Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Tull | 1828 | 50.79% | 12 | 34.29% |
Jason Gunthorpe | 572 | 15.89% | 2 | 5.71% |
Ivan Bornyakov | 537 | 14.92% | 1 | 2.86% |
Tom Rix | 228 | 6.34% | 8 | 22.86% |
Russ Weight | 184 | 5.11% | 2 | 5.71% |
Hao Wu | 140 | 3.89% | 1 | 2.86% |
Moritz Fischer | 92 | 2.56% | 1 | 2.86% |
Matthew Gerlach | 7 | 0.19% | 1 | 2.86% |
Nava kishore Manne | 4 | 0.11% | 2 | 5.71% |
keliu | 3 | 0.08% | 1 | 2.86% |
Suzuki K. Poulose | 1 | 0.03% | 1 | 2.86% |
Tobias Klauser | 1 | 0.03% | 1 | 2.86% |
Colin Ian King | 1 | 0.03% | 1 | 2.86% |
Dinh Nguyen | 1 | 0.03% | 1 | 2.86% |
Total | 3599 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* * FPGA Manager Core * * Copyright (C) 2013-2015 Altera Corporation * Copyright (C) 2017 Intel Corporation * * With code from the mailing list: * Copyright (C) 2013 Xilinx, Inc. */ #include <linux/firmware.h> #include <linux/fpga/fpga-mgr.h> #include <linux/idr.h> #include <linux/module.h> #include <linux/of.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include <linux/highmem.h> static DEFINE_IDA(fpga_mgr_ida); static struct class *fpga_mgr_class; struct fpga_mgr_devres { struct fpga_manager *mgr; }; static inline void fpga_mgr_fpga_remove(struct fpga_manager *mgr) { if (mgr->mops->fpga_remove) mgr->mops->fpga_remove(mgr); } static inline enum fpga_mgr_states fpga_mgr_state(struct fpga_manager *mgr) { if (mgr->mops->state) return mgr->mops->state(mgr); return FPGA_MGR_STATE_UNKNOWN; } static inline u64 fpga_mgr_status(struct fpga_manager *mgr) { if (mgr->mops->status) return mgr->mops->status(mgr); return 0; } static inline int fpga_mgr_write(struct fpga_manager *mgr, const char *buf, size_t count) { if (mgr->mops->write) return mgr->mops->write(mgr, buf, count); return -EOPNOTSUPP; } /* * After all the FPGA image has been written, do the device specific steps to * finish and set the FPGA into operating mode. */ static inline int fpga_mgr_write_complete(struct fpga_manager *mgr, struct fpga_image_info *info) { int ret = 0; mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE; if (mgr->mops->write_complete) ret = mgr->mops->write_complete(mgr, info); if (ret) { dev_err(&mgr->dev, "Error after writing image data to FPGA\n"); mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR; return ret; } mgr->state = FPGA_MGR_STATE_OPERATING; return 0; } static inline int fpga_mgr_parse_header(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { if (mgr->mops->parse_header) return mgr->mops->parse_header(mgr, info, buf, count); return 0; } static inline int fpga_mgr_write_init(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { if (mgr->mops->write_init) return mgr->mops->write_init(mgr, info, buf, count); return 0; } static inline int fpga_mgr_write_sg(struct fpga_manager *mgr, struct sg_table *sgt) { if (mgr->mops->write_sg) return mgr->mops->write_sg(mgr, sgt); return -EOPNOTSUPP; } /** * fpga_image_info_alloc - Allocate an FPGA image info struct * @dev: owning device * * Return: struct fpga_image_info or NULL */ struct fpga_image_info *fpga_image_info_alloc(struct device *dev) { struct fpga_image_info *info; get_device(dev); info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) { put_device(dev); return NULL; } info->dev = dev; return info; } EXPORT_SYMBOL_GPL(fpga_image_info_alloc); /** * fpga_image_info_free - Free an FPGA image info struct * @info: FPGA image info struct to free */ void fpga_image_info_free(struct fpga_image_info *info) { struct device *dev; if (!info) return; dev = info->dev; if (info->firmware_name) devm_kfree(dev, info->firmware_name); devm_kfree(dev, info); put_device(dev); } EXPORT_SYMBOL_GPL(fpga_image_info_free); /* * Call the low level driver's parse_header function with entire FPGA image * buffer on the input. This will set info->header_size and info->data_size. */ static int fpga_mgr_parse_header_mapped(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { int ret; mgr->state = FPGA_MGR_STATE_PARSE_HEADER; ret = fpga_mgr_parse_header(mgr, info, buf, count); if (info->header_size + info->data_size > count) { dev_err(&mgr->dev, "Bitstream data outruns FPGA image\n"); ret = -EINVAL; } if (ret) { dev_err(&mgr->dev, "Error while parsing FPGA image header\n"); mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR; } return ret; } /* * Call the low level driver's parse_header function with first fragment of * scattered FPGA image on the input. If header fits first fragment, * parse_header will set info->header_size and info->data_size. If it is not, * parse_header will set desired size to info->header_size and -EAGAIN will be * returned. */ static int fpga_mgr_parse_header_sg_first(struct fpga_manager *mgr, struct fpga_image_info *info, struct sg_table *sgt) { struct sg_mapping_iter miter; int ret; mgr->state = FPGA_MGR_STATE_PARSE_HEADER; sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG); if (sg_miter_next(&miter) && miter.length >= info->header_size) ret = fpga_mgr_parse_header(mgr, info, miter.addr, miter.length); else ret = -EAGAIN; sg_miter_stop(&miter); if (ret && ret != -EAGAIN) { dev_err(&mgr->dev, "Error while parsing FPGA image header\n"); mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR; } return ret; } /* * Copy scattered FPGA image fragments to temporary buffer and call the * low level driver's parse_header function. This should be called after * fpga_mgr_parse_header_sg_first() returned -EAGAIN. In case of success, * pointer to the newly allocated image header copy will be returned and * its size will be set into *ret_size. Returned buffer needs to be freed. */ static void *fpga_mgr_parse_header_sg(struct fpga_manager *mgr, struct fpga_image_info *info, struct sg_table *sgt, size_t *ret_size) { size_t len, new_header_size, header_size = 0; char *new_buf, *buf = NULL; int ret; do { new_header_size = info->header_size; if (new_header_size <= header_size) { dev_err(&mgr->dev, "Requested invalid header size\n"); ret = -EFAULT; break; } new_buf = krealloc(buf, new_header_size, GFP_KERNEL); if (!new_buf) { ret = -ENOMEM; break; } buf = new_buf; len = sg_pcopy_to_buffer(sgt->sgl, sgt->nents, buf + header_size, new_header_size - header_size, header_size); if (len != new_header_size - header_size) { ret = -EFAULT; break; } header_size = new_header_size; ret = fpga_mgr_parse_header(mgr, info, buf, header_size); } while (ret == -EAGAIN); if (ret) { dev_err(&mgr->dev, "Error while parsing FPGA image header\n"); mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR; kfree(buf); buf = ERR_PTR(ret); } *ret_size = header_size; return buf; } /* * Call the low level driver's write_init function. This will do the * device-specific things to get the FPGA into the state where it is ready to * receive an FPGA image. The low level driver gets to see at least first * info->header_size bytes in the buffer. If info->header_size is 0, * write_init will not get any bytes of image buffer. */ static int fpga_mgr_write_init_buf(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { size_t header_size = info->header_size; int ret; mgr->state = FPGA_MGR_STATE_WRITE_INIT; if (header_size > count) ret = -EINVAL; else if (!header_size) ret = fpga_mgr_write_init(mgr, info, NULL, 0); else ret = fpga_mgr_write_init(mgr, info, buf, count); if (ret) { dev_err(&mgr->dev, "Error preparing FPGA for writing\n"); mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR; return ret; } return 0; } static int fpga_mgr_prepare_sg(struct fpga_manager *mgr, struct fpga_image_info *info, struct sg_table *sgt) { struct sg_mapping_iter miter; size_t len; char *buf; int ret; /* Short path. Low level driver don't care about image header. */ if (!mgr->mops->initial_header_size && !mgr->mops->parse_header) return fpga_mgr_write_init_buf(mgr, info, NULL, 0); /* * First try to use miter to map the first fragment to access the * header, this is the typical path. */ ret = fpga_mgr_parse_header_sg_first(mgr, info, sgt); /* If 0, header fits first fragment, call write_init on it */ if (!ret) { sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG); if (sg_miter_next(&miter)) { ret = fpga_mgr_write_init_buf(mgr, info, miter.addr, miter.length); sg_miter_stop(&miter); return ret; } sg_miter_stop(&miter); /* * If -EAGAIN, more sg buffer is needed, * otherwise an error has occurred. */ } else if (ret != -EAGAIN) { return ret; } /* * Copy the fragments into temporary memory. * Copying is done inside fpga_mgr_parse_header_sg(). */ buf = fpga_mgr_parse_header_sg(mgr, info, sgt, &len); if (IS_ERR(buf)) return PTR_ERR(buf); ret = fpga_mgr_write_init_buf(mgr, info, buf, len); kfree(buf); return ret; } /** * fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list * @mgr: fpga manager * @info: fpga image specific information * @sgt: scatterlist table * * Step the low level fpga manager through the device-specific steps of getting * an FPGA ready to be configured, writing the image to it, then doing whatever * post-configuration steps necessary. This code assumes the caller got the * mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is * not an error code. * * This is the preferred entry point for FPGA programming, it does not require * any contiguous kernel memory. * * Return: 0 on success, negative error code otherwise. */ static int fpga_mgr_buf_load_sg(struct fpga_manager *mgr, struct fpga_image_info *info, struct sg_table *sgt) { int ret; ret = fpga_mgr_prepare_sg(mgr, info, sgt); if (ret) return ret; /* Write the FPGA image to the FPGA. */ mgr->state = FPGA_MGR_STATE_WRITE; if (mgr->mops->write_sg) { ret = fpga_mgr_write_sg(mgr, sgt); } else { size_t length, count = 0, data_size = info->data_size; struct sg_mapping_iter miter; sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG); if (mgr->mops->skip_header && !sg_miter_skip(&miter, info->header_size)) { ret = -EINVAL; goto out; } while (sg_miter_next(&miter)) { if (data_size) length = min(miter.length, data_size - count); else length = miter.length; ret = fpga_mgr_write(mgr, miter.addr, length); if (ret) break; count += length; if (data_size && count >= data_size) break; } sg_miter_stop(&miter); } out: if (ret) { dev_err(&mgr->dev, "Error while writing image data to FPGA\n"); mgr->state = FPGA_MGR_STATE_WRITE_ERR; return ret; } return fpga_mgr_write_complete(mgr, info); } static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { int ret; ret = fpga_mgr_parse_header_mapped(mgr, info, buf, count); if (ret) return ret; ret = fpga_mgr_write_init_buf(mgr, info, buf, count); if (ret) return ret; if (mgr->mops->skip_header) { buf += info->header_size; count -= info->header_size; } if (info->data_size) count = info->data_size; /* * Write the FPGA image to the FPGA. */ mgr->state = FPGA_MGR_STATE_WRITE; ret = fpga_mgr_write(mgr, buf, count); if (ret) { dev_err(&mgr->dev, "Error while writing image data to FPGA\n"); mgr->state = FPGA_MGR_STATE_WRITE_ERR; return ret; } return fpga_mgr_write_complete(mgr, info); } /** * fpga_mgr_buf_load - load fpga from image in buffer * @mgr: fpga manager * @info: fpga image info * @buf: buffer contain fpga image * @count: byte count of buf * * Step the low level fpga manager through the device-specific steps of getting * an FPGA ready to be configured, writing the image to it, then doing whatever * post-configuration steps necessary. This code assumes the caller got the * mgr pointer from of_fpga_mgr_get() and checked that it is not an error code. * * Return: 0 on success, negative error code otherwise. */ static int fpga_mgr_buf_load(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { struct page **pages; struct sg_table sgt; const void *p; int nr_pages; int index; int rc; /* * This is just a fast path if the caller has already created a * contiguous kernel buffer and the driver doesn't require SG, non-SG * drivers will still work on the slow path. */ if (mgr->mops->write) return fpga_mgr_buf_load_mapped(mgr, info, buf, count); /* * Convert the linear kernel pointer into a sg_table of pages for use * by the driver. */ nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) - (unsigned long)buf / PAGE_SIZE; pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) return -ENOMEM; p = buf - offset_in_page(buf); for (index = 0; index < nr_pages; index++) { if (is_vmalloc_addr(p)) pages[index] = vmalloc_to_page(p); else pages[index] = kmap_to_page((void *)p); if (!pages[index]) { kfree(pages); return -EFAULT; } p += PAGE_SIZE; } /* * The temporary pages list is used to code share the merging algorithm * in sg_alloc_table_from_pages */ rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf), count, GFP_KERNEL); kfree(pages); if (rc) return rc; rc = fpga_mgr_buf_load_sg(mgr, info, &sgt); sg_free_table(&sgt); return rc; } /** * fpga_mgr_firmware_load - request firmware and load to fpga * @mgr: fpga manager * @info: fpga image specific information * @image_name: name of image file on the firmware search path * * Request an FPGA image using the firmware class, then write out to the FPGA. * Update the state before each step to provide info on what step failed if * there is a failure. This code assumes the caller got the mgr pointer * from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error * code. * * Return: 0 on success, negative error code otherwise. */ static int fpga_mgr_firmware_load(struct fpga_manager *mgr, struct fpga_image_info *info, const char *image_name) { struct device *dev = &mgr->dev; const struct firmware *fw; int ret; dev_info(dev, "writing %s to %s\n", image_name, mgr->name); mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ; ret = request_firmware(&fw, image_name, dev); if (ret) { mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR; dev_err(dev, "Error requesting firmware %s\n", image_name); return ret; } ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size); release_firmware(fw); return ret; } /** * fpga_mgr_load - load FPGA from scatter/gather table, buffer, or firmware * @mgr: fpga manager * @info: fpga image information. * * Load the FPGA from an image which is indicated in @info. If successful, the * FPGA ends up in operating mode. * * Return: 0 on success, negative error code otherwise. */ int fpga_mgr_load(struct fpga_manager *mgr, struct fpga_image_info *info) { info->header_size = mgr->mops->initial_header_size; if (info->sgt) return fpga_mgr_buf_load_sg(mgr, info, info->sgt); if (info->buf && info->count) return fpga_mgr_buf_load(mgr, info, info->buf, info->count); if (info->firmware_name) return fpga_mgr_firmware_load(mgr, info, info->firmware_name); return -EINVAL; } EXPORT_SYMBOL_GPL(fpga_mgr_load); static const char * const state_str[] = { [FPGA_MGR_STATE_UNKNOWN] = "unknown", [FPGA_MGR_STATE_POWER_OFF] = "power off", [FPGA_MGR_STATE_POWER_UP] = "power up", [FPGA_MGR_STATE_RESET] = "reset", /* requesting FPGA image from firmware */ [FPGA_MGR_STATE_FIRMWARE_REQ] = "firmware request", [FPGA_MGR_STATE_FIRMWARE_REQ_ERR] = "firmware request error", /* Parse FPGA image header */ [FPGA_MGR_STATE_PARSE_HEADER] = "parse header", [FPGA_MGR_STATE_PARSE_HEADER_ERR] = "parse header error", /* Preparing FPGA to receive image */ [FPGA_MGR_STATE_WRITE_INIT] = "write init", [FPGA_MGR_STATE_WRITE_INIT_ERR] = "write init error", /* Writing image to FPGA */ [FPGA_MGR_STATE_WRITE] = "write", [FPGA_MGR_STATE_WRITE_ERR] = "write error", /* Finishing configuration after image has been written */ [FPGA_MGR_STATE_WRITE_COMPLETE] = "write complete", [FPGA_MGR_STATE_WRITE_COMPLETE_ERR] = "write complete error", /* FPGA reports to be in normal operating mode */ [FPGA_MGR_STATE_OPERATING] = "operating", }; static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_manager *mgr = to_fpga_manager(dev); return sprintf(buf, "%s\n", mgr->name); } static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_manager *mgr = to_fpga_manager(dev); return sprintf(buf, "%s\n", state_str[mgr->state]); } static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fpga_manager *mgr = to_fpga_manager(dev); u64 status; int len = 0; status = fpga_mgr_status(mgr); if (status & FPGA_MGR_STATUS_OPERATION_ERR) len += sprintf(buf + len, "reconfig operation error\n"); if (status & FPGA_MGR_STATUS_CRC_ERR) len += sprintf(buf + len, "reconfig CRC error\n"); if (status & FPGA_MGR_STATUS_INCOMPATIBLE_IMAGE_ERR) len += sprintf(buf + len, "reconfig incompatible image\n"); if (status & FPGA_MGR_STATUS_IP_PROTOCOL_ERR) len += sprintf(buf + len, "reconfig IP protocol error\n"); if (status & FPGA_MGR_STATUS_FIFO_OVERFLOW_ERR) len += sprintf(buf + len, "reconfig fifo overflow error\n"); return len; } static DEVICE_ATTR_RO(name); static DEVICE_ATTR_RO(state); static DEVICE_ATTR_RO(status); static struct attribute *fpga_mgr_attrs[] = { &dev_attr_name.attr, &dev_attr_state.attr, &dev_attr_status.attr, NULL, }; ATTRIBUTE_GROUPS(fpga_mgr); static struct fpga_manager *__fpga_mgr_get(struct device *dev) { struct fpga_manager *mgr; mgr = to_fpga_manager(dev); if (!try_module_get(dev->parent->driver->owner)) goto err_dev; return mgr; err_dev: put_device(dev); return ERR_PTR(-ENODEV); } static int fpga_mgr_dev_match(struct device *dev, const void *data) { return dev->parent == data; } /** * fpga_mgr_get - Given a device, get a reference to an fpga mgr. * @dev: parent device that fpga mgr was registered with * * Return: fpga manager struct or IS_ERR() condition containing error code. */ struct fpga_manager *fpga_mgr_get(struct device *dev) { struct device *mgr_dev = class_find_device(fpga_mgr_class, NULL, dev, fpga_mgr_dev_match); if (!mgr_dev) return ERR_PTR(-ENODEV); return __fpga_mgr_get(mgr_dev); } EXPORT_SYMBOL_GPL(fpga_mgr_get); /** * of_fpga_mgr_get - Given a device node, get a reference to an fpga mgr. * * @node: device node * * Return: fpga manager struct or IS_ERR() condition containing error code. */ struct fpga_manager *of_fpga_mgr_get(struct device_node *node) { struct device *dev; dev = class_find_device_by_of_node(fpga_mgr_class, node); if (!dev) return ERR_PTR(-ENODEV); return __fpga_mgr_get(dev); } EXPORT_SYMBOL_GPL(of_fpga_mgr_get); /** * fpga_mgr_put - release a reference to an fpga manager * @mgr: fpga manager structure */ void fpga_mgr_put(struct fpga_manager *mgr) { module_put(mgr->dev.parent->driver->owner); put_device(&mgr->dev); } EXPORT_SYMBOL_GPL(fpga_mgr_put); /** * fpga_mgr_lock - Lock FPGA manager for exclusive use * @mgr: fpga manager * * Given a pointer to FPGA Manager (from fpga_mgr_get() or * of_fpga_mgr_put()) attempt to get the mutex. The user should call * fpga_mgr_lock() and verify that it returns 0 before attempting to * program the FPGA. Likewise, the user should call fpga_mgr_unlock * when done programming the FPGA. * * Return: 0 for success or -EBUSY */ int fpga_mgr_lock(struct fpga_manager *mgr) { if (!mutex_trylock(&mgr->ref_mutex)) { dev_err(&mgr->dev, "FPGA manager is in use.\n"); return -EBUSY; } return 0; } EXPORT_SYMBOL_GPL(fpga_mgr_lock); /** * fpga_mgr_unlock - Unlock FPGA manager after done programming * @mgr: fpga manager */ void fpga_mgr_unlock(struct fpga_manager *mgr) { mutex_unlock(&mgr->ref_mutex); } EXPORT_SYMBOL_GPL(fpga_mgr_unlock); /** * fpga_mgr_register_full - create and register an FPGA Manager device * @parent: fpga manager device from pdev * @info: parameters for fpga manager * * The caller of this function is responsible for calling fpga_mgr_unregister(). * Using devm_fpga_mgr_register_full() instead is recommended. * * Return: pointer to struct fpga_manager pointer or ERR_PTR() */ struct fpga_manager * fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info) { const struct fpga_manager_ops *mops = info->mops; struct fpga_manager *mgr; int id, ret; if (!mops) { dev_err(parent, "Attempt to register without fpga_manager_ops\n"); return ERR_PTR(-EINVAL); } if (!info->name || !strlen(info->name)) { dev_err(parent, "Attempt to register with no name!\n"); return ERR_PTR(-EINVAL); } mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); if (!mgr) return ERR_PTR(-ENOMEM); id = ida_alloc(&fpga_mgr_ida, GFP_KERNEL); if (id < 0) { ret = id; goto error_kfree; } mutex_init(&mgr->ref_mutex); mgr->name = info->name; mgr->mops = info->mops; mgr->priv = info->priv; mgr->compat_id = info->compat_id; mgr->dev.class = fpga_mgr_class; mgr->dev.groups = mops->groups; mgr->dev.parent = parent; mgr->dev.of_node = parent->of_node; mgr->dev.id = id; ret = dev_set_name(&mgr->dev, "fpga%d", id); if (ret) goto error_device; /* * Initialize framework state by requesting low level driver read state * from device. FPGA may be in reset mode or may have been programmed * by bootloader or EEPROM. */ mgr->state = fpga_mgr_state(mgr); ret = device_register(&mgr->dev); if (ret) { put_device(&mgr->dev); return ERR_PTR(ret); } return mgr; error_device: ida_free(&fpga_mgr_ida, id); error_kfree: kfree(mgr); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(fpga_mgr_register_full); /** * fpga_mgr_register - create and register an FPGA Manager device * @parent: fpga manager device from pdev * @name: fpga manager name * @mops: pointer to structure of fpga manager ops * @priv: fpga manager private data * * The caller of this function is responsible for calling fpga_mgr_unregister(). * Using devm_fpga_mgr_register() instead is recommended. This simple * version of the register function should be sufficient for most users. The * fpga_mgr_register_full() function is available for users that need to pass * additional, optional parameters. * * Return: pointer to struct fpga_manager pointer or ERR_PTR() */ struct fpga_manager * fpga_mgr_register(struct device *parent, const char *name, const struct fpga_manager_ops *mops, void *priv) { struct fpga_manager_info info = { 0 }; info.name = name; info.mops = mops; info.priv = priv; return fpga_mgr_register_full(parent, &info); } EXPORT_SYMBOL_GPL(fpga_mgr_register); /** * fpga_mgr_unregister - unregister an FPGA manager * @mgr: fpga manager struct * * This function is intended for use in an FPGA manager driver's remove function. */ void fpga_mgr_unregister(struct fpga_manager *mgr) { dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name); /* * If the low level driver provides a method for putting fpga into * a desired state upon unregister, do it. */ fpga_mgr_fpga_remove(mgr); device_unregister(&mgr->dev); } EXPORT_SYMBOL_GPL(fpga_mgr_unregister); static void devm_fpga_mgr_unregister(struct device *dev, void *res) { struct fpga_mgr_devres *dr = res; fpga_mgr_unregister(dr->mgr); } /** * devm_fpga_mgr_register_full - resource managed variant of fpga_mgr_register() * @parent: fpga manager device from pdev * @info: parameters for fpga manager * * Return: fpga manager pointer on success, negative error code otherwise. * * This is the devres variant of fpga_mgr_register_full() for which the unregister * function will be called automatically when the managing device is detached. */ struct fpga_manager * devm_fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info) { struct fpga_mgr_devres *dr; struct fpga_manager *mgr; dr = devres_alloc(devm_fpga_mgr_unregister, sizeof(*dr), GFP_KERNEL); if (!dr) return ERR_PTR(-ENOMEM); mgr = fpga_mgr_register_full(parent, info); if (IS_ERR(mgr)) { devres_free(dr); return mgr; } dr->mgr = mgr; devres_add(parent, dr); return mgr; } EXPORT_SYMBOL_GPL(devm_fpga_mgr_register_full); /** * devm_fpga_mgr_register - resource managed variant of fpga_mgr_register() * @parent: fpga manager device from pdev * @name: fpga manager name * @mops: pointer to structure of fpga manager ops * @priv: fpga manager private data * * Return: fpga manager pointer on success, negative error code otherwise. * * This is the devres variant of fpga_mgr_register() for which the * unregister function will be called automatically when the managing * device is detached. */ struct fpga_manager * devm_fpga_mgr_register(struct device *parent, const char *name, const struct fpga_manager_ops *mops, void *priv) { struct fpga_manager_info info = { 0 }; info.name = name; info.mops = mops; info.priv = priv; return devm_fpga_mgr_register_full(parent, &info); } EXPORT_SYMBOL_GPL(devm_fpga_mgr_register); static void fpga_mgr_dev_release(struct device *dev) { struct fpga_manager *mgr = to_fpga_manager(dev); ida_free(&fpga_mgr_ida, mgr->dev.id); kfree(mgr); } static int __init fpga_mgr_class_init(void) { pr_info("FPGA manager framework\n"); fpga_mgr_class = class_create("fpga_manager"); if (IS_ERR(fpga_mgr_class)) return PTR_ERR(fpga_mgr_class); fpga_mgr_class->dev_groups = fpga_mgr_groups; fpga_mgr_class->dev_release = fpga_mgr_dev_release; return 0; } static void __exit fpga_mgr_class_exit(void) { class_destroy(fpga_mgr_class); ida_destroy(&fpga_mgr_ida); } MODULE_AUTHOR("Alan Tull <atull@kernel.org>"); MODULE_DESCRIPTION("FPGA manager framework"); MODULE_LICENSE("GPL v2"); subsys_initcall(fpga_mgr_class_init); module_exit(fpga_mgr_class_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1