Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Ying | 636 | 51.37% | 4 | 10.26% |
Punit Agrawal | 252 | 20.36% | 1 | 2.56% |
Tyler Baicar | 151 | 12.20% | 4 | 10.26% |
Shuai Xue | 59 | 4.77% | 4 | 10.26% |
Chen Gong | 47 | 3.80% | 6 | 15.38% |
Xiaofei Tan | 27 | 2.18% | 1 | 2.56% |
Arnd Bergmann | 25 | 2.02% | 1 | 2.56% |
Smita Koralahalli | 6 | 0.48% | 1 | 2.56% |
Yanmin Zhang | 6 | 0.48% | 1 | 2.56% |
Alex Kluver | 5 | 0.40% | 2 | 5.13% |
Andy Shevchenko | 4 | 0.32% | 2 | 5.13% |
Borislav Petkov | 3 | 0.24% | 1 | 2.56% |
Ard Biesheuvel | 3 | 0.24% | 2 | 5.13% |
Mauro Carvalho Chehab | 3 | 0.24% | 1 | 2.56% |
Yazen Ghannam | 2 | 0.16% | 1 | 2.56% |
Jia He | 2 | 0.16% | 1 | 2.56% |
Rasmus Villemoes | 2 | 0.16% | 1 | 2.56% |
Tomasz Nowicki | 1 | 0.08% | 1 | 2.56% |
Lukas Wunner | 1 | 0.08% | 1 | 2.56% |
gengdongjiu | 1 | 0.08% | 1 | 2.56% |
Lv Zheng | 1 | 0.08% | 1 | 2.56% |
Takashi Iwai | 1 | 0.08% | 1 | 2.56% |
Total | 1238 | 39 |
// SPDX-License-Identifier: GPL-2.0 /* * UEFI Common Platform Error Record (CPER) support * * Copyright (C) 2010, Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * * CPER is the format used to describe platform hardware error by * various tables, such as ERST, BERT and HEST etc. * * For more information about CPER, please refer to Appendix N of UEFI * Specification version 2.4. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/time.h> #include <linux/cper.h> #include <linux/dmi.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/aer.h> #include <linux/printk.h> #include <linux/bcd.h> #include <acpi/ghes.h> #include <ras/ras_event.h> #include "cper_cxl.h" /* * CPER record ID need to be unique even after reboot, because record * ID is used as index for ERST storage, while CPER records from * multiple boot may co-exist in ERST. */ u64 cper_next_record_id(void) { static atomic64_t seq; if (!atomic64_read(&seq)) { time64_t time = ktime_get_real_seconds(); /* * This code is unlikely to still be needed in year 2106, * but just in case, let's use a few more bits for timestamps * after y2038 to be sure they keep increasing monotonically * for the next few hundred years... */ if (time < 0x80000000) atomic64_set(&seq, (ktime_get_real_seconds()) << 32); else atomic64_set(&seq, 0x8000000000000000ull | ktime_get_real_seconds() << 24); } return atomic64_inc_return(&seq); } EXPORT_SYMBOL_GPL(cper_next_record_id); static const char * const severity_strs[] = { "recoverable", "fatal", "corrected", "info", }; const char *cper_severity_str(unsigned int severity) { return severity < ARRAY_SIZE(severity_strs) ? severity_strs[severity] : "unknown"; } EXPORT_SYMBOL_GPL(cper_severity_str); /* * cper_print_bits - print strings for set bits * @pfx: prefix for each line, including log level and prefix string * @bits: bit mask * @strs: string array, indexed by bit position * @strs_size: size of the string array: @strs * * For each set bit in @bits, print the corresponding string in @strs. * If the output length is longer than 80, multiple line will be * printed, with @pfx is printed at the beginning of each line. */ void cper_print_bits(const char *pfx, unsigned int bits, const char * const strs[], unsigned int strs_size) { int i, len = 0; const char *str; char buf[84]; for (i = 0; i < strs_size; i++) { if (!(bits & (1U << i))) continue; str = strs[i]; if (!str) continue; if (len && len + strlen(str) + 2 > 80) { printk("%s\n", buf); len = 0; } if (!len) len = snprintf(buf, sizeof(buf), "%s%s", pfx, str); else len += scnprintf(buf+len, sizeof(buf)-len, ", %s", str); } if (len) printk("%s\n", buf); } static const char * const proc_type_strs[] = { "IA32/X64", "IA64", "ARM", }; static const char * const proc_isa_strs[] = { "IA32", "IA64", "X64", "ARM A32/T32", "ARM A64", }; const char * const cper_proc_error_type_strs[] = { "cache error", "TLB error", "bus error", "micro-architectural error", }; static const char * const proc_op_strs[] = { "unknown or generic", "data read", "data write", "instruction execution", }; static const char * const proc_flag_strs[] = { "restartable", "precise IP", "overflow", "corrected", }; static void cper_print_proc_generic(const char *pfx, const struct cper_sec_proc_generic *proc) { if (proc->validation_bits & CPER_PROC_VALID_TYPE) printk("%s""processor_type: %d, %s\n", pfx, proc->proc_type, proc->proc_type < ARRAY_SIZE(proc_type_strs) ? proc_type_strs[proc->proc_type] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ISA) printk("%s""processor_isa: %d, %s\n", pfx, proc->proc_isa, proc->proc_isa < ARRAY_SIZE(proc_isa_strs) ? proc_isa_strs[proc->proc_isa] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) { printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type); cper_print_bits(pfx, proc->proc_error_type, cper_proc_error_type_strs, ARRAY_SIZE(cper_proc_error_type_strs)); } if (proc->validation_bits & CPER_PROC_VALID_OPERATION) printk("%s""operation: %d, %s\n", pfx, proc->operation, proc->operation < ARRAY_SIZE(proc_op_strs) ? proc_op_strs[proc->operation] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_FLAGS) { printk("%s""flags: 0x%02x\n", pfx, proc->flags); cper_print_bits(pfx, proc->flags, proc_flag_strs, ARRAY_SIZE(proc_flag_strs)); } if (proc->validation_bits & CPER_PROC_VALID_LEVEL) printk("%s""level: %d\n", pfx, proc->level); if (proc->validation_bits & CPER_PROC_VALID_VERSION) printk("%s""version_info: 0x%016llx\n", pfx, proc->cpu_version); if (proc->validation_bits & CPER_PROC_VALID_ID) printk("%s""processor_id: 0x%016llx\n", pfx, proc->proc_id); if (proc->validation_bits & CPER_PROC_VALID_TARGET_ADDRESS) printk("%s""target_address: 0x%016llx\n", pfx, proc->target_addr); if (proc->validation_bits & CPER_PROC_VALID_REQUESTOR_ID) printk("%s""requestor_id: 0x%016llx\n", pfx, proc->requestor_id); if (proc->validation_bits & CPER_PROC_VALID_RESPONDER_ID) printk("%s""responder_id: 0x%016llx\n", pfx, proc->responder_id); if (proc->validation_bits & CPER_PROC_VALID_IP) printk("%s""IP: 0x%016llx\n", pfx, proc->ip); } static const char * const mem_err_type_strs[] = { "unknown", "no error", "single-bit ECC", "multi-bit ECC", "single-symbol chipkill ECC", "multi-symbol chipkill ECC", "master abort", "target abort", "parity error", "watchdog timeout", "invalid address", "mirror Broken", "memory sparing", "scrub corrected error", "scrub uncorrected error", "physical memory map-out event", }; const char *cper_mem_err_type_str(unsigned int etype) { return etype < ARRAY_SIZE(mem_err_type_strs) ? mem_err_type_strs[etype] : "unknown"; } EXPORT_SYMBOL_GPL(cper_mem_err_type_str); const char *cper_mem_err_status_str(u64 status) { switch ((status >> 8) & 0xff) { case 1: return "Error detected internal to the component"; case 4: return "Storage error in DRAM memory"; case 5: return "Storage error in TLB"; case 6: return "Storage error in cache"; case 7: return "Error in one or more functional units"; case 8: return "Component failed self test"; case 9: return "Overflow or undervalue of internal queue"; case 16: return "Error detected in the bus"; case 17: return "Virtual address not found on IO-TLB or IO-PDIR"; case 18: return "Improper access error"; case 19: return "Access to a memory address which is not mapped to any component"; case 20: return "Loss of Lockstep"; case 21: return "Response not associated with a request"; case 22: return "Bus parity error - must also set the A, C, or D Bits"; case 23: return "Detection of a protocol error"; case 24: return "Detection of a PATH_ERROR"; case 25: return "Bus operation timeout"; case 26: return "A read was issued to data that has been poisoned"; default: return "Reserved"; } } EXPORT_SYMBOL_GPL(cper_mem_err_status_str); int cper_mem_err_location(struct cper_mem_err_compact *mem, char *msg) { u32 len, n; if (!msg) return 0; n = 0; len = CPER_REC_LEN; if (mem->validation_bits & CPER_MEM_VALID_NODE) n += scnprintf(msg + n, len - n, "node:%d ", mem->node); if (mem->validation_bits & CPER_MEM_VALID_CARD) n += scnprintf(msg + n, len - n, "card:%d ", mem->card); if (mem->validation_bits & CPER_MEM_VALID_MODULE) n += scnprintf(msg + n, len - n, "module:%d ", mem->module); if (mem->validation_bits & CPER_MEM_VALID_RANK_NUMBER) n += scnprintf(msg + n, len - n, "rank:%d ", mem->rank); if (mem->validation_bits & CPER_MEM_VALID_BANK) n += scnprintf(msg + n, len - n, "bank:%d ", mem->bank); if (mem->validation_bits & CPER_MEM_VALID_BANK_GROUP) n += scnprintf(msg + n, len - n, "bank_group:%d ", mem->bank >> CPER_MEM_BANK_GROUP_SHIFT); if (mem->validation_bits & CPER_MEM_VALID_BANK_ADDRESS) n += scnprintf(msg + n, len - n, "bank_address:%d ", mem->bank & CPER_MEM_BANK_ADDRESS_MASK); if (mem->validation_bits & CPER_MEM_VALID_DEVICE) n += scnprintf(msg + n, len - n, "device:%d ", mem->device); if (mem->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) { u32 row = mem->row; row |= cper_get_mem_extension(mem->validation_bits, mem->extended); n += scnprintf(msg + n, len - n, "row:%d ", row); } if (mem->validation_bits & CPER_MEM_VALID_COLUMN) n += scnprintf(msg + n, len - n, "column:%d ", mem->column); if (mem->validation_bits & CPER_MEM_VALID_BIT_POSITION) n += scnprintf(msg + n, len - n, "bit_position:%d ", mem->bit_pos); if (mem->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) n += scnprintf(msg + n, len - n, "requestor_id:0x%016llx ", mem->requestor_id); if (mem->validation_bits & CPER_MEM_VALID_RESPONDER_ID) n += scnprintf(msg + n, len - n, "responder_id:0x%016llx ", mem->responder_id); if (mem->validation_bits & CPER_MEM_VALID_TARGET_ID) n += scnprintf(msg + n, len - n, "target_id:0x%016llx ", mem->target_id); if (mem->validation_bits & CPER_MEM_VALID_CHIP_ID) n += scnprintf(msg + n, len - n, "chip_id:%d ", mem->extended >> CPER_MEM_CHIP_ID_SHIFT); return n; } EXPORT_SYMBOL_GPL(cper_mem_err_location); int cper_dimm_err_location(struct cper_mem_err_compact *mem, char *msg) { u32 len, n; const char *bank = NULL, *device = NULL; if (!msg || !(mem->validation_bits & CPER_MEM_VALID_MODULE_HANDLE)) return 0; len = CPER_REC_LEN; dmi_memdev_name(mem->mem_dev_handle, &bank, &device); if (bank && device) n = snprintf(msg, len, "DIMM location: %s %s ", bank, device); else n = snprintf(msg, len, "DIMM location: not present. DMI handle: 0x%.4x ", mem->mem_dev_handle); return n; } EXPORT_SYMBOL_GPL(cper_dimm_err_location); void cper_mem_err_pack(const struct cper_sec_mem_err *mem, struct cper_mem_err_compact *cmem) { cmem->validation_bits = mem->validation_bits; cmem->node = mem->node; cmem->card = mem->card; cmem->module = mem->module; cmem->bank = mem->bank; cmem->device = mem->device; cmem->row = mem->row; cmem->column = mem->column; cmem->bit_pos = mem->bit_pos; cmem->requestor_id = mem->requestor_id; cmem->responder_id = mem->responder_id; cmem->target_id = mem->target_id; cmem->extended = mem->extended; cmem->rank = mem->rank; cmem->mem_array_handle = mem->mem_array_handle; cmem->mem_dev_handle = mem->mem_dev_handle; } EXPORT_SYMBOL_GPL(cper_mem_err_pack); const char *cper_mem_err_unpack(struct trace_seq *p, struct cper_mem_err_compact *cmem) { const char *ret = trace_seq_buffer_ptr(p); char rcd_decode_str[CPER_REC_LEN]; if (cper_mem_err_location(cmem, rcd_decode_str)) trace_seq_printf(p, "%s", rcd_decode_str); if (cper_dimm_err_location(cmem, rcd_decode_str)) trace_seq_printf(p, "%s", rcd_decode_str); trace_seq_putc(p, '\0'); return ret; } static void cper_print_mem(const char *pfx, const struct cper_sec_mem_err *mem, int len) { struct cper_mem_err_compact cmem; char rcd_decode_str[CPER_REC_LEN]; /* Don't trust UEFI 2.1/2.2 structure with bad validation bits */ if (len == sizeof(struct cper_sec_mem_err_old) && (mem->validation_bits & ~(CPER_MEM_VALID_RANK_NUMBER - 1))) { pr_err(FW_WARN "valid bits set for fields beyond structure\n"); return; } if (mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS) printk("%s error_status: %s (0x%016llx)\n", pfx, cper_mem_err_status_str(mem->error_status), mem->error_status); if (mem->validation_bits & CPER_MEM_VALID_PA) printk("%s""physical_address: 0x%016llx\n", pfx, mem->physical_addr); if (mem->validation_bits & CPER_MEM_VALID_PA_MASK) printk("%s""physical_address_mask: 0x%016llx\n", pfx, mem->physical_addr_mask); cper_mem_err_pack(mem, &cmem); if (cper_mem_err_location(&cmem, rcd_decode_str)) printk("%s%s\n", pfx, rcd_decode_str); if (mem->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { u8 etype = mem->error_type; printk("%s""error_type: %d, %s\n", pfx, etype, cper_mem_err_type_str(etype)); } if (cper_dimm_err_location(&cmem, rcd_decode_str)) printk("%s%s\n", pfx, rcd_decode_str); } static const char * const pcie_port_type_strs[] = { "PCIe end point", "legacy PCI end point", "unknown", "unknown", "root port", "upstream switch port", "downstream switch port", "PCIe to PCI/PCI-X bridge", "PCI/PCI-X to PCIe bridge", "root complex integrated endpoint device", "root complex event collector", }; static void cper_print_pcie(const char *pfx, const struct cper_sec_pcie *pcie, const struct acpi_hest_generic_data *gdata) { if (pcie->validation_bits & CPER_PCIE_VALID_PORT_TYPE) printk("%s""port_type: %d, %s\n", pfx, pcie->port_type, pcie->port_type < ARRAY_SIZE(pcie_port_type_strs) ? pcie_port_type_strs[pcie->port_type] : "unknown"); if (pcie->validation_bits & CPER_PCIE_VALID_VERSION) printk("%s""version: %d.%d\n", pfx, pcie->version.major, pcie->version.minor); if (pcie->validation_bits & CPER_PCIE_VALID_COMMAND_STATUS) printk("%s""command: 0x%04x, status: 0x%04x\n", pfx, pcie->command, pcie->status); if (pcie->validation_bits & CPER_PCIE_VALID_DEVICE_ID) { const __u8 *p; printk("%s""device_id: %04x:%02x:%02x.%x\n", pfx, pcie->device_id.segment, pcie->device_id.bus, pcie->device_id.device, pcie->device_id.function); printk("%s""slot: %d\n", pfx, pcie->device_id.slot >> CPER_PCIE_SLOT_SHIFT); printk("%s""secondary_bus: 0x%02x\n", pfx, pcie->device_id.secondary_bus); printk("%s""vendor_id: 0x%04x, device_id: 0x%04x\n", pfx, pcie->device_id.vendor_id, pcie->device_id.device_id); p = pcie->device_id.class_code; printk("%s""class_code: %02x%02x%02x\n", pfx, p[2], p[1], p[0]); } if (pcie->validation_bits & CPER_PCIE_VALID_SERIAL_NUMBER) printk("%s""serial number: 0x%04x, 0x%04x\n", pfx, pcie->serial_number.lower, pcie->serial_number.upper); if (pcie->validation_bits & CPER_PCIE_VALID_BRIDGE_CONTROL_STATUS) printk( "%s""bridge: secondary_status: 0x%04x, control: 0x%04x\n", pfx, pcie->bridge.secondary_status, pcie->bridge.control); /* Fatal errors call __ghes_panic() before AER handler prints this */ if ((pcie->validation_bits & CPER_PCIE_VALID_AER_INFO) && (gdata->error_severity & CPER_SEV_FATAL)) { struct aer_capability_regs *aer; aer = (struct aer_capability_regs *)pcie->aer_info; printk("%saer_uncor_status: 0x%08x, aer_uncor_mask: 0x%08x\n", pfx, aer->uncor_status, aer->uncor_mask); printk("%saer_uncor_severity: 0x%08x\n", pfx, aer->uncor_severity); printk("%sTLP Header: %08x %08x %08x %08x\n", pfx, aer->header_log.dw0, aer->header_log.dw1, aer->header_log.dw2, aer->header_log.dw3); } } static const char * const fw_err_rec_type_strs[] = { "IPF SAL Error Record", "SOC Firmware Error Record Type1 (Legacy CrashLog Support)", "SOC Firmware Error Record Type2", }; static void cper_print_fw_err(const char *pfx, struct acpi_hest_generic_data *gdata, const struct cper_sec_fw_err_rec_ref *fw_err) { void *buf = acpi_hest_get_payload(gdata); u32 offset, length = gdata->error_data_length; printk("%s""Firmware Error Record Type: %s\n", pfx, fw_err->record_type < ARRAY_SIZE(fw_err_rec_type_strs) ? fw_err_rec_type_strs[fw_err->record_type] : "unknown"); printk("%s""Revision: %d\n", pfx, fw_err->revision); /* Record Type based on UEFI 2.7 */ if (fw_err->revision == 0) { printk("%s""Record Identifier: %08llx\n", pfx, fw_err->record_identifier); } else if (fw_err->revision == 2) { printk("%s""Record Identifier: %pUl\n", pfx, &fw_err->record_identifier_guid); } /* * The FW error record may contain trailing data beyond the * structure defined by the specification. As the fields * defined (and hence the offset of any trailing data) vary * with the revision, set the offset to account for this * variation. */ if (fw_err->revision == 0) { /* record_identifier_guid not defined */ offset = offsetof(struct cper_sec_fw_err_rec_ref, record_identifier_guid); } else if (fw_err->revision == 1) { /* record_identifier not defined */ offset = offsetof(struct cper_sec_fw_err_rec_ref, record_identifier); } else { offset = sizeof(*fw_err); } buf += offset; length -= offset; print_hex_dump(pfx, "", DUMP_PREFIX_OFFSET, 16, 4, buf, length, true); } static void cper_print_tstamp(const char *pfx, struct acpi_hest_generic_data_v300 *gdata) { __u8 hour, min, sec, day, mon, year, century, *timestamp; if (gdata->validation_bits & ACPI_HEST_GEN_VALID_TIMESTAMP) { timestamp = (__u8 *)&(gdata->time_stamp); sec = bcd2bin(timestamp[0]); min = bcd2bin(timestamp[1]); hour = bcd2bin(timestamp[2]); day = bcd2bin(timestamp[4]); mon = bcd2bin(timestamp[5]); year = bcd2bin(timestamp[6]); century = bcd2bin(timestamp[7]); printk("%s%ststamp: %02d%02d-%02d-%02d %02d:%02d:%02d\n", pfx, (timestamp[3] & 0x1 ? "precise " : "imprecise "), century, year, mon, day, hour, min, sec); } } static void cper_estatus_print_section(const char *pfx, struct acpi_hest_generic_data *gdata, int sec_no) { guid_t *sec_type = (guid_t *)gdata->section_type; __u16 severity; char newpfx[64]; if (acpi_hest_get_version(gdata) >= 3) cper_print_tstamp(pfx, (struct acpi_hest_generic_data_v300 *)gdata); severity = gdata->error_severity; printk("%s""Error %d, type: %s\n", pfx, sec_no, cper_severity_str(severity)); if (gdata->validation_bits & CPER_SEC_VALID_FRU_ID) printk("%s""fru_id: %pUl\n", pfx, gdata->fru_id); if (gdata->validation_bits & CPER_SEC_VALID_FRU_TEXT) printk("%s""fru_text: %.20s\n", pfx, gdata->fru_text); snprintf(newpfx, sizeof(newpfx), "%s ", pfx); if (guid_equal(sec_type, &CPER_SEC_PROC_GENERIC)) { struct cper_sec_proc_generic *proc_err = acpi_hest_get_payload(gdata); printk("%s""section_type: general processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*proc_err)) cper_print_proc_generic(newpfx, proc_err); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_PLATFORM_MEM)) { struct cper_sec_mem_err *mem_err = acpi_hest_get_payload(gdata); printk("%s""section_type: memory error\n", newpfx); if (gdata->error_data_length >= sizeof(struct cper_sec_mem_err_old)) cper_print_mem(newpfx, mem_err, gdata->error_data_length); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_PCIE)) { struct cper_sec_pcie *pcie = acpi_hest_get_payload(gdata); printk("%s""section_type: PCIe error\n", newpfx); if (gdata->error_data_length >= sizeof(*pcie)) cper_print_pcie(newpfx, pcie, gdata); else goto err_section_too_small; #if defined(CONFIG_ARM64) || defined(CONFIG_ARM) } else if (guid_equal(sec_type, &CPER_SEC_PROC_ARM)) { struct cper_sec_proc_arm *arm_err = acpi_hest_get_payload(gdata); printk("%ssection_type: ARM processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*arm_err)) cper_print_proc_arm(newpfx, arm_err); else goto err_section_too_small; #endif #if defined(CONFIG_UEFI_CPER_X86) } else if (guid_equal(sec_type, &CPER_SEC_PROC_IA)) { struct cper_sec_proc_ia *ia_err = acpi_hest_get_payload(gdata); printk("%ssection_type: IA32/X64 processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*ia_err)) cper_print_proc_ia(newpfx, ia_err); else goto err_section_too_small; #endif } else if (guid_equal(sec_type, &CPER_SEC_FW_ERR_REC_REF)) { struct cper_sec_fw_err_rec_ref *fw_err = acpi_hest_get_payload(gdata); printk("%ssection_type: Firmware Error Record Reference\n", newpfx); /* The minimal FW Error Record contains 16 bytes */ if (gdata->error_data_length >= SZ_16) cper_print_fw_err(newpfx, gdata, fw_err); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_CXL_PROT_ERR)) { struct cper_sec_prot_err *prot_err = acpi_hest_get_payload(gdata); printk("%ssection_type: CXL Protocol Error\n", newpfx); if (gdata->error_data_length >= sizeof(*prot_err)) cper_print_prot_err(newpfx, prot_err); else goto err_section_too_small; } else { const void *err = acpi_hest_get_payload(gdata); printk("%ssection type: unknown, %pUl\n", newpfx, sec_type); printk("%ssection length: %#x\n", newpfx, gdata->error_data_length); print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, err, gdata->error_data_length, true); } return; err_section_too_small: pr_err(FW_WARN "error section length is too small\n"); } void cper_estatus_print(const char *pfx, const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; int sec_no = 0; char newpfx[64]; __u16 severity; severity = estatus->error_severity; if (severity == CPER_SEV_CORRECTED) printk("%s%s\n", pfx, "It has been corrected by h/w " "and requires no further action"); printk("%s""event severity: %s\n", pfx, cper_severity_str(severity)); snprintf(newpfx, sizeof(newpfx), "%s ", pfx); apei_estatus_for_each_section(estatus, gdata) { cper_estatus_print_section(newpfx, gdata, sec_no); sec_no++; } } EXPORT_SYMBOL_GPL(cper_estatus_print); int cper_estatus_check_header(const struct acpi_hest_generic_status *estatus) { if (estatus->data_length && estatus->data_length < sizeof(struct acpi_hest_generic_data)) return -EINVAL; if (estatus->raw_data_length && estatus->raw_data_offset < sizeof(*estatus) + estatus->data_length) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(cper_estatus_check_header); int cper_estatus_check(const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; unsigned int data_len, record_size; int rc; rc = cper_estatus_check_header(estatus); if (rc) return rc; data_len = estatus->data_length; apei_estatus_for_each_section(estatus, gdata) { if (acpi_hest_get_size(gdata) > data_len) return -EINVAL; record_size = acpi_hest_get_record_size(gdata); if (record_size > data_len) return -EINVAL; data_len -= record_size; } if (data_len) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(cper_estatus_check);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1