Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pierre-Yves MORDRET | 8217 | 92.93% | 8 | 25.81% |
Amelie Delaunay | 558 | 6.31% | 10 | 32.26% |
Geert Uytterhoeven | 25 | 0.28% | 1 | 3.23% |
Etienne Carriere | 20 | 0.23% | 2 | 6.45% |
Gustavo A. R. Silva | 7 | 0.08% | 2 | 6.45% |
Benjamin Gaignard | 4 | 0.05% | 1 | 3.23% |
yu kuai | 2 | 0.02% | 1 | 3.23% |
Krzysztof Kozlowski | 2 | 0.02% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.02% | 1 | 3.23% |
Tudor-Dan Ambarus | 2 | 0.02% | 1 | 3.23% |
Huang Shijie | 1 | 0.01% | 1 | 3.23% |
Colin Ian King | 1 | 0.01% | 1 | 3.23% |
Andy Shevchenko | 1 | 0.01% | 1 | 3.23% |
Total | 8842 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) STMicroelectronics SA 2017 * Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com> * Pierre-Yves Mordret <pierre-yves.mordret@st.com> * * Driver for STM32 MDMA controller * * Inspired by stm32-dma.c and dma-jz4780.c */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/init.h> #include <linux/iopoll.h> #include <linux/jiffies.h> #include <linux/list.h> #include <linux/log2.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include "virt-dma.h" #define STM32_MDMA_GISR0 0x0000 /* MDMA Int Status Reg 1 */ /* MDMA Channel x interrupt/status register */ #define STM32_MDMA_CISR(x) (0x40 + 0x40 * (x)) /* x = 0..62 */ #define STM32_MDMA_CISR_CRQA BIT(16) #define STM32_MDMA_CISR_TCIF BIT(4) #define STM32_MDMA_CISR_BTIF BIT(3) #define STM32_MDMA_CISR_BRTIF BIT(2) #define STM32_MDMA_CISR_CTCIF BIT(1) #define STM32_MDMA_CISR_TEIF BIT(0) /* MDMA Channel x interrupt flag clear register */ #define STM32_MDMA_CIFCR(x) (0x44 + 0x40 * (x)) #define STM32_MDMA_CIFCR_CLTCIF BIT(4) #define STM32_MDMA_CIFCR_CBTIF BIT(3) #define STM32_MDMA_CIFCR_CBRTIF BIT(2) #define STM32_MDMA_CIFCR_CCTCIF BIT(1) #define STM32_MDMA_CIFCR_CTEIF BIT(0) #define STM32_MDMA_CIFCR_CLEAR_ALL (STM32_MDMA_CIFCR_CLTCIF \ | STM32_MDMA_CIFCR_CBTIF \ | STM32_MDMA_CIFCR_CBRTIF \ | STM32_MDMA_CIFCR_CCTCIF \ | STM32_MDMA_CIFCR_CTEIF) /* MDMA Channel x error status register */ #define STM32_MDMA_CESR(x) (0x48 + 0x40 * (x)) #define STM32_MDMA_CESR_BSE BIT(11) #define STM32_MDMA_CESR_ASR BIT(10) #define STM32_MDMA_CESR_TEMD BIT(9) #define STM32_MDMA_CESR_TELD BIT(8) #define STM32_MDMA_CESR_TED BIT(7) #define STM32_MDMA_CESR_TEA_MASK GENMASK(6, 0) /* MDMA Channel x control register */ #define STM32_MDMA_CCR(x) (0x4C + 0x40 * (x)) #define STM32_MDMA_CCR_SWRQ BIT(16) #define STM32_MDMA_CCR_WEX BIT(14) #define STM32_MDMA_CCR_HEX BIT(13) #define STM32_MDMA_CCR_BEX BIT(12) #define STM32_MDMA_CCR_SM BIT(8) #define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6) #define STM32_MDMA_CCR_PL(n) FIELD_PREP(STM32_MDMA_CCR_PL_MASK, (n)) #define STM32_MDMA_CCR_TCIE BIT(5) #define STM32_MDMA_CCR_BTIE BIT(4) #define STM32_MDMA_CCR_BRTIE BIT(3) #define STM32_MDMA_CCR_CTCIE BIT(2) #define STM32_MDMA_CCR_TEIE BIT(1) #define STM32_MDMA_CCR_EN BIT(0) #define STM32_MDMA_CCR_IRQ_MASK (STM32_MDMA_CCR_TCIE \ | STM32_MDMA_CCR_BTIE \ | STM32_MDMA_CCR_BRTIE \ | STM32_MDMA_CCR_CTCIE \ | STM32_MDMA_CCR_TEIE) /* MDMA Channel x transfer configuration register */ #define STM32_MDMA_CTCR(x) (0x50 + 0x40 * (x)) #define STM32_MDMA_CTCR_BWM BIT(31) #define STM32_MDMA_CTCR_SWRM BIT(30) #define STM32_MDMA_CTCR_TRGM_MSK GENMASK(29, 28) #define STM32_MDMA_CTCR_TRGM(n) FIELD_PREP(STM32_MDMA_CTCR_TRGM_MSK, (n)) #define STM32_MDMA_CTCR_TRGM_GET(n) FIELD_GET(STM32_MDMA_CTCR_TRGM_MSK, (n)) #define STM32_MDMA_CTCR_PAM_MASK GENMASK(27, 26) #define STM32_MDMA_CTCR_PAM(n) FIELD_PREP(STM32_MDMA_CTCR_PAM_MASK, (n)) #define STM32_MDMA_CTCR_PKE BIT(25) #define STM32_MDMA_CTCR_TLEN_MSK GENMASK(24, 18) #define STM32_MDMA_CTCR_TLEN(n) FIELD_PREP(STM32_MDMA_CTCR_TLEN_MSK, (n)) #define STM32_MDMA_CTCR_TLEN_GET(n) FIELD_GET(STM32_MDMA_CTCR_TLEN_MSK, (n)) #define STM32_MDMA_CTCR_LEN2_MSK GENMASK(25, 18) #define STM32_MDMA_CTCR_LEN2(n) FIELD_PREP(STM32_MDMA_CTCR_LEN2_MSK, (n)) #define STM32_MDMA_CTCR_LEN2_GET(n) FIELD_GET(STM32_MDMA_CTCR_LEN2_MSK, (n)) #define STM32_MDMA_CTCR_DBURST_MASK GENMASK(17, 15) #define STM32_MDMA_CTCR_DBURST(n) FIELD_PREP(STM32_MDMA_CTCR_DBURST_MASK, (n)) #define STM32_MDMA_CTCR_SBURST_MASK GENMASK(14, 12) #define STM32_MDMA_CTCR_SBURST(n) FIELD_PREP(STM32_MDMA_CTCR_SBURST_MASK, (n)) #define STM32_MDMA_CTCR_DINCOS_MASK GENMASK(11, 10) #define STM32_MDMA_CTCR_DINCOS(n) FIELD_PREP(STM32_MDMA_CTCR_DINCOS_MASK, (n)) #define STM32_MDMA_CTCR_SINCOS_MASK GENMASK(9, 8) #define STM32_MDMA_CTCR_SINCOS(n) FIELD_PREP(STM32_MDMA_CTCR_SINCOS_MASK, (n)) #define STM32_MDMA_CTCR_DSIZE_MASK GENMASK(7, 6) #define STM32_MDMA_CTCR_DSIZE(n) FIELD_PREP(STM32_MDMA_CTCR_DSIZE_MASK, (n)) #define STM32_MDMA_CTCR_SSIZE_MASK GENMASK(5, 4) #define STM32_MDMA_CTCR_SSIZE(n) FIELD_PREP(STM32_MDMA_CTCR_SSIZE_MASK, (n)) #define STM32_MDMA_CTCR_DINC_MASK GENMASK(3, 2) #define STM32_MDMA_CTCR_DINC(n) FIELD_PREP(STM32_MDMA_CTCR_DINC_MASK, (n)) #define STM32_MDMA_CTCR_SINC_MASK GENMASK(1, 0) #define STM32_MDMA_CTCR_SINC(n) FIELD_PREP(STM32_MDMA_CTCR_SINC_MASK, (n)) #define STM32_MDMA_CTCR_CFG_MASK (STM32_MDMA_CTCR_SINC_MASK \ | STM32_MDMA_CTCR_DINC_MASK \ | STM32_MDMA_CTCR_SINCOS_MASK \ | STM32_MDMA_CTCR_DINCOS_MASK \ | STM32_MDMA_CTCR_LEN2_MSK \ | STM32_MDMA_CTCR_TRGM_MSK) /* MDMA Channel x block number of data register */ #define STM32_MDMA_CBNDTR(x) (0x54 + 0x40 * (x)) #define STM32_MDMA_CBNDTR_BRC_MK GENMASK(31, 20) #define STM32_MDMA_CBNDTR_BRC(n) FIELD_PREP(STM32_MDMA_CBNDTR_BRC_MK, (n)) #define STM32_MDMA_CBNDTR_BRC_GET(n) FIELD_GET(STM32_MDMA_CBNDTR_BRC_MK, (n)) #define STM32_MDMA_CBNDTR_BRDUM BIT(19) #define STM32_MDMA_CBNDTR_BRSUM BIT(18) #define STM32_MDMA_CBNDTR_BNDT_MASK GENMASK(16, 0) #define STM32_MDMA_CBNDTR_BNDT(n) FIELD_PREP(STM32_MDMA_CBNDTR_BNDT_MASK, (n)) /* MDMA Channel x source address register */ #define STM32_MDMA_CSAR(x) (0x58 + 0x40 * (x)) /* MDMA Channel x destination address register */ #define STM32_MDMA_CDAR(x) (0x5C + 0x40 * (x)) /* MDMA Channel x block repeat address update register */ #define STM32_MDMA_CBRUR(x) (0x60 + 0x40 * (x)) #define STM32_MDMA_CBRUR_DUV_MASK GENMASK(31, 16) #define STM32_MDMA_CBRUR_DUV(n) FIELD_PREP(STM32_MDMA_CBRUR_DUV_MASK, (n)) #define STM32_MDMA_CBRUR_SUV_MASK GENMASK(15, 0) #define STM32_MDMA_CBRUR_SUV(n) FIELD_PREP(STM32_MDMA_CBRUR_SUV_MASK, (n)) /* MDMA Channel x link address register */ #define STM32_MDMA_CLAR(x) (0x64 + 0x40 * (x)) /* MDMA Channel x trigger and bus selection register */ #define STM32_MDMA_CTBR(x) (0x68 + 0x40 * (x)) #define STM32_MDMA_CTBR_DBUS BIT(17) #define STM32_MDMA_CTBR_SBUS BIT(16) #define STM32_MDMA_CTBR_TSEL_MASK GENMASK(5, 0) #define STM32_MDMA_CTBR_TSEL(n) FIELD_PREP(STM32_MDMA_CTBR_TSEL_MASK, (n)) /* MDMA Channel x mask address register */ #define STM32_MDMA_CMAR(x) (0x70 + 0x40 * (x)) /* MDMA Channel x mask data register */ #define STM32_MDMA_CMDR(x) (0x74 + 0x40 * (x)) #define STM32_MDMA_MAX_BUF_LEN 128 #define STM32_MDMA_MAX_BLOCK_LEN 65536 #define STM32_MDMA_MAX_CHANNELS 32 #define STM32_MDMA_MAX_REQUESTS 256 #define STM32_MDMA_MAX_BURST 128 #define STM32_MDMA_VERY_HIGH_PRIORITY 0x3 enum stm32_mdma_trigger_mode { STM32_MDMA_BUFFER, STM32_MDMA_BLOCK, STM32_MDMA_BLOCK_REP, STM32_MDMA_LINKED_LIST, }; enum stm32_mdma_width { STM32_MDMA_BYTE, STM32_MDMA_HALF_WORD, STM32_MDMA_WORD, STM32_MDMA_DOUBLE_WORD, }; enum stm32_mdma_inc_mode { STM32_MDMA_FIXED = 0, STM32_MDMA_INC = 2, STM32_MDMA_DEC = 3, }; struct stm32_mdma_chan_config { u32 request; u32 priority_level; u32 transfer_config; u32 mask_addr; u32 mask_data; bool m2m_hw; /* True when MDMA is triggered by STM32 DMA */ }; struct stm32_mdma_hwdesc { u32 ctcr; u32 cbndtr; u32 csar; u32 cdar; u32 cbrur; u32 clar; u32 ctbr; u32 dummy; u32 cmar; u32 cmdr; } __aligned(64); struct stm32_mdma_desc_node { struct stm32_mdma_hwdesc *hwdesc; dma_addr_t hwdesc_phys; }; struct stm32_mdma_desc { struct virt_dma_desc vdesc; u32 ccr; bool cyclic; u32 count; struct stm32_mdma_desc_node node[]; }; struct stm32_mdma_dma_config { u32 request; /* STM32 DMA channel stream id, triggering MDMA */ u32 cmar; /* STM32 DMA interrupt flag clear register address */ u32 cmdr; /* STM32 DMA Transfer Complete flag */ }; struct stm32_mdma_chan { struct virt_dma_chan vchan; struct dma_pool *desc_pool; u32 id; struct stm32_mdma_desc *desc; u32 curr_hwdesc; struct dma_slave_config dma_config; struct stm32_mdma_chan_config chan_config; bool busy; u32 mem_burst; u32 mem_width; }; struct stm32_mdma_device { struct dma_device ddev; void __iomem *base; struct clk *clk; int irq; u32 nr_channels; u32 nr_requests; u32 nr_ahb_addr_masks; u32 chan_reserved; struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS]; u32 ahb_addr_masks[]; }; static struct stm32_mdma_device *stm32_mdma_get_dev( struct stm32_mdma_chan *chan) { return container_of(chan->vchan.chan.device, struct stm32_mdma_device, ddev); } static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c) { return container_of(c, struct stm32_mdma_chan, vchan.chan); } static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct stm32_mdma_desc, vdesc); } static struct device *chan2dev(struct stm32_mdma_chan *chan) { return &chan->vchan.chan.dev->device; } static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev) { return mdma_dev->ddev.dev; } static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg) { return readl_relaxed(dmadev->base + reg); } static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val) { writel_relaxed(val, dmadev->base + reg); } static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg, u32 mask) { void __iomem *addr = dmadev->base + reg; writel_relaxed(readl_relaxed(addr) | mask, addr); } static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg, u32 mask) { void __iomem *addr = dmadev->base + reg; writel_relaxed(readl_relaxed(addr) & ~mask, addr); } static struct stm32_mdma_desc *stm32_mdma_alloc_desc( struct stm32_mdma_chan *chan, u32 count) { struct stm32_mdma_desc *desc; int i; desc = kzalloc(struct_size(desc, node, count), GFP_NOWAIT); if (!desc) return NULL; for (i = 0; i < count; i++) { desc->node[i].hwdesc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &desc->node[i].hwdesc_phys); if (!desc->node[i].hwdesc) goto err; } desc->count = count; return desc; err: dev_err(chan2dev(chan), "Failed to allocate descriptor\n"); while (--i >= 0) dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, desc->node[i].hwdesc_phys); kfree(desc); return NULL; } static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc) { struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc); struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan); int i; for (i = 0; i < desc->count; i++) dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, desc->node[i].hwdesc_phys); kfree(desc); } static int stm32_mdma_get_width(struct stm32_mdma_chan *chan, enum dma_slave_buswidth width) { switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: case DMA_SLAVE_BUSWIDTH_2_BYTES: case DMA_SLAVE_BUSWIDTH_4_BYTES: case DMA_SLAVE_BUSWIDTH_8_BYTES: return ffs(width) - 1; default: dev_err(chan2dev(chan), "Dma bus width %i not supported\n", width); return -EINVAL; } } static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr, u32 buf_len, u32 tlen) { enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES; for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES; max_width > DMA_SLAVE_BUSWIDTH_1_BYTE; max_width >>= 1) { /* * Address and buffer length both have to be aligned on * bus width */ if ((((buf_len | addr) & (max_width - 1)) == 0) && tlen >= max_width) break; } return max_width; } static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst, enum dma_slave_buswidth width) { u32 best_burst; best_burst = min((u32)1 << __ffs(tlen | buf_len), max_burst * width) / width; return (best_burst > 0) ? best_burst : 1; } static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); u32 ccr, cisr, id, reg; int ret; id = chan->id; reg = STM32_MDMA_CCR(id); /* Disable interrupts */ stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK); ccr = stm32_mdma_read(dmadev, reg); if (ccr & STM32_MDMA_CCR_EN) { stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN); /* Ensure that any ongoing transfer has been completed */ ret = readl_relaxed_poll_timeout_atomic( dmadev->base + STM32_MDMA_CISR(id), cisr, (cisr & STM32_MDMA_CISR_CTCIF), 10, 1000); if (ret) { dev_err(chan2dev(chan), "%s: timeout!\n", __func__); return -EBUSY; } } return 0; } static void stm32_mdma_stop(struct stm32_mdma_chan *chan) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); u32 status; int ret; /* Disable DMA */ ret = stm32_mdma_disable_chan(chan); if (ret < 0) return; /* Clear interrupt status if it is there */ status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id)); if (status) { dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", __func__, status); stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status); } chan->busy = false; } static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr, u32 ctbr_mask, u32 src_addr) { u32 mask; int i; /* Check if memory device is on AHB or AXI */ *ctbr &= ~ctbr_mask; mask = src_addr & 0xF0000000; for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) { if (mask == dmadev->ahb_addr_masks[i]) { *ctbr |= ctbr_mask; break; } } } static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan, enum dma_transfer_direction direction, u32 *mdma_ccr, u32 *mdma_ctcr, u32 *mdma_ctbr, dma_addr_t addr, u32 buf_len) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct stm32_mdma_chan_config *chan_config = &chan->chan_config; enum dma_slave_buswidth src_addr_width, dst_addr_width; phys_addr_t src_addr, dst_addr; int src_bus_width, dst_bus_width; u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; u32 ccr, ctcr, ctbr, tlen; src_addr_width = chan->dma_config.src_addr_width; dst_addr_width = chan->dma_config.dst_addr_width; src_maxburst = chan->dma_config.src_maxburst; dst_maxburst = chan->dma_config.dst_maxburst; ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)); ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)); ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)); /* Enable HW request mode */ ctcr &= ~STM32_MDMA_CTCR_SWRM; /* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */ ctcr &= ~STM32_MDMA_CTCR_CFG_MASK; ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK; /* * For buffer transfer length (TLEN) we have to set * the number of bytes - 1 in CTCR register */ tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr); ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK; ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1)); /* Disable Pack Enable */ ctcr &= ~STM32_MDMA_CTCR_PKE; /* Check burst size constraints */ if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST || dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) { dev_err(chan2dev(chan), "burst size * bus width higher than %d bytes\n", STM32_MDMA_MAX_BURST); return -EINVAL; } if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) || (!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) { dev_err(chan2dev(chan), "burst size must be a power of 2\n"); return -EINVAL; } /* * Configure channel control: * - Clear SW request as in this case this is a HW one * - Clear WEX, HEX and BEX bits * - Set priority level */ ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX | STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK); ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level); /* Configure Trigger selection */ ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK; ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request); switch (direction) { case DMA_MEM_TO_DEV: dst_addr = chan->dma_config.dst_addr; /* Set device data size */ if (chan_config->m2m_hw) dst_addr_width = stm32_mdma_get_max_width(dst_addr, buf_len, STM32_MDMA_MAX_BUF_LEN); dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width); if (dst_bus_width < 0) return dst_bus_width; ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK; ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width); if (chan_config->m2m_hw) { ctcr &= ~STM32_MDMA_CTCR_DINCOS_MASK; ctcr |= STM32_MDMA_CTCR_DINCOS(dst_bus_width); } /* Set device burst value */ if (chan_config->m2m_hw) dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width; dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, dst_maxburst, dst_addr_width); chan->mem_burst = dst_best_burst; ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK; ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst))); /* Set memory data size */ src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen); chan->mem_width = src_addr_width; src_bus_width = stm32_mdma_get_width(chan, src_addr_width); if (src_bus_width < 0) return src_bus_width; ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_SINCOS_MASK; ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) | STM32_MDMA_CTCR_SINCOS(src_bus_width); /* Set memory burst value */ src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width; src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, src_maxburst, src_addr_width); chan->mem_burst = src_best_burst; ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK; ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst))); /* Select bus */ stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dst_addr); if (dst_bus_width != src_bus_width) ctcr |= STM32_MDMA_CTCR_PKE; /* Set destination address */ stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr); break; case DMA_DEV_TO_MEM: src_addr = chan->dma_config.src_addr; /* Set device data size */ if (chan_config->m2m_hw) src_addr_width = stm32_mdma_get_max_width(src_addr, buf_len, STM32_MDMA_MAX_BUF_LEN); src_bus_width = stm32_mdma_get_width(chan, src_addr_width); if (src_bus_width < 0) return src_bus_width; ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK; ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width); if (chan_config->m2m_hw) { ctcr &= ~STM32_MDMA_CTCR_SINCOS_MASK; ctcr |= STM32_MDMA_CTCR_SINCOS(src_bus_width); } /* Set device burst value */ if (chan_config->m2m_hw) src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width; src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, src_maxburst, src_addr_width); ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK; ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst))); /* Set memory data size */ dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen); chan->mem_width = dst_addr_width; dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width); if (dst_bus_width < 0) return dst_bus_width; ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK | STM32_MDMA_CTCR_DINCOS_MASK); ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) | STM32_MDMA_CTCR_DINCOS(dst_bus_width); /* Set memory burst value */ dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width; dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, dst_maxburst, dst_addr_width); ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK; ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst))); /* Select bus */ stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src_addr); if (dst_bus_width != src_bus_width) ctcr |= STM32_MDMA_CTCR_PKE; /* Set source address */ stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr); break; default: dev_err(chan2dev(chan), "Dma direction is not supported\n"); return -EINVAL; } *mdma_ccr = ccr; *mdma_ctcr = ctcr; *mdma_ctbr = ctbr; return 0; } static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan, struct stm32_mdma_desc_node *node) { dev_dbg(chan2dev(chan), "hwdesc: %pad\n", &node->hwdesc_phys); dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", node->hwdesc->ctcr); dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", node->hwdesc->cbndtr); dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", node->hwdesc->csar); dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", node->hwdesc->cdar); dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", node->hwdesc->cbrur); dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", node->hwdesc->clar); dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", node->hwdesc->ctbr); dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", node->hwdesc->cmar); dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n\n", node->hwdesc->cmdr); } static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan, struct stm32_mdma_desc *desc, enum dma_transfer_direction dir, u32 count, dma_addr_t src_addr, dma_addr_t dst_addr, u32 len, u32 ctcr, u32 ctbr, bool is_last, bool is_first, bool is_cyclic) { struct stm32_mdma_chan_config *config = &chan->chan_config; struct stm32_mdma_hwdesc *hwdesc; u32 next = count + 1; hwdesc = desc->node[count].hwdesc; hwdesc->ctcr = ctcr; hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM | STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK); hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len); hwdesc->csar = src_addr; hwdesc->cdar = dst_addr; hwdesc->cbrur = 0; hwdesc->ctbr = ctbr; hwdesc->cmar = config->mask_addr; hwdesc->cmdr = config->mask_data; if (is_last) { if (is_cyclic) hwdesc->clar = desc->node[0].hwdesc_phys; else hwdesc->clar = 0; } else { hwdesc->clar = desc->node[next].hwdesc_phys; } stm32_mdma_dump_hwdesc(chan, &desc->node[count]); } static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan, struct stm32_mdma_desc *desc, struct scatterlist *sgl, u32 sg_len, enum dma_transfer_direction direction) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct dma_slave_config *dma_config = &chan->dma_config; struct stm32_mdma_chan_config *chan_config = &chan->chan_config; struct scatterlist *sg; dma_addr_t src_addr, dst_addr; u32 m2m_hw_period, ccr, ctcr, ctbr; int i, ret = 0; if (chan_config->m2m_hw) m2m_hw_period = sg_dma_len(sgl); for_each_sg(sgl, sg, sg_len, i) { if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) { dev_err(chan2dev(chan), "Invalid block len\n"); return -EINVAL; } if (direction == DMA_MEM_TO_DEV) { src_addr = sg_dma_address(sg); dst_addr = dma_config->dst_addr; if (chan_config->m2m_hw && (i & 1)) dst_addr += m2m_hw_period; ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, &ctbr, src_addr, sg_dma_len(sg)); stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src_addr); } else { src_addr = dma_config->src_addr; if (chan_config->m2m_hw && (i & 1)) src_addr += m2m_hw_period; dst_addr = sg_dma_address(sg); ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, &ctbr, dst_addr, sg_dma_len(sg)); stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dst_addr); } if (ret < 0) return ret; stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr, dst_addr, sg_dma_len(sg), ctcr, ctbr, i == sg_len - 1, i == 0, false); } /* Enable interrupts */ ccr &= ~STM32_MDMA_CCR_IRQ_MASK; ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE; if (sg_len > 1) ccr |= STM32_MDMA_CCR_BTIE; desc->ccr = ccr; return 0; } static struct dma_async_tx_descriptor * stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl, u32 sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_chan_config *chan_config = &chan->chan_config; struct stm32_mdma_desc *desc; int i, ret; /* * Once DMA is in setup cyclic mode the channel we cannot assign this * channel anymore. The DMA channel needs to be aborted or terminated * for allowing another request. */ if (chan->desc && chan->desc->cyclic) { dev_err(chan2dev(chan), "Request not allowed when dma in cyclic mode\n"); return NULL; } desc = stm32_mdma_alloc_desc(chan, sg_len); if (!desc) return NULL; ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction); if (ret < 0) goto xfer_setup_err; /* * In case of M2M HW transfer triggered by STM32 DMA, we do not have to clear the * transfer complete flag by hardware in order to let the CPU rearm the STM32 DMA * with the next sg element and update some data in dmaengine framework. */ if (chan_config->m2m_hw && direction == DMA_MEM_TO_DEV) { struct stm32_mdma_hwdesc *hwdesc; for (i = 0; i < sg_len; i++) { hwdesc = desc->node[i].hwdesc; hwdesc->cmar = 0; hwdesc->cmdr = 0; } } desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); xfer_setup_err: for (i = 0; i < desc->count; i++) dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, desc->node[i].hwdesc_phys); kfree(desc); return NULL; } static struct dma_async_tx_descriptor * stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct dma_slave_config *dma_config = &chan->dma_config; struct stm32_mdma_chan_config *chan_config = &chan->chan_config; struct stm32_mdma_desc *desc; dma_addr_t src_addr, dst_addr; u32 ccr, ctcr, ctbr, count; int i, ret; /* * Once DMA is in setup cyclic mode the channel we cannot assign this * channel anymore. The DMA channel needs to be aborted or terminated * for allowing another request. */ if (chan->desc && chan->desc->cyclic) { dev_err(chan2dev(chan), "Request not allowed when dma in cyclic mode\n"); return NULL; } if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) { dev_err(chan2dev(chan), "Invalid buffer/period len\n"); return NULL; } if (buf_len % period_len) { dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); return NULL; } count = buf_len / period_len; desc = stm32_mdma_alloc_desc(chan, count); if (!desc) return NULL; /* Select bus */ if (direction == DMA_MEM_TO_DEV) { src_addr = buf_addr; ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, &ctbr, src_addr, period_len); stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src_addr); } else { dst_addr = buf_addr; ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, &ctbr, dst_addr, period_len); stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dst_addr); } if (ret < 0) goto xfer_setup_err; /* Enable interrupts */ ccr &= ~STM32_MDMA_CCR_IRQ_MASK; ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE; desc->ccr = ccr; /* Configure hwdesc list */ for (i = 0; i < count; i++) { if (direction == DMA_MEM_TO_DEV) { src_addr = buf_addr + i * period_len; dst_addr = dma_config->dst_addr; if (chan_config->m2m_hw && (i & 1)) dst_addr += period_len; } else { src_addr = dma_config->src_addr; if (chan_config->m2m_hw && (i & 1)) src_addr += period_len; dst_addr = buf_addr + i * period_len; } stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr, dst_addr, period_len, ctcr, ctbr, i == count - 1, i == 0, true); } desc->cyclic = true; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); xfer_setup_err: for (i = 0; i < desc->count; i++) dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, desc->node[i].hwdesc_phys); kfree(desc); return NULL; } static struct dma_async_tx_descriptor * stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); enum dma_slave_buswidth max_width; struct stm32_mdma_desc *desc; struct stm32_mdma_hwdesc *hwdesc; u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst; u32 best_burst, tlen; size_t xfer_count, offset; int src_bus_width, dst_bus_width; int i; /* * Once DMA is in setup cyclic mode the channel we cannot assign this * channel anymore. The DMA channel needs to be aborted or terminated * to allow another request */ if (chan->desc && chan->desc->cyclic) { dev_err(chan2dev(chan), "Request not allowed when dma in cyclic mode\n"); return NULL; } count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN); desc = stm32_mdma_alloc_desc(chan, count); if (!desc) return NULL; ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)); ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)); ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)); cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)); /* Enable sw req, some interrupts and clear other bits */ ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX | STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK | STM32_MDMA_CCR_IRQ_MASK); ccr |= STM32_MDMA_CCR_TEIE; /* Enable SW request mode, dest/src inc and clear other bits */ ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK | STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE | STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK | STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK | STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK | STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK | STM32_MDMA_CTCR_SINC_MASK); ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) | STM32_MDMA_CTCR_DINC(STM32_MDMA_INC); /* Reset HW request */ ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK; /* Select bus */ stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src); stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest); /* Clear CBNDTR registers */ cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM | STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK); if (len <= STM32_MDMA_MAX_BLOCK_LEN) { cbndtr |= STM32_MDMA_CBNDTR_BNDT(len); if (len <= STM32_MDMA_MAX_BUF_LEN) { /* Setup a buffer transfer */ ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE; ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER); } else { /* Setup a block transfer */ ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE; ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK); } tlen = STM32_MDMA_MAX_BUF_LEN; ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1)); /* Set source best burst size */ max_width = stm32_mdma_get_max_width(src, len, tlen); src_bus_width = stm32_mdma_get_width(chan, max_width); max_burst = tlen / max_width; best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, max_width); mdma_burst = ilog2(best_burst); ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) | STM32_MDMA_CTCR_SSIZE(src_bus_width) | STM32_MDMA_CTCR_SINCOS(src_bus_width); /* Set destination best burst size */ max_width = stm32_mdma_get_max_width(dest, len, tlen); dst_bus_width = stm32_mdma_get_width(chan, max_width); max_burst = tlen / max_width; best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, max_width); mdma_burst = ilog2(best_burst); ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) | STM32_MDMA_CTCR_DSIZE(dst_bus_width) | STM32_MDMA_CTCR_DINCOS(dst_bus_width); if (dst_bus_width != src_bus_width) ctcr |= STM32_MDMA_CTCR_PKE; /* Prepare hardware descriptor */ hwdesc = desc->node[0].hwdesc; hwdesc->ctcr = ctcr; hwdesc->cbndtr = cbndtr; hwdesc->csar = src; hwdesc->cdar = dest; hwdesc->cbrur = 0; hwdesc->clar = 0; hwdesc->ctbr = ctbr; hwdesc->cmar = 0; hwdesc->cmdr = 0; stm32_mdma_dump_hwdesc(chan, &desc->node[0]); } else { /* Setup a LLI transfer */ ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) | STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1)); ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE; tlen = STM32_MDMA_MAX_BUF_LEN; for (i = 0, offset = 0; offset < len; i++, offset += xfer_count) { xfer_count = min_t(size_t, len - offset, STM32_MDMA_MAX_BLOCK_LEN); /* Set source best burst size */ max_width = stm32_mdma_get_max_width(src, len, tlen); src_bus_width = stm32_mdma_get_width(chan, max_width); max_burst = tlen / max_width; best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, max_width); mdma_burst = ilog2(best_burst); ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) | STM32_MDMA_CTCR_SSIZE(src_bus_width) | STM32_MDMA_CTCR_SINCOS(src_bus_width); /* Set destination best burst size */ max_width = stm32_mdma_get_max_width(dest, len, tlen); dst_bus_width = stm32_mdma_get_width(chan, max_width); max_burst = tlen / max_width; best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, max_width); mdma_burst = ilog2(best_burst); ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) | STM32_MDMA_CTCR_DSIZE(dst_bus_width) | STM32_MDMA_CTCR_DINCOS(dst_bus_width); if (dst_bus_width != src_bus_width) ctcr |= STM32_MDMA_CTCR_PKE; /* Prepare hardware descriptor */ stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i, src + offset, dest + offset, xfer_count, ctcr, ctbr, i == count - 1, i == 0, false); } } desc->ccr = ccr; desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); dev_dbg(chan2dev(chan), "CCR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id))); dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id))); dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id))); dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id))); dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id))); dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id))); dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id))); dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id))); dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id))); dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n", stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id))); } static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct virt_dma_desc *vdesc; struct stm32_mdma_hwdesc *hwdesc; u32 id = chan->id; u32 status, reg; vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) { chan->desc = NULL; return; } list_del(&vdesc->node); chan->desc = to_stm32_mdma_desc(vdesc); hwdesc = chan->desc->node[0].hwdesc; chan->curr_hwdesc = 0; stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr); stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr); stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr); stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar); stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar); stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur); stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar); stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr); stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar); stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr); /* Clear interrupt status if it is there */ status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id)); if (status) stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status); stm32_mdma_dump_reg(chan); /* Start DMA */ stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN); /* Set SW request in case of MEM2MEM transfer */ if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) { reg = STM32_MDMA_CCR(id); stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ); } chan->busy = true; dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); } static void stm32_mdma_issue_pending(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); unsigned long flags; spin_lock_irqsave(&chan->vchan.lock, flags); if (!vchan_issue_pending(&chan->vchan)) goto end; dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); if (!chan->desc && !chan->busy) stm32_mdma_start_transfer(chan); end: spin_unlock_irqrestore(&chan->vchan.lock, flags); } static int stm32_mdma_pause(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); unsigned long flags; int ret; spin_lock_irqsave(&chan->vchan.lock, flags); ret = stm32_mdma_disable_chan(chan); spin_unlock_irqrestore(&chan->vchan.lock, flags); if (!ret) dev_dbg(chan2dev(chan), "vchan %pK: pause\n", &chan->vchan); return ret; } static int stm32_mdma_resume(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct stm32_mdma_hwdesc *hwdesc; unsigned long flags; u32 status, reg; hwdesc = chan->desc->node[chan->curr_hwdesc].hwdesc; spin_lock_irqsave(&chan->vchan.lock, flags); /* Re-configure control register */ stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr); /* Clear interrupt status if it is there */ status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id)); if (status) stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status); stm32_mdma_dump_reg(chan); /* Re-start DMA */ reg = STM32_MDMA_CCR(chan->id); stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN); /* Set SW request in case of MEM2MEM transfer */ if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ); spin_unlock_irqrestore(&chan->vchan.lock, flags); dev_dbg(chan2dev(chan), "vchan %pK: resume\n", &chan->vchan); return 0; } static int stm32_mdma_terminate_all(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&chan->vchan.lock, flags); if (chan->desc) { vchan_terminate_vdesc(&chan->desc->vdesc); if (chan->busy) stm32_mdma_stop(chan); chan->desc = NULL; } vchan_get_all_descriptors(&chan->vchan, &head); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &head); return 0; } static void stm32_mdma_synchronize(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); vchan_synchronize(&chan->vchan); } static int stm32_mdma_slave_config(struct dma_chan *c, struct dma_slave_config *config) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); memcpy(&chan->dma_config, config, sizeof(*config)); /* Check if user is requesting STM32 DMA to trigger MDMA */ if (config->peripheral_size) { struct stm32_mdma_dma_config *mdma_config; mdma_config = (struct stm32_mdma_dma_config *)chan->dma_config.peripheral_config; chan->chan_config.request = mdma_config->request; chan->chan_config.mask_addr = mdma_config->cmar; chan->chan_config.mask_data = mdma_config->cmdr; chan->chan_config.m2m_hw = true; } return 0; } static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan, struct stm32_mdma_desc *desc, u32 curr_hwdesc) { struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); struct stm32_mdma_hwdesc *hwdesc; u32 cbndtr, residue, modulo, burst_size; int i; residue = 0; for (i = curr_hwdesc + 1; i < desc->count; i++) { hwdesc = desc->node[i].hwdesc; residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr); } cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)); residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK; if (!chan->mem_burst) return residue; burst_size = chan->mem_burst * chan->mem_width; modulo = residue % burst_size; if (modulo) residue = residue - modulo + burst_size; return residue; } static enum dma_status stm32_mdma_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *state) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct virt_dma_desc *vdesc; enum dma_status status; unsigned long flags; u32 residue = 0; status = dma_cookie_status(c, cookie, state); if ((status == DMA_COMPLETE) || (!state)) return status; spin_lock_irqsave(&chan->vchan.lock, flags); vdesc = vchan_find_desc(&chan->vchan, cookie); if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) residue = stm32_mdma_desc_residue(chan, chan->desc, chan->curr_hwdesc); else if (vdesc) residue = stm32_mdma_desc_residue(chan, to_stm32_mdma_desc(vdesc), 0); dma_set_residue(state, residue); spin_unlock_irqrestore(&chan->vchan.lock, flags); return status; } static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan) { vchan_cookie_complete(&chan->desc->vdesc); chan->desc = NULL; chan->busy = false; /* Start the next transfer if this driver has a next desc */ stm32_mdma_start_transfer(chan); } static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid) { struct stm32_mdma_device *dmadev = devid; struct stm32_mdma_chan *chan; u32 reg, id, ccr, ien, status; /* Find out which channel generates the interrupt */ status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0); if (!status) { dev_dbg(mdma2dev(dmadev), "spurious it\n"); return IRQ_NONE; } id = __ffs(status); chan = &dmadev->chan[id]; /* Handle interrupt for the channel */ spin_lock(&chan->vchan.lock); status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id)); /* Mask Channel ReQuest Active bit which can be set in case of MEM2MEM */ status &= ~STM32_MDMA_CISR_CRQA; ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(id)); ien = (ccr & STM32_MDMA_CCR_IRQ_MASK) >> 1; if (!(status & ien)) { spin_unlock(&chan->vchan.lock); if (chan->busy) dev_warn(chan2dev(chan), "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien); else dev_dbg(chan2dev(chan), "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien); return IRQ_NONE; } reg = STM32_MDMA_CIFCR(id); if (status & STM32_MDMA_CISR_TEIF) { dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", readl_relaxed(dmadev->base + STM32_MDMA_CESR(id))); stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF); status &= ~STM32_MDMA_CISR_TEIF; } if (status & STM32_MDMA_CISR_CTCIF) { stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF); status &= ~STM32_MDMA_CISR_CTCIF; stm32_mdma_xfer_end(chan); } if (status & STM32_MDMA_CISR_BRTIF) { stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF); status &= ~STM32_MDMA_CISR_BRTIF; } if (status & STM32_MDMA_CISR_BTIF) { stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF); status &= ~STM32_MDMA_CISR_BTIF; chan->curr_hwdesc++; if (chan->desc && chan->desc->cyclic) { if (chan->curr_hwdesc == chan->desc->count) chan->curr_hwdesc = 0; vchan_cyclic_callback(&chan->desc->vdesc); } } if (status & STM32_MDMA_CISR_TCIF) { stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF); status &= ~STM32_MDMA_CISR_TCIF; } if (status) { stm32_mdma_set_bits(dmadev, reg, status); dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); if (!(ccr & STM32_MDMA_CCR_EN)) dev_err(chan2dev(chan), "chan disabled by HW\n"); } spin_unlock(&chan->vchan.lock); return IRQ_HANDLED; } static int stm32_mdma_alloc_chan_resources(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); int ret; chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev, sizeof(struct stm32_mdma_hwdesc), __alignof__(struct stm32_mdma_hwdesc), 0); if (!chan->desc_pool) { dev_err(chan2dev(chan), "failed to allocate descriptor pool\n"); return -ENOMEM; } ret = pm_runtime_resume_and_get(dmadev->ddev.dev); if (ret < 0) return ret; ret = stm32_mdma_disable_chan(chan); if (ret < 0) pm_runtime_put(dmadev->ddev.dev); return ret; } static void stm32_mdma_free_chan_resources(struct dma_chan *c) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); unsigned long flags; dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); if (chan->busy) { spin_lock_irqsave(&chan->vchan.lock, flags); stm32_mdma_stop(chan); chan->desc = NULL; spin_unlock_irqrestore(&chan->vchan.lock, flags); } pm_runtime_put(dmadev->ddev.dev); vchan_free_chan_resources(to_virt_chan(c)); dmam_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; } static bool stm32_mdma_filter_fn(struct dma_chan *c, void *fn_param) { struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); /* Check if chan is marked Secure */ if (dmadev->chan_reserved & BIT(chan->id)) return false; return true; } static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct stm32_mdma_device *dmadev = ofdma->of_dma_data; dma_cap_mask_t mask = dmadev->ddev.cap_mask; struct stm32_mdma_chan *chan; struct dma_chan *c; struct stm32_mdma_chan_config config; if (dma_spec->args_count < 5) { dev_err(mdma2dev(dmadev), "Bad number of args\n"); return NULL; } memset(&config, 0, sizeof(config)); config.request = dma_spec->args[0]; config.priority_level = dma_spec->args[1]; config.transfer_config = dma_spec->args[2]; config.mask_addr = dma_spec->args[3]; config.mask_data = dma_spec->args[4]; if (config.request >= dmadev->nr_requests) { dev_err(mdma2dev(dmadev), "Bad request line\n"); return NULL; } if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) { dev_err(mdma2dev(dmadev), "Priority level not supported\n"); return NULL; } c = __dma_request_channel(&mask, stm32_mdma_filter_fn, &config, ofdma->of_node); if (!c) { dev_err(mdma2dev(dmadev), "No more channels available\n"); return NULL; } chan = to_stm32_mdma_chan(c); chan->chan_config = config; return c; } static const struct of_device_id stm32_mdma_of_match[] = { { .compatible = "st,stm32h7-mdma", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, stm32_mdma_of_match); static int stm32_mdma_probe(struct platform_device *pdev) { struct stm32_mdma_chan *chan; struct stm32_mdma_device *dmadev; struct dma_device *dd; struct device_node *of_node; struct reset_control *rst; u32 nr_channels, nr_requests; int i, count, ret; of_node = pdev->dev.of_node; if (!of_node) return -ENODEV; ret = device_property_read_u32(&pdev->dev, "dma-channels", &nr_channels); if (ret) { nr_channels = STM32_MDMA_MAX_CHANNELS; dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n", nr_channels); } ret = device_property_read_u32(&pdev->dev, "dma-requests", &nr_requests); if (ret) { nr_requests = STM32_MDMA_MAX_REQUESTS; dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n", nr_requests); } count = device_property_count_u32(&pdev->dev, "st,ahb-addr-masks"); if (count < 0) count = 0; dmadev = devm_kzalloc(&pdev->dev, struct_size(dmadev, ahb_addr_masks, count), GFP_KERNEL); if (!dmadev) return -ENOMEM; dmadev->nr_channels = nr_channels; dmadev->nr_requests = nr_requests; device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks", dmadev->ahb_addr_masks, count); dmadev->nr_ahb_addr_masks = count; dmadev->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dmadev->base)) return PTR_ERR(dmadev->base); dmadev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dmadev->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Missing clock controller\n"); ret = clk_prepare_enable(dmadev->clk); if (ret < 0) { dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); return ret; } rst = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(rst)) { ret = PTR_ERR(rst); if (ret == -EPROBE_DEFER) goto err_clk; } else { reset_control_assert(rst); udelay(2); reset_control_deassert(rst); } dd = &dmadev->ddev; dma_cap_set(DMA_SLAVE, dd->cap_mask); dma_cap_set(DMA_PRIVATE, dd->cap_mask); dma_cap_set(DMA_CYCLIC, dd->cap_mask); dma_cap_set(DMA_MEMCPY, dd->cap_mask); dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources; dd->device_free_chan_resources = stm32_mdma_free_chan_resources; dd->device_tx_status = stm32_mdma_tx_status; dd->device_issue_pending = stm32_mdma_issue_pending; dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg; dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic; dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy; dd->device_config = stm32_mdma_slave_config; dd->device_pause = stm32_mdma_pause; dd->device_resume = stm32_mdma_resume; dd->device_terminate_all = stm32_mdma_terminate_all; dd->device_synchronize = stm32_mdma_synchronize; dd->descriptor_reuse = true; dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM); dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; dd->max_burst = STM32_MDMA_MAX_BURST; dd->dev = &pdev->dev; INIT_LIST_HEAD(&dd->channels); for (i = 0; i < dmadev->nr_channels; i++) { chan = &dmadev->chan[i]; chan->id = i; if (stm32_mdma_read(dmadev, STM32_MDMA_CCR(i)) & STM32_MDMA_CCR_SM) dmadev->chan_reserved |= BIT(i); chan->vchan.desc_free = stm32_mdma_desc_free; vchan_init(&chan->vchan, dd); } dmadev->irq = platform_get_irq(pdev, 0); if (dmadev->irq < 0) { ret = dmadev->irq; goto err_clk; } ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler, 0, dev_name(&pdev->dev), dmadev); if (ret) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto err_clk; } ret = dmaenginem_async_device_register(dd); if (ret) goto err_clk; ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev); if (ret < 0) { dev_err(&pdev->dev, "STM32 MDMA DMA OF registration failed %d\n", ret); goto err_clk; } platform_set_drvdata(pdev, dmadev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_put(&pdev->dev); dev_info(&pdev->dev, "STM32 MDMA driver registered\n"); return 0; err_clk: clk_disable_unprepare(dmadev->clk); return ret; } #ifdef CONFIG_PM static int stm32_mdma_runtime_suspend(struct device *dev) { struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); clk_disable_unprepare(dmadev->clk); return 0; } static int stm32_mdma_runtime_resume(struct device *dev) { struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(dmadev->clk); if (ret) { dev_err(dev, "failed to prepare_enable clock\n"); return ret; } return 0; } #endif #ifdef CONFIG_PM_SLEEP static int stm32_mdma_pm_suspend(struct device *dev) { struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); u32 ccr, id; int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) return ret; for (id = 0; id < dmadev->nr_channels; id++) { ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(id)); if (ccr & STM32_MDMA_CCR_EN) { dev_warn(dev, "Suspend is prevented by Chan %i\n", id); return -EBUSY; } } pm_runtime_put_sync(dev); pm_runtime_force_suspend(dev); return 0; } static int stm32_mdma_pm_resume(struct device *dev) { return pm_runtime_force_resume(dev); } #endif static const struct dev_pm_ops stm32_mdma_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_mdma_pm_suspend, stm32_mdma_pm_resume) SET_RUNTIME_PM_OPS(stm32_mdma_runtime_suspend, stm32_mdma_runtime_resume, NULL) }; static struct platform_driver stm32_mdma_driver = { .probe = stm32_mdma_probe, .driver = { .name = "stm32-mdma", .of_match_table = stm32_mdma_of_match, .pm = &stm32_mdma_pm_ops, }, }; static int __init stm32_mdma_init(void) { return platform_driver_register(&stm32_mdma_driver); } subsys_initcall(stm32_mdma_init); MODULE_DESCRIPTION("Driver for STM32 MDMA controller"); MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>"); MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1