_min_volt) voltage = new_voltage; else voltage = vsram - soc_data->min_volt_shift; ret = regulator_set_voltage(drv->proc_reg, voltage, soc_data->proc_max_volt); if (ret) { regulator_set_voltage(drv->sram_reg, pre_vsram, soc_data->sram_max_volt); return ret; } } else if (pre_voltage > new_voltage) { voltage = max(new_voltage, pre_vsram - soc_data->max_volt_shift); ret = regulator_set_voltage(drv->proc_reg, voltage, soc_data->proc_max_volt); if (ret) return ret; if (voltage == new_voltage) vsram = new_vsram; else vsram = max(new_vsram, voltage + soc_data->min_volt_shift); ret = regulator_set_voltage(drv->sram_reg, vsram, soc_data->sram_max_volt); if (ret) { regulator_set_voltage(drv->proc_reg, pre_voltage, soc_data->proc_max_volt); return ret; } } pre_voltage = voltage; pre_vsram = vsram; if (--retry_max < 0) { dev_err(dev, "over loop count, failed to set voltage\n"); return -EINVAL; } } while (voltage != new_voltage || vsram != new_vsram); return 0; } static int mtk_ccifreq_target(struct device *dev, unsigned long *freq, u32 flags) { struct mtk_ccifreq_drv *drv = dev_get_drvdata(dev); struct clk *cci_pll; struct dev_pm_opp *opp; unsigned long opp_rate; int voltage, pre_voltage, inter_voltage, target_voltage, ret; if (!drv) return -EINVAL; if (drv->pre_freq == *freq) return 0; inter_voltage = drv->inter_voltage; cci_pll = clk_get_parent(drv->cci_clk); opp_rate = *freq; opp = devfreq_recommended_opp(dev, &opp_rate, 1); if (IS_ERR(opp)) { dev_err(dev, "failed to find opp for freq: %ld\n", opp_rate); return PTR_ERR(opp); } mutex_lock(&drv->reg_lock); voltage = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); pre_voltage = regulator_get_voltage(drv->proc_reg); if (pre_voltage < 0) { dev_err(dev, "invalid vproc value: %d\n", pre_voltage); ret = pre_voltage; goto out_unlock; } /* scale up: set voltage first then freq. */ target_voltage = max(inter_voltage, voltage); if (pre_voltage <= target_voltage) { ret = mtk_ccifreq_set_voltage(drv, target_voltage); if (ret) { dev_err(dev, "failed to scale up voltage\n"); goto out_restore_voltage; } } /* switch the cci clock to intermediate clock source. */ ret = clk_set_parent(drv->cci_clk, drv->inter_clk); if (ret) { dev_err(dev, "failed to re-parent cci clock\n"); goto out_restore_voltage; } /* set the original clock to target rate. */ ret = clk_set_rate(cci_pll, *freq); if (ret) { dev_err(dev, "failed to set cci pll rate: %d\n", ret); clk_set_parent(drv->cci_clk, cci_pll); goto out_restore_voltage; } /* switch the cci clock back to the original clock source. */ ret = clk_set_parent(drv->cci_clk, cci_pll); if (ret) { dev_err(dev, "failed to re-parent cci clock\n"); mtk_ccifreq_set_voltage(drv, inter_voltage); goto out_unlock; } /* * If the new voltage is lower than the intermediate voltage or the * original voltage, scale down to the new voltage. */ if (voltage < inter_voltage || voltage < pre_voltage) { ret = mtk_ccifreq_set_voltage(drv, voltage); if (ret) { dev_err(dev, "failed to scale down voltage\n"); goto out_unlock; } } drv->pre_freq = *freq; mutex_unlock(&drv->reg_lock); return 0; out_restore_voltage: mtk_ccifreq_set_voltage(drv, pre_voltage); out_unlock: mutex_unlock(&drv->reg_lock); return ret; } static int mtk_ccifreq_opp_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct dev_pm_opp *opp = data; struct mtk_ccifreq_drv *drv; unsigned long freq, volt; drv = container_of(nb, struct mtk_ccifreq_drv, opp_nb); if (event == OPP_EVENT_ADJUST_VOLTAGE) { freq = dev_pm_opp_get_freq(opp); mutex_lock(&drv->reg_lock); /* current opp item is changed */ if (freq == drv->pre_freq) { volt = dev_pm_opp_get_voltage(opp); mtk_ccifreq_set_voltage(drv, volt); } mutex_unlock(&drv->reg_lock); } return 0; } static struct devfreq_dev_profile mtk_ccifreq_profile = { .target = mtk_ccifreq_target, }; static int mtk_ccifreq_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mtk_ccifreq_drv *drv; struct devfreq_passive_data *passive_data; struct dev_pm_opp *opp; unsigned long rate, opp_volt; int ret; drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; drv->dev = dev; drv->soc_data = (const struct mtk_ccifreq_platform_data *) of_device_get_match_data(&pdev->dev); mutex_init(&drv->reg_lock); platform_set_drvdata(pdev, drv); drv->cci_clk = devm_clk_get(dev, "cci"); if (IS_ERR(drv->cci_clk)) { ret = PTR_ERR(drv->cci_clk); return dev_err_probe(dev, ret, "failed to get cci clk\n"); } drv->inter_clk = devm_clk_get(dev, "intermediate"); if (IS_ERR(drv->inter_clk)) { ret = PTR_ERR(drv->inter_clk); return dev_err_probe(dev, ret, "failed to get intermediate clk\n"); } drv->proc_reg = devm_regulator_get_optional(dev, "proc"); if (IS_ERR(drv->proc_reg)) { ret = PTR_ERR(drv->proc_reg); return dev_err_probe(dev, ret, "failed to get proc regulator\n"); } ret = regulator_enable(drv->proc_reg); if (ret) { dev_err(dev, "failed to enable proc regulator\n"); return ret; } drv->sram_reg = devm_regulator_get_optional(dev, "sram"); if (IS_ERR(drv->sram_reg)) { ret = PTR_ERR(drv->sram_reg); if (ret == -EPROBE_DEFER) goto out_free_resources; drv->sram_reg = NULL; } else { ret = regulator_enable(drv->sram_reg); if (ret) { dev_err(dev, "failed to enable sram regulator\n"); goto out_free_resources; } } /* * We assume min voltage is 0 and tracking target voltage using * min_volt_shift for each iteration. * The retry_max is 3 times of expected iteration count. */ drv->vtrack_max = 3 * DIV_ROUND_UP(max(drv->soc_data->sram_max_volt, drv->soc_data->proc_max_volt), drv->soc_data->min_volt_shift); ret = clk_prepare_enable(drv->cci_clk); if (ret) goto out_free_resources; ret = dev_pm_opp_of_add_table(dev); if (ret) { dev_err(dev, "failed to add opp table: %d\n", ret); goto out_disable_cci_clk; } rate = clk_get_rate(drv->inter_clk); opp = dev_pm_opp_find_freq_ceil(dev, &rate); if (IS_ERR(opp)) { ret = PTR_ERR(opp); dev_err(dev, "failed to get intermediate opp: %d\n", ret); goto out_remove_opp_table; } drv->inter_voltage = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); rate = U32_MAX; opp = dev_pm_opp_find_freq_floor(drv->dev, &rate); if (IS_ERR(opp)) { dev_err(dev, "failed to get opp\n"); ret = PTR_ERR(opp); goto out_remove_opp_table; } opp_volt = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); ret = mtk_ccifreq_set_voltage(drv, opp_volt); if (ret) { dev_err(dev, "failed to scale to highest voltage %lu in proc_reg\n", opp_volt); goto out_remove_opp_table; } passive_data = devm_kzalloc(dev, sizeof(*passive_data), GFP_KERNEL); if (!passive_data) { ret = -ENOMEM; goto out_remove_opp_table; } passive_data->parent_type = CPUFREQ_PARENT_DEV; drv->devfreq = devm_devfreq_add_device(dev, &mtk_ccifreq_profile, DEVFREQ_GOV_PASSIVE, passive_data); if (IS_ERR(drv->devfreq)) { ret = -EPROBE_DEFER; dev_err(dev, "failed to add devfreq device: %ld\n", PTR_ERR(drv->devfreq)); goto out_remove_opp_table; } drv->opp_nb.notifier_call = mtk_ccifreq_opp_notifier; ret = dev_pm_opp_register_notifier(dev, &drv->opp_nb); if (ret) { dev_err(dev, "failed to register opp notifier: %d\n", ret); goto out_remove_opp_table; } return 0; out_remove_opp_table: dev_pm_opp_of_remove_table(dev); out_disable_cci_clk: clk_disable_unprepare(drv->cci_clk); out_free_resources: if (regulator_is_enabled(drv->proc_reg)) regulator_disable(drv->proc_reg); if (drv->sram_reg && regulator_is_enabled(drv->sram_reg)) regulator_disable(drv->sram_reg); return ret; } static int mtk_ccifreq_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mtk_ccifreq_drv *drv; drv = platform_get_drvdata(pdev); dev_pm_opp_unregister_notifier(dev, &drv->opp_nb); dev_pm_opp_of_remove_table(dev); clk_disable_unprepare(drv->cci_clk); regulator_disable(drv->proc_reg); if (drv->sram_reg) regulator_disable(drv->sram_reg); return 0; } static const struct mtk_ccifreq_platform_data mt8183_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 200000, .proc_max_volt = 1150000, }; static const struct mtk_ccifreq_platform_data mt8186_platform_data = { .min_volt_shift = 100000, .max_volt_shift = 250000, .proc_max_volt = 1118750, .sram_min_volt = 850000, .sram_max_volt = 1118750, }; static const struct of_device_id mtk_ccifreq_machines[] = { { .compatible = "mediatek,mt8183-cci", .data = &mt8183_platform_data }, { .compatible = "mediatek,mt8186-cci", .data = &mt8186_platform_data }, { }, }; MODULE_DEVICE_TABLE(of, mtk_ccifreq_machines); static struct platform_driver mtk_ccifreq_platdrv = { .probe = mtk_ccifreq_probe, .remove = mtk_ccifreq_remove, .driver = { .name = "mtk-ccifreq", .of_match_table = mtk_ccifreq_machines, }, }; module_platform_driver(mtk_ccifreq_platdrv); MODULE_DESCRIPTION("MediaTek CCI devfreq driver"); MODULE_AUTHOR("Jia-Wei Chang <jia-wei.chang@mediatek.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1