Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jon Hunter | 3446 | 77.25% | 3 | 12.50% |
Sameer Pujar | 987 | 22.13% | 10 | 41.67% |
Mohan Kumar | 6 | 0.13% | 1 | 4.17% |
Sergei Shtylyov | 5 | 0.11% | 1 | 4.17% |
Gustavo A. R. Silva | 5 | 0.11% | 2 | 8.33% |
Barry Song | 3 | 0.07% | 1 | 4.17% |
Yue haibing | 2 | 0.04% | 1 | 4.17% |
Tudor-Dan Ambarus | 2 | 0.04% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.04% | 1 | 4.17% |
Christophe Jaillet | 1 | 0.02% | 1 | 4.17% |
Qilong Zhang | 1 | 0.02% | 1 | 4.17% |
Dongliang Mu | 1 | 0.02% | 1 | 4.17% |
Total | 4461 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADMA driver for Nvidia's Tegra210 ADMA controller. * * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_dma.h> #include <linux/of_irq.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include "virt-dma.h" #define ADMA_CH_CMD 0x00 #define ADMA_CH_STATUS 0x0c #define ADMA_CH_STATUS_XFER_EN BIT(0) #define ADMA_CH_STATUS_XFER_PAUSED BIT(1) #define ADMA_CH_INT_STATUS 0x10 #define ADMA_CH_INT_STATUS_XFER_DONE BIT(0) #define ADMA_CH_INT_CLEAR 0x1c #define ADMA_CH_CTRL 0x24 #define ADMA_CH_CTRL_DIR(val) (((val) & 0xf) << 12) #define ADMA_CH_CTRL_DIR_AHUB2MEM 2 #define ADMA_CH_CTRL_DIR_MEM2AHUB 4 #define ADMA_CH_CTRL_MODE_CONTINUOUS (2 << 8) #define ADMA_CH_CTRL_FLOWCTRL_EN BIT(1) #define ADMA_CH_CTRL_XFER_PAUSE_SHIFT 0 #define ADMA_CH_CONFIG 0x28 #define ADMA_CH_CONFIG_SRC_BUF(val) (((val) & 0x7) << 28) #define ADMA_CH_CONFIG_TRG_BUF(val) (((val) & 0x7) << 24) #define ADMA_CH_CONFIG_BURST_SIZE_SHIFT 20 #define ADMA_CH_CONFIG_MAX_BURST_SIZE 16 #define ADMA_CH_CONFIG_WEIGHT_FOR_WRR(val) ((val) & 0xf) #define ADMA_CH_CONFIG_MAX_BUFS 8 #define TEGRA186_ADMA_CH_CONFIG_OUTSTANDING_REQS(reqs) (reqs << 4) #define ADMA_CH_FIFO_CTRL 0x2c #define ADMA_CH_TX_FIFO_SIZE_SHIFT 8 #define ADMA_CH_RX_FIFO_SIZE_SHIFT 0 #define ADMA_CH_LOWER_SRC_ADDR 0x34 #define ADMA_CH_LOWER_TRG_ADDR 0x3c #define ADMA_CH_TC 0x44 #define ADMA_CH_TC_COUNT_MASK 0x3ffffffc #define ADMA_CH_XFER_STATUS 0x54 #define ADMA_CH_XFER_STATUS_COUNT_MASK 0xffff #define ADMA_GLOBAL_CMD 0x00 #define ADMA_GLOBAL_SOFT_RESET 0x04 #define TEGRA_ADMA_BURST_COMPLETE_TIME 20 #define ADMA_CH_REG_FIELD_VAL(val, mask, shift) (((val) & mask) << shift) struct tegra_adma; /* * struct tegra_adma_chip_data - Tegra chip specific data * @adma_get_burst_config: Function callback used to set DMA burst size. * @global_reg_offset: Register offset of DMA global register. * @global_int_clear: Register offset of DMA global interrupt clear. * @ch_req_tx_shift: Register offset for AHUB transmit channel select. * @ch_req_rx_shift: Register offset for AHUB receive channel select. * @ch_base_offset: Register offset of DMA channel registers. * @ch_fifo_ctrl: Default value for channel FIFO CTRL register. * @ch_req_mask: Mask for Tx or Rx channel select. * @ch_req_max: Maximum number of Tx or Rx channels available. * @ch_reg_size: Size of DMA channel register space. * @nr_channels: Number of DMA channels available. * @ch_fifo_size_mask: Mask for FIFO size field. * @sreq_index_offset: Slave channel index offset. * @has_outstanding_reqs: If DMA channel can have outstanding requests. */ struct tegra_adma_chip_data { unsigned int (*adma_get_burst_config)(unsigned int burst_size); unsigned int global_reg_offset; unsigned int global_int_clear; unsigned int ch_req_tx_shift; unsigned int ch_req_rx_shift; unsigned int ch_base_offset; unsigned int ch_fifo_ctrl; unsigned int ch_req_mask; unsigned int ch_req_max; unsigned int ch_reg_size; unsigned int nr_channels; unsigned int ch_fifo_size_mask; unsigned int sreq_index_offset; bool has_outstanding_reqs; }; /* * struct tegra_adma_chan_regs - Tegra ADMA channel registers */ struct tegra_adma_chan_regs { unsigned int ctrl; unsigned int config; unsigned int src_addr; unsigned int trg_addr; unsigned int fifo_ctrl; unsigned int cmd; unsigned int tc; }; /* * struct tegra_adma_desc - Tegra ADMA descriptor to manage transfer requests. */ struct tegra_adma_desc { struct virt_dma_desc vd; struct tegra_adma_chan_regs ch_regs; size_t buf_len; size_t period_len; size_t num_periods; }; /* * struct tegra_adma_chan - Tegra ADMA channel information */ struct tegra_adma_chan { struct virt_dma_chan vc; struct tegra_adma_desc *desc; struct tegra_adma *tdma; int irq; void __iomem *chan_addr; /* Slave channel configuration info */ struct dma_slave_config sconfig; enum dma_transfer_direction sreq_dir; unsigned int sreq_index; bool sreq_reserved; struct tegra_adma_chan_regs ch_regs; /* Transfer count and position info */ unsigned int tx_buf_count; unsigned int tx_buf_pos; }; /* * struct tegra_adma - Tegra ADMA controller information */ struct tegra_adma { struct dma_device dma_dev; struct device *dev; void __iomem *base_addr; struct clk *ahub_clk; unsigned int nr_channels; unsigned long rx_requests_reserved; unsigned long tx_requests_reserved; /* Used to store global command register state when suspending */ unsigned int global_cmd; const struct tegra_adma_chip_data *cdata; /* Last member of the structure */ struct tegra_adma_chan channels[]; }; static inline void tdma_write(struct tegra_adma *tdma, u32 reg, u32 val) { writel(val, tdma->base_addr + tdma->cdata->global_reg_offset + reg); } static inline u32 tdma_read(struct tegra_adma *tdma, u32 reg) { return readl(tdma->base_addr + tdma->cdata->global_reg_offset + reg); } static inline void tdma_ch_write(struct tegra_adma_chan *tdc, u32 reg, u32 val) { writel(val, tdc->chan_addr + reg); } static inline u32 tdma_ch_read(struct tegra_adma_chan *tdc, u32 reg) { return readl(tdc->chan_addr + reg); } static inline struct tegra_adma_chan *to_tegra_adma_chan(struct dma_chan *dc) { return container_of(dc, struct tegra_adma_chan, vc.chan); } static inline struct tegra_adma_desc *to_tegra_adma_desc( struct dma_async_tx_descriptor *td) { return container_of(td, struct tegra_adma_desc, vd.tx); } static inline struct device *tdc2dev(struct tegra_adma_chan *tdc) { return tdc->tdma->dev; } static void tegra_adma_desc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct tegra_adma_desc, vd)); } static int tegra_adma_slave_config(struct dma_chan *dc, struct dma_slave_config *sconfig) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); memcpy(&tdc->sconfig, sconfig, sizeof(*sconfig)); return 0; } static int tegra_adma_init(struct tegra_adma *tdma) { u32 status; int ret; /* Clear any interrupts */ tdma_write(tdma, tdma->cdata->ch_base_offset + tdma->cdata->global_int_clear, 0x1); /* Assert soft reset */ tdma_write(tdma, ADMA_GLOBAL_SOFT_RESET, 0x1); /* Wait for reset to clear */ ret = readx_poll_timeout(readl, tdma->base_addr + tdma->cdata->global_reg_offset + ADMA_GLOBAL_SOFT_RESET, status, status == 0, 20, 10000); if (ret) return ret; /* Enable global ADMA registers */ tdma_write(tdma, ADMA_GLOBAL_CMD, 1); return 0; } static int tegra_adma_request_alloc(struct tegra_adma_chan *tdc, enum dma_transfer_direction direction) { struct tegra_adma *tdma = tdc->tdma; unsigned int sreq_index = tdc->sreq_index; if (tdc->sreq_reserved) return tdc->sreq_dir == direction ? 0 : -EINVAL; if (sreq_index > tdma->cdata->ch_req_max) { dev_err(tdma->dev, "invalid DMA request\n"); return -EINVAL; } switch (direction) { case DMA_MEM_TO_DEV: if (test_and_set_bit(sreq_index, &tdma->tx_requests_reserved)) { dev_err(tdma->dev, "DMA request reserved\n"); return -EINVAL; } break; case DMA_DEV_TO_MEM: if (test_and_set_bit(sreq_index, &tdma->rx_requests_reserved)) { dev_err(tdma->dev, "DMA request reserved\n"); return -EINVAL; } break; default: dev_WARN(tdma->dev, "channel %s has invalid transfer type\n", dma_chan_name(&tdc->vc.chan)); return -EINVAL; } tdc->sreq_dir = direction; tdc->sreq_reserved = true; return 0; } static void tegra_adma_request_free(struct tegra_adma_chan *tdc) { struct tegra_adma *tdma = tdc->tdma; if (!tdc->sreq_reserved) return; switch (tdc->sreq_dir) { case DMA_MEM_TO_DEV: clear_bit(tdc->sreq_index, &tdma->tx_requests_reserved); break; case DMA_DEV_TO_MEM: clear_bit(tdc->sreq_index, &tdma->rx_requests_reserved); break; default: dev_WARN(tdma->dev, "channel %s has invalid transfer type\n", dma_chan_name(&tdc->vc.chan)); return; } tdc->sreq_reserved = false; } static u32 tegra_adma_irq_status(struct tegra_adma_chan *tdc) { u32 status = tdma_ch_read(tdc, ADMA_CH_INT_STATUS); return status & ADMA_CH_INT_STATUS_XFER_DONE; } static u32 tegra_adma_irq_clear(struct tegra_adma_chan *tdc) { u32 status = tegra_adma_irq_status(tdc); if (status) tdma_ch_write(tdc, ADMA_CH_INT_CLEAR, status); return status; } static void tegra_adma_stop(struct tegra_adma_chan *tdc) { unsigned int status; /* Disable ADMA */ tdma_ch_write(tdc, ADMA_CH_CMD, 0); /* Clear interrupt status */ tegra_adma_irq_clear(tdc); if (readx_poll_timeout_atomic(readl, tdc->chan_addr + ADMA_CH_STATUS, status, !(status & ADMA_CH_STATUS_XFER_EN), 20, 10000)) { dev_err(tdc2dev(tdc), "unable to stop DMA channel\n"); return; } kfree(tdc->desc); tdc->desc = NULL; } static void tegra_adma_start(struct tegra_adma_chan *tdc) { struct virt_dma_desc *vd = vchan_next_desc(&tdc->vc); struct tegra_adma_chan_regs *ch_regs; struct tegra_adma_desc *desc; if (!vd) return; list_del(&vd->node); desc = to_tegra_adma_desc(&vd->tx); if (!desc) { dev_warn(tdc2dev(tdc), "unable to start DMA, no descriptor\n"); return; } ch_regs = &desc->ch_regs; tdc->tx_buf_pos = 0; tdc->tx_buf_count = 0; tdma_ch_write(tdc, ADMA_CH_TC, ch_regs->tc); tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl); tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR, ch_regs->src_addr); tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR, ch_regs->trg_addr); tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL, ch_regs->fifo_ctrl); tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_regs->config); /* Start ADMA */ tdma_ch_write(tdc, ADMA_CH_CMD, 1); tdc->desc = desc; } static unsigned int tegra_adma_get_residue(struct tegra_adma_chan *tdc) { struct tegra_adma_desc *desc = tdc->desc; unsigned int max = ADMA_CH_XFER_STATUS_COUNT_MASK + 1; unsigned int pos = tdma_ch_read(tdc, ADMA_CH_XFER_STATUS); unsigned int periods_remaining; /* * Handle wrap around of buffer count register */ if (pos < tdc->tx_buf_pos) tdc->tx_buf_count += pos + (max - tdc->tx_buf_pos); else tdc->tx_buf_count += pos - tdc->tx_buf_pos; periods_remaining = tdc->tx_buf_count % desc->num_periods; tdc->tx_buf_pos = pos; return desc->buf_len - (periods_remaining * desc->period_len); } static irqreturn_t tegra_adma_isr(int irq, void *dev_id) { struct tegra_adma_chan *tdc = dev_id; unsigned long status; spin_lock(&tdc->vc.lock); status = tegra_adma_irq_clear(tdc); if (status == 0 || !tdc->desc) { spin_unlock(&tdc->vc.lock); return IRQ_NONE; } vchan_cyclic_callback(&tdc->desc->vd); spin_unlock(&tdc->vc.lock); return IRQ_HANDLED; } static void tegra_adma_issue_pending(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); unsigned long flags; spin_lock_irqsave(&tdc->vc.lock, flags); if (vchan_issue_pending(&tdc->vc)) { if (!tdc->desc) tegra_adma_start(tdc); } spin_unlock_irqrestore(&tdc->vc.lock, flags); } static bool tegra_adma_is_paused(struct tegra_adma_chan *tdc) { u32 csts; csts = tdma_ch_read(tdc, ADMA_CH_STATUS); csts &= ADMA_CH_STATUS_XFER_PAUSED; return csts ? true : false; } static int tegra_adma_pause(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); struct tegra_adma_desc *desc = tdc->desc; struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs; int dcnt = 10; ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL); ch_regs->ctrl |= (1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT); tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl); while (dcnt-- && !tegra_adma_is_paused(tdc)) udelay(TEGRA_ADMA_BURST_COMPLETE_TIME); if (dcnt < 0) { dev_err(tdc2dev(tdc), "unable to pause DMA channel\n"); return -EBUSY; } return 0; } static int tegra_adma_resume(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); struct tegra_adma_desc *desc = tdc->desc; struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs; ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL); ch_regs->ctrl &= ~(1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT); tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl); return 0; } static int tegra_adma_terminate_all(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&tdc->vc.lock, flags); if (tdc->desc) tegra_adma_stop(tdc); tegra_adma_request_free(tdc); vchan_get_all_descriptors(&tdc->vc, &head); spin_unlock_irqrestore(&tdc->vc.lock, flags); vchan_dma_desc_free_list(&tdc->vc, &head); return 0; } static enum dma_status tegra_adma_tx_status(struct dma_chan *dc, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); struct tegra_adma_desc *desc; struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; unsigned int residual; ret = dma_cookie_status(dc, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&tdc->vc.lock, flags); vd = vchan_find_desc(&tdc->vc, cookie); if (vd) { desc = to_tegra_adma_desc(&vd->tx); residual = desc->ch_regs.tc; } else if (tdc->desc && tdc->desc->vd.tx.cookie == cookie) { residual = tegra_adma_get_residue(tdc); } else { residual = 0; } spin_unlock_irqrestore(&tdc->vc.lock, flags); dma_set_residue(txstate, residual); return ret; } static unsigned int tegra210_adma_get_burst_config(unsigned int burst_size) { if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE) burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE; return fls(burst_size) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT; } static unsigned int tegra186_adma_get_burst_config(unsigned int burst_size) { if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE) burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE; return (burst_size - 1) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT; } static int tegra_adma_set_xfer_params(struct tegra_adma_chan *tdc, struct tegra_adma_desc *desc, dma_addr_t buf_addr, enum dma_transfer_direction direction) { struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs; const struct tegra_adma_chip_data *cdata = tdc->tdma->cdata; unsigned int burst_size, adma_dir, fifo_size_shift; if (desc->num_periods > ADMA_CH_CONFIG_MAX_BUFS) return -EINVAL; switch (direction) { case DMA_MEM_TO_DEV: fifo_size_shift = ADMA_CH_TX_FIFO_SIZE_SHIFT; adma_dir = ADMA_CH_CTRL_DIR_MEM2AHUB; burst_size = tdc->sconfig.dst_maxburst; ch_regs->config = ADMA_CH_CONFIG_SRC_BUF(desc->num_periods - 1); ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index, cdata->ch_req_mask, cdata->ch_req_tx_shift); ch_regs->src_addr = buf_addr; break; case DMA_DEV_TO_MEM: fifo_size_shift = ADMA_CH_RX_FIFO_SIZE_SHIFT; adma_dir = ADMA_CH_CTRL_DIR_AHUB2MEM; burst_size = tdc->sconfig.src_maxburst; ch_regs->config = ADMA_CH_CONFIG_TRG_BUF(desc->num_periods - 1); ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index, cdata->ch_req_mask, cdata->ch_req_rx_shift); ch_regs->trg_addr = buf_addr; break; default: dev_err(tdc2dev(tdc), "DMA direction is not supported\n"); return -EINVAL; } ch_regs->ctrl |= ADMA_CH_CTRL_DIR(adma_dir) | ADMA_CH_CTRL_MODE_CONTINUOUS | ADMA_CH_CTRL_FLOWCTRL_EN; ch_regs->config |= cdata->adma_get_burst_config(burst_size); ch_regs->config |= ADMA_CH_CONFIG_WEIGHT_FOR_WRR(1); if (cdata->has_outstanding_reqs) ch_regs->config |= TEGRA186_ADMA_CH_CONFIG_OUTSTANDING_REQS(8); /* * 'sreq_index' represents the current ADMAIF channel number and as per * HW recommendation its FIFO size should match with the corresponding * ADMA channel. * * ADMA FIFO size is set as per below (based on default ADMAIF channel * FIFO sizes): * fifo_size = 0x2 (sreq_index > sreq_index_offset) * fifo_size = 0x3 (sreq_index <= sreq_index_offset) * */ if (tdc->sreq_index > cdata->sreq_index_offset) ch_regs->fifo_ctrl = ADMA_CH_REG_FIELD_VAL(2, cdata->ch_fifo_size_mask, fifo_size_shift); else ch_regs->fifo_ctrl = ADMA_CH_REG_FIELD_VAL(3, cdata->ch_fifo_size_mask, fifo_size_shift); ch_regs->tc = desc->period_len & ADMA_CH_TC_COUNT_MASK; return tegra_adma_request_alloc(tdc, direction); } static struct dma_async_tx_descriptor *tegra_adma_prep_dma_cyclic( struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); struct tegra_adma_desc *desc = NULL; if (!buf_len || !period_len || period_len > ADMA_CH_TC_COUNT_MASK) { dev_err(tdc2dev(tdc), "invalid buffer/period len\n"); return NULL; } if (buf_len % period_len) { dev_err(tdc2dev(tdc), "buf_len not a multiple of period_len\n"); return NULL; } if (!IS_ALIGNED(buf_addr, 4)) { dev_err(tdc2dev(tdc), "invalid buffer alignment\n"); return NULL; } desc = kzalloc(sizeof(*desc), GFP_NOWAIT); if (!desc) return NULL; desc->buf_len = buf_len; desc->period_len = period_len; desc->num_periods = buf_len / period_len; if (tegra_adma_set_xfer_params(tdc, desc, buf_addr, direction)) { kfree(desc); return NULL; } return vchan_tx_prep(&tdc->vc, &desc->vd, flags); } static int tegra_adma_alloc_chan_resources(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); int ret; ret = request_irq(tdc->irq, tegra_adma_isr, 0, dma_chan_name(dc), tdc); if (ret) { dev_err(tdc2dev(tdc), "failed to get interrupt for %s\n", dma_chan_name(dc)); return ret; } ret = pm_runtime_resume_and_get(tdc2dev(tdc)); if (ret < 0) { free_irq(tdc->irq, tdc); return ret; } dma_cookie_init(&tdc->vc.chan); return 0; } static void tegra_adma_free_chan_resources(struct dma_chan *dc) { struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc); tegra_adma_terminate_all(dc); vchan_free_chan_resources(&tdc->vc); tasklet_kill(&tdc->vc.task); free_irq(tdc->irq, tdc); pm_runtime_put(tdc2dev(tdc)); tdc->sreq_index = 0; tdc->sreq_dir = DMA_TRANS_NONE; } static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct tegra_adma *tdma = ofdma->of_dma_data; struct tegra_adma_chan *tdc; struct dma_chan *chan; unsigned int sreq_index; if (dma_spec->args_count != 1) return NULL; sreq_index = dma_spec->args[0]; if (sreq_index == 0) { dev_err(tdma->dev, "DMA request must not be 0\n"); return NULL; } chan = dma_get_any_slave_channel(&tdma->dma_dev); if (!chan) return NULL; tdc = to_tegra_adma_chan(chan); tdc->sreq_index = sreq_index; return chan; } static int __maybe_unused tegra_adma_runtime_suspend(struct device *dev) { struct tegra_adma *tdma = dev_get_drvdata(dev); struct tegra_adma_chan_regs *ch_reg; struct tegra_adma_chan *tdc; int i; tdma->global_cmd = tdma_read(tdma, ADMA_GLOBAL_CMD); if (!tdma->global_cmd) goto clk_disable; for (i = 0; i < tdma->nr_channels; i++) { tdc = &tdma->channels[i]; ch_reg = &tdc->ch_regs; ch_reg->cmd = tdma_ch_read(tdc, ADMA_CH_CMD); /* skip if channel is not active */ if (!ch_reg->cmd) continue; ch_reg->tc = tdma_ch_read(tdc, ADMA_CH_TC); ch_reg->src_addr = tdma_ch_read(tdc, ADMA_CH_LOWER_SRC_ADDR); ch_reg->trg_addr = tdma_ch_read(tdc, ADMA_CH_LOWER_TRG_ADDR); ch_reg->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL); ch_reg->fifo_ctrl = tdma_ch_read(tdc, ADMA_CH_FIFO_CTRL); ch_reg->config = tdma_ch_read(tdc, ADMA_CH_CONFIG); } clk_disable: clk_disable_unprepare(tdma->ahub_clk); return 0; } static int __maybe_unused tegra_adma_runtime_resume(struct device *dev) { struct tegra_adma *tdma = dev_get_drvdata(dev); struct tegra_adma_chan_regs *ch_reg; struct tegra_adma_chan *tdc; int ret, i; ret = clk_prepare_enable(tdma->ahub_clk); if (ret) { dev_err(dev, "ahub clk_enable failed: %d\n", ret); return ret; } tdma_write(tdma, ADMA_GLOBAL_CMD, tdma->global_cmd); if (!tdma->global_cmd) return 0; for (i = 0; i < tdma->nr_channels; i++) { tdc = &tdma->channels[i]; ch_reg = &tdc->ch_regs; /* skip if channel was not active earlier */ if (!ch_reg->cmd) continue; tdma_ch_write(tdc, ADMA_CH_TC, ch_reg->tc); tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR, ch_reg->src_addr); tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR, ch_reg->trg_addr); tdma_ch_write(tdc, ADMA_CH_CTRL, ch_reg->ctrl); tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL, ch_reg->fifo_ctrl); tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_reg->config); tdma_ch_write(tdc, ADMA_CH_CMD, ch_reg->cmd); } return 0; } static const struct tegra_adma_chip_data tegra210_chip_data = { .adma_get_burst_config = tegra210_adma_get_burst_config, .global_reg_offset = 0xc00, .global_int_clear = 0x20, .ch_req_tx_shift = 28, .ch_req_rx_shift = 24, .ch_base_offset = 0, .ch_req_mask = 0xf, .ch_req_max = 10, .ch_reg_size = 0x80, .nr_channels = 22, .ch_fifo_size_mask = 0xf, .sreq_index_offset = 2, .has_outstanding_reqs = false, }; static const struct tegra_adma_chip_data tegra186_chip_data = { .adma_get_burst_config = tegra186_adma_get_burst_config, .global_reg_offset = 0, .global_int_clear = 0x402c, .ch_req_tx_shift = 27, .ch_req_rx_shift = 22, .ch_base_offset = 0x10000, .ch_req_mask = 0x1f, .ch_req_max = 20, .ch_reg_size = 0x100, .nr_channels = 32, .ch_fifo_size_mask = 0x1f, .sreq_index_offset = 4, .has_outstanding_reqs = true, }; static const struct of_device_id tegra_adma_of_match[] = { { .compatible = "nvidia,tegra210-adma", .data = &tegra210_chip_data }, { .compatible = "nvidia,tegra186-adma", .data = &tegra186_chip_data }, { }, }; MODULE_DEVICE_TABLE(of, tegra_adma_of_match); static int tegra_adma_probe(struct platform_device *pdev) { const struct tegra_adma_chip_data *cdata; struct tegra_adma *tdma; int ret, i; cdata = of_device_get_match_data(&pdev->dev); if (!cdata) { dev_err(&pdev->dev, "device match data not found\n"); return -ENODEV; } tdma = devm_kzalloc(&pdev->dev, struct_size(tdma, channels, cdata->nr_channels), GFP_KERNEL); if (!tdma) return -ENOMEM; tdma->dev = &pdev->dev; tdma->cdata = cdata; tdma->nr_channels = cdata->nr_channels; platform_set_drvdata(pdev, tdma); tdma->base_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tdma->base_addr)) return PTR_ERR(tdma->base_addr); tdma->ahub_clk = devm_clk_get(&pdev->dev, "d_audio"); if (IS_ERR(tdma->ahub_clk)) { dev_err(&pdev->dev, "Error: Missing ahub controller clock\n"); return PTR_ERR(tdma->ahub_clk); } INIT_LIST_HEAD(&tdma->dma_dev.channels); for (i = 0; i < tdma->nr_channels; i++) { struct tegra_adma_chan *tdc = &tdma->channels[i]; tdc->chan_addr = tdma->base_addr + cdata->ch_base_offset + (cdata->ch_reg_size * i); tdc->irq = of_irq_get(pdev->dev.of_node, i); if (tdc->irq <= 0) { ret = tdc->irq ?: -ENXIO; goto irq_dispose; } vchan_init(&tdc->vc, &tdma->dma_dev); tdc->vc.desc_free = tegra_adma_desc_free; tdc->tdma = tdma; } pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) goto rpm_disable; ret = tegra_adma_init(tdma); if (ret) goto rpm_put; dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask); tdma->dma_dev.dev = &pdev->dev; tdma->dma_dev.device_alloc_chan_resources = tegra_adma_alloc_chan_resources; tdma->dma_dev.device_free_chan_resources = tegra_adma_free_chan_resources; tdma->dma_dev.device_issue_pending = tegra_adma_issue_pending; tdma->dma_dev.device_prep_dma_cyclic = tegra_adma_prep_dma_cyclic; tdma->dma_dev.device_config = tegra_adma_slave_config; tdma->dma_dev.device_tx_status = tegra_adma_tx_status; tdma->dma_dev.device_terminate_all = tegra_adma_terminate_all; tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; tdma->dma_dev.device_pause = tegra_adma_pause; tdma->dma_dev.device_resume = tegra_adma_resume; ret = dma_async_device_register(&tdma->dma_dev); if (ret < 0) { dev_err(&pdev->dev, "ADMA registration failed: %d\n", ret); goto rpm_put; } ret = of_dma_controller_register(pdev->dev.of_node, tegra_dma_of_xlate, tdma); if (ret < 0) { dev_err(&pdev->dev, "ADMA OF registration failed %d\n", ret); goto dma_remove; } pm_runtime_put(&pdev->dev); dev_info(&pdev->dev, "Tegra210 ADMA driver registered %d channels\n", tdma->nr_channels); return 0; dma_remove: dma_async_device_unregister(&tdma->dma_dev); rpm_put: pm_runtime_put_sync(&pdev->dev); rpm_disable: pm_runtime_disable(&pdev->dev); irq_dispose: while (--i >= 0) irq_dispose_mapping(tdma->channels[i].irq); return ret; } static int tegra_adma_remove(struct platform_device *pdev) { struct tegra_adma *tdma = platform_get_drvdata(pdev); int i; of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&tdma->dma_dev); for (i = 0; i < tdma->nr_channels; ++i) irq_dispose_mapping(tdma->channels[i].irq); pm_runtime_disable(&pdev->dev); return 0; } static const struct dev_pm_ops tegra_adma_dev_pm_ops = { SET_RUNTIME_PM_OPS(tegra_adma_runtime_suspend, tegra_adma_runtime_resume, NULL) SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver tegra_admac_driver = { .driver = { .name = "tegra-adma", .pm = &tegra_adma_dev_pm_ops, .of_match_table = tegra_adma_of_match, }, .probe = tegra_adma_probe, .remove = tegra_adma_remove, }; module_platform_driver(tegra_admac_driver); MODULE_ALIAS("platform:tegra210-adma"); MODULE_DESCRIPTION("NVIDIA Tegra ADMA driver"); MODULE_AUTHOR("Dara Ramesh <dramesh@nvidia.com>"); MODULE_AUTHOR("Jon Hunter <jonathanh@nvidia.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1