Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 4890 | 94.31% | 51 | 63.75% |
Shawn Guo | 105 | 2.03% | 1 | 1.25% |
Dave Airlie | 48 | 0.93% | 2 | 2.50% |
Maxime Ripard | 42 | 0.81% | 4 | 5.00% |
Daniel Vetter | 25 | 0.48% | 5 | 6.25% |
Paulo Zanoni | 24 | 0.46% | 1 | 1.25% |
Andrey Grodzovsky | 10 | 0.19% | 1 | 1.25% |
Jingoo Han | 7 | 0.14% | 1 | 1.25% |
Sam Ravnborg | 5 | 0.10% | 1 | 1.25% |
Emil Velikov | 4 | 0.08% | 1 | 1.25% |
Gustavo Padovan | 4 | 0.08% | 2 | 2.50% |
Thomas Hellstrom | 4 | 0.08% | 1 | 1.25% |
Maarten Lankhorst | 3 | 0.06% | 1 | 1.25% |
Stéphane Marchesin | 3 | 0.06% | 1 | 1.25% |
Shayenne da Luz Moura | 3 | 0.06% | 1 | 1.25% |
Ville Syrjälä | 2 | 0.04% | 1 | 1.25% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.25% |
Sinclair Yeh | 1 | 0.02% | 1 | 1.25% |
Arvind Yadav | 1 | 0.02% | 1 | 1.25% |
Thierry Reding | 1 | 0.02% | 1 | 1.25% |
Rob Herring | 1 | 0.02% | 1 | 1.25% |
Total | 5185 | 80 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Rewritten from the dovefb driver, and Armada510 manuals. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" #include "armada_hw.h" #include "armada_plane.h" #include "armada_trace.h" /* * A note about interlacing. Let's consider HDMI 1920x1080i. * The timing parameters we have from X are: * Hact HsyA HsyI Htot Vact VsyA VsyI Vtot * 1920 2448 2492 2640 1080 1084 1094 1125 * Which get translated to: * Hact HsyA HsyI Htot Vact VsyA VsyI Vtot * 1920 2448 2492 2640 540 542 547 562 * * This is how it is defined by CEA-861-D - line and pixel numbers are * referenced to the rising edge of VSYNC and HSYNC. Total clocks per * line: 2640. The odd frame, the first active line is at line 21, and * the even frame, the first active line is 584. * * LN: 560 561 562 563 567 568 569 * DE: ~~~|____________________________//__________________________ * HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____ * VSYNC: _________________________|~~~~~~//~~~~~~~~~~~~~~~|__________ * 22 blanking lines. VSYNC at 1320 (referenced to the HSYNC rising edge). * * LN: 1123 1124 1125 1 5 6 7 * DE: ~~~|____________________________//__________________________ * HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____ * VSYNC: ____________________|~~~~~~~~~~~//~~~~~~~~~~|_______________ * 23 blanking lines * * The Armada LCD Controller line and pixel numbers are, like X timings, * referenced to the top left of the active frame. * * So, translating these to our LCD controller: * Odd frame, 563 total lines, VSYNC at line 543-548, pixel 1128. * Even frame, 562 total lines, VSYNC at line 542-547, pixel 2448. * Note: Vsync front porch remains constant! * * if (odd_frame) { * vtotal = mode->crtc_vtotal + 1; * vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay + 1; * vhorizpos = mode->crtc_hsync_start - mode->crtc_htotal / 2 * } else { * vtotal = mode->crtc_vtotal; * vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay; * vhorizpos = mode->crtc_hsync_start; * } * vfrontporch = mode->crtc_vtotal - mode->crtc_vsync_end; * * So, we need to reprogram these registers on each vsync event: * LCD_SPU_V_PORCH, LCD_SPU_ADV_REG, LCD_SPUT_V_H_TOTAL * * Note: we do not use the frame done interrupts because these appear * to happen too early, and lead to jitter on the display (presumably * they occur at the end of the last active line, before the vsync back * porch, which we're reprogramming.) */ void armada_drm_crtc_update_regs(struct armada_crtc *dcrtc, struct armada_regs *regs) { while (regs->offset != ~0) { void __iomem *reg = dcrtc->base + regs->offset; uint32_t val; val = regs->mask; if (val != 0) val &= readl_relaxed(reg); writel_relaxed(val | regs->val, reg); ++regs; } } static void armada_drm_crtc_update(struct armada_crtc *dcrtc, bool enable) { uint32_t dumb_ctrl; dumb_ctrl = dcrtc->cfg_dumb_ctrl; if (enable) dumb_ctrl |= CFG_DUMB_ENA; /* * When the dumb interface isn't in DUMB24_RGB888_0 mode, it might * be using SPI or GPIO. If we set this to DUMB_BLANK, we will * force LCD_D[23:0] to output blank color, overriding the GPIO or * SPI usage. So leave it as-is unless in DUMB24_RGB888_0 mode. */ if (!enable && (dumb_ctrl & DUMB_MASK) == DUMB24_RGB888_0) { dumb_ctrl &= ~DUMB_MASK; dumb_ctrl |= DUMB_BLANK; } armada_updatel(dumb_ctrl, ~(CFG_INV_CSYNC | CFG_INV_HSYNC | CFG_INV_VSYNC), dcrtc->base + LCD_SPU_DUMB_CTRL); } static void armada_drm_crtc_queue_state_event(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct drm_pending_vblank_event *event; /* If we have an event, we need vblank events enabled */ event = xchg(&crtc->state->event, NULL); if (event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); dcrtc->event = event; } } static void armada_drm_update_gamma(struct drm_crtc *crtc) { struct drm_property_blob *blob = crtc->state->gamma_lut; void __iomem *base = drm_to_armada_crtc(crtc)->base; int i; if (blob) { struct drm_color_lut *lut = blob->data; armada_updatel(CFG_CSB_256x8, CFG_CSB_256x8 | CFG_PDWN256x8, base + LCD_SPU_SRAM_PARA1); for (i = 0; i < 256; i++) { writel_relaxed(drm_color_lut_extract(lut[i].red, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_YR, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(drm_color_lut_extract(lut[i].green, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_UG, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(drm_color_lut_extract(lut[i].blue, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_VB, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); } armada_updatel(CFG_GAMMA_ENA, CFG_GAMMA_ENA, base + LCD_SPU_DMA_CTRL0); } else { armada_updatel(0, CFG_GAMMA_ENA, base + LCD_SPU_DMA_CTRL0); armada_updatel(CFG_PDWN256x8, CFG_CSB_256x8 | CFG_PDWN256x8, base + LCD_SPU_SRAM_PARA1); } } static enum drm_mode_status armada_drm_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); if (mode->vscan > 1) return MODE_NO_VSCAN; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (mode->flags & DRM_MODE_FLAG_HSKEW) return MODE_H_ILLEGAL; /* We can't do interlaced modes if we don't have the SPU_ADV_REG */ if (!dcrtc->variant->has_spu_adv_reg && mode->flags & DRM_MODE_FLAG_INTERLACE) return MODE_NO_INTERLACE; if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX | DRM_MODE_FLAG_CLKDIV2)) return MODE_BAD; return MODE_OK; } /* The mode_config.mutex will be held for this call */ static bool armada_drm_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adj) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); int ret; /* * Set CRTC modesetting parameters for the adjusted mode. This is * applied after the connectors, bridges, and encoders have fixed up * this mode, as described above drm_atomic_helper_check_modeset(). */ drm_mode_set_crtcinfo(adj, CRTC_INTERLACE_HALVE_V); /* * Validate the adjusted mode in case an encoder/bridge has set * something we don't support. */ if (armada_drm_crtc_mode_valid(crtc, adj) != MODE_OK) return false; /* Check whether the display mode is possible */ ret = dcrtc->variant->compute_clock(dcrtc, adj, NULL); if (ret) return false; return true; } /* These are locked by dev->vbl_lock */ static void armada_drm_crtc_disable_irq(struct armada_crtc *dcrtc, u32 mask) { if (dcrtc->irq_ena & mask) { dcrtc->irq_ena &= ~mask; writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); } } static void armada_drm_crtc_enable_irq(struct armada_crtc *dcrtc, u32 mask) { if ((dcrtc->irq_ena & mask) != mask) { dcrtc->irq_ena |= mask; writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); if (readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR) & mask) writel(0, dcrtc->base + LCD_SPU_IRQ_ISR); } } static void armada_drm_crtc_irq(struct armada_crtc *dcrtc, u32 stat) { struct drm_pending_vblank_event *event; void __iomem *base = dcrtc->base; if (stat & DMA_FF_UNDERFLOW) DRM_ERROR("video underflow on crtc %u\n", dcrtc->num); if (stat & GRA_FF_UNDERFLOW) DRM_ERROR("graphics underflow on crtc %u\n", dcrtc->num); if (stat & VSYNC_IRQ) drm_crtc_handle_vblank(&dcrtc->crtc); spin_lock(&dcrtc->irq_lock); if (stat & GRA_FRAME_IRQ && dcrtc->interlaced) { int i = stat & GRA_FRAME_IRQ0 ? 0 : 1; uint32_t val; writel_relaxed(dcrtc->v[i].spu_v_porch, base + LCD_SPU_V_PORCH); writel_relaxed(dcrtc->v[i].spu_v_h_total, base + LCD_SPUT_V_H_TOTAL); val = readl_relaxed(base + LCD_SPU_ADV_REG); val &= ~(ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF | ADV_VSYNCOFFEN); val |= dcrtc->v[i].spu_adv_reg; writel_relaxed(val, base + LCD_SPU_ADV_REG); } if (stat & dcrtc->irq_ena & DUMB_FRAMEDONE) { if (dcrtc->update_pending) { armada_drm_crtc_update_regs(dcrtc, dcrtc->regs); dcrtc->update_pending = false; } if (dcrtc->cursor_update) { writel_relaxed(dcrtc->cursor_hw_pos, base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(dcrtc->cursor_hw_sz, base + LCD_SPU_HWC_HPXL_VLN); armada_updatel(CFG_HWC_ENA, CFG_HWC_ENA | CFG_HWC_1BITMOD | CFG_HWC_1BITENA, base + LCD_SPU_DMA_CTRL0); dcrtc->cursor_update = false; } armada_drm_crtc_disable_irq(dcrtc, DUMB_FRAMEDONE_ENA); } spin_unlock(&dcrtc->irq_lock); if (stat & VSYNC_IRQ && !dcrtc->update_pending) { event = xchg(&dcrtc->event, NULL); if (event) { spin_lock(&dcrtc->crtc.dev->event_lock); drm_crtc_send_vblank_event(&dcrtc->crtc, event); spin_unlock(&dcrtc->crtc.dev->event_lock); drm_crtc_vblank_put(&dcrtc->crtc); } } } static irqreturn_t armada_drm_irq(int irq, void *arg) { struct armada_crtc *dcrtc = arg; u32 v, stat = readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR); /* * Reading the ISR appears to clear bits provided CLEAN_SPU_IRQ_ISR * is set. Writing has some other effect to acknowledge the IRQ - * without this, we only get a single IRQ. */ writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR); trace_armada_drm_irq(&dcrtc->crtc, stat); /* Mask out those interrupts we haven't enabled */ v = stat & dcrtc->irq_ena; if (v & (VSYNC_IRQ|GRA_FRAME_IRQ|DUMB_FRAMEDONE)) { armada_drm_crtc_irq(dcrtc, stat); return IRQ_HANDLED; } return IRQ_NONE; } /* The mode_config.mutex will be held for this call */ static void armada_drm_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct drm_display_mode *adj = &crtc->state->adjusted_mode; struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_regs regs[17]; uint32_t lm, rm, tm, bm, val, sclk; unsigned long flags; unsigned i; bool interlaced = !!(adj->flags & DRM_MODE_FLAG_INTERLACE); i = 0; rm = adj->crtc_hsync_start - adj->crtc_hdisplay; lm = adj->crtc_htotal - adj->crtc_hsync_end; bm = adj->crtc_vsync_start - adj->crtc_vdisplay; tm = adj->crtc_vtotal - adj->crtc_vsync_end; DRM_DEBUG_KMS("[CRTC:%d:%s] mode " DRM_MODE_FMT "\n", crtc->base.id, crtc->name, DRM_MODE_ARG(adj)); DRM_DEBUG_KMS("lm %d rm %d tm %d bm %d\n", lm, rm, tm, bm); /* Now compute the divider for real */ dcrtc->variant->compute_clock(dcrtc, adj, &sclk); armada_reg_queue_set(regs, i, sclk, LCD_CFG_SCLK_DIV); spin_lock_irqsave(&dcrtc->irq_lock, flags); dcrtc->interlaced = interlaced; /* Even interlaced/progressive frame */ dcrtc->v[1].spu_v_h_total = adj->crtc_vtotal << 16 | adj->crtc_htotal; dcrtc->v[1].spu_v_porch = tm << 16 | bm; val = adj->crtc_hsync_start; dcrtc->v[1].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN; if (interlaced) { /* Odd interlaced frame */ val -= adj->crtc_htotal / 2; dcrtc->v[0].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN; dcrtc->v[0].spu_v_h_total = dcrtc->v[1].spu_v_h_total + (1 << 16); dcrtc->v[0].spu_v_porch = dcrtc->v[1].spu_v_porch + 1; } else { dcrtc->v[0] = dcrtc->v[1]; } val = adj->crtc_vdisplay << 16 | adj->crtc_hdisplay; armada_reg_queue_set(regs, i, val, LCD_SPU_V_H_ACTIVE); armada_reg_queue_set(regs, i, (lm << 16) | rm, LCD_SPU_H_PORCH); armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_porch, LCD_SPU_V_PORCH); armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_h_total, LCD_SPUT_V_H_TOTAL); if (dcrtc->variant->has_spu_adv_reg) armada_reg_queue_mod(regs, i, dcrtc->v[0].spu_adv_reg, ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF | ADV_VSYNCOFFEN, LCD_SPU_ADV_REG); val = adj->flags & DRM_MODE_FLAG_NVSYNC ? CFG_VSYNC_INV : 0; armada_reg_queue_mod(regs, i, val, CFG_VSYNC_INV, LCD_SPU_DMA_CTRL1); /* * The documentation doesn't indicate what the normal state of * the sync signals are. Sebastian Hesselbart kindly probed * these signals on his board to determine their state. * * The non-inverted state of the sync signals is active high. * Setting these bits makes the appropriate signal active low. */ val = 0; if (adj->flags & DRM_MODE_FLAG_NCSYNC) val |= CFG_INV_CSYNC; if (adj->flags & DRM_MODE_FLAG_NHSYNC) val |= CFG_INV_HSYNC; if (adj->flags & DRM_MODE_FLAG_NVSYNC) val |= CFG_INV_VSYNC; armada_reg_queue_mod(regs, i, val, CFG_INV_CSYNC | CFG_INV_HSYNC | CFG_INV_VSYNC, LCD_SPU_DUMB_CTRL); armada_reg_queue_end(regs, i); armada_drm_crtc_update_regs(dcrtc, regs); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); } static int armada_drm_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (crtc_state->gamma_lut && drm_color_lut_size(crtc_state->gamma_lut) != 256) return -EINVAL; if (crtc_state->color_mgmt_changed) crtc_state->planes_changed = true; return 0; } static void armada_drm_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (crtc_state->color_mgmt_changed) armada_drm_update_gamma(crtc); dcrtc->regs_idx = 0; dcrtc->regs = dcrtc->atomic_regs; } static void armada_drm_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); armada_reg_queue_end(dcrtc->regs, dcrtc->regs_idx); /* * If we aren't doing a full modeset, then we need to queue * the event here. */ if (!drm_atomic_crtc_needs_modeset(crtc_state)) { dcrtc->update_pending = true; armada_drm_crtc_queue_state_event(crtc); spin_lock_irq(&dcrtc->irq_lock); armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA); spin_unlock_irq(&dcrtc->irq_lock); } else { spin_lock_irq(&dcrtc->irq_lock); armada_drm_crtc_update_regs(dcrtc, dcrtc->regs); spin_unlock_irq(&dcrtc->irq_lock); } } static void armada_drm_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct drm_pending_vblank_event *event; DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (old_state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) drm_crtc_vblank_put(crtc); drm_crtc_vblank_off(crtc); armada_drm_crtc_update(dcrtc, false); if (!crtc->state->active) { /* * This modeset will be leaving the CRTC disabled, so * call the backend to disable upstream clocks etc. */ if (dcrtc->variant->disable) dcrtc->variant->disable(dcrtc); /* * We will not receive any further vblank events. * Send the flip_done event manually. */ event = crtc->state->event; crtc->state->event = NULL; if (event) { spin_lock_irq(&crtc->dev->event_lock); drm_crtc_send_vblank_event(crtc, event); spin_unlock_irq(&crtc->dev->event_lock); } } } static void armada_drm_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (!old_state->active) { /* * This modeset is enabling the CRTC after it having * been disabled. Reverse the call to ->disable in * the atomic_disable(). */ if (dcrtc->variant->enable) dcrtc->variant->enable(dcrtc, &crtc->state->adjusted_mode); } armada_drm_crtc_update(dcrtc, true); drm_crtc_vblank_on(crtc); if (crtc->state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) WARN_ON(drm_crtc_vblank_get(crtc)); armada_drm_crtc_queue_state_event(crtc); } static const struct drm_crtc_helper_funcs armada_crtc_helper_funcs = { .mode_valid = armada_drm_crtc_mode_valid, .mode_fixup = armada_drm_crtc_mode_fixup, .mode_set_nofb = armada_drm_crtc_mode_set_nofb, .atomic_check = armada_drm_crtc_atomic_check, .atomic_begin = armada_drm_crtc_atomic_begin, .atomic_flush = armada_drm_crtc_atomic_flush, .atomic_disable = armada_drm_crtc_atomic_disable, .atomic_enable = armada_drm_crtc_atomic_enable, }; static void armada_load_cursor_argb(void __iomem *base, uint32_t *pix, unsigned stride, unsigned width, unsigned height) { uint32_t addr; unsigned y; addr = SRAM_HWC32_RAM1; for (y = 0; y < height; y++) { uint32_t *p = &pix[y * stride]; unsigned x; for (x = 0; x < width; x++, p++) { uint32_t val = *p; /* * In "ARGB888" (HWC32) mode, writing to the SRAM * requires these bits to contain: * 31:24 = alpha 23:16 = blue 15:8 = green 7:0 = red * So, it's actually ABGR8888. This is independent * of the SWAPRB bits in DMA control register 0. */ val = (val & 0xff00ff00) | (val & 0x000000ff) << 16 | (val & 0x00ff0000) >> 16; writel_relaxed(val, base + LCD_SPU_SRAM_WRDAT); writel_relaxed(addr | SRAM_WRITE, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); addr += 1; if ((addr & 0x00ff) == 0) addr += 0xf00; if ((addr & 0x30ff) == 0) addr = SRAM_HWC32_RAM2; } } } static void armada_drm_crtc_cursor_tran(void __iomem *base) { unsigned addr; for (addr = 0; addr < 256; addr++) { /* write the default value */ writel_relaxed(0x55555555, base + LCD_SPU_SRAM_WRDAT); writel_relaxed(addr | SRAM_WRITE | SRAM_HWC32_TRAN, base + LCD_SPU_SRAM_CTRL); } } static int armada_drm_crtc_cursor_update(struct armada_crtc *dcrtc, bool reload) { uint32_t xoff, xscr, w = dcrtc->cursor_w, s; uint32_t yoff, yscr, h = dcrtc->cursor_h; uint32_t para1; /* * Calculate the visible width and height of the cursor, * screen position, and the position in the cursor bitmap. */ if (dcrtc->cursor_x < 0) { xoff = -dcrtc->cursor_x; xscr = 0; w -= min(xoff, w); } else if (dcrtc->cursor_x + w > dcrtc->crtc.mode.hdisplay) { xoff = 0; xscr = dcrtc->cursor_x; w = max_t(int, dcrtc->crtc.mode.hdisplay - dcrtc->cursor_x, 0); } else { xoff = 0; xscr = dcrtc->cursor_x; } if (dcrtc->cursor_y < 0) { yoff = -dcrtc->cursor_y; yscr = 0; h -= min(yoff, h); } else if (dcrtc->cursor_y + h > dcrtc->crtc.mode.vdisplay) { yoff = 0; yscr = dcrtc->cursor_y; h = max_t(int, dcrtc->crtc.mode.vdisplay - dcrtc->cursor_y, 0); } else { yoff = 0; yscr = dcrtc->cursor_y; } /* On interlaced modes, the vertical cursor size must be halved */ s = dcrtc->cursor_w; if (dcrtc->interlaced) { s *= 2; yscr /= 2; h /= 2; } if (!dcrtc->cursor_obj || !h || !w) { spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_update = false; armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0); spin_unlock_irq(&dcrtc->irq_lock); return 0; } spin_lock_irq(&dcrtc->irq_lock); para1 = readl_relaxed(dcrtc->base + LCD_SPU_SRAM_PARA1); armada_updatel(CFG_CSB_256x32, CFG_CSB_256x32 | CFG_PDWN256x32, dcrtc->base + LCD_SPU_SRAM_PARA1); spin_unlock_irq(&dcrtc->irq_lock); /* * Initialize the transparency if the SRAM was powered down. * We must also reload the cursor data as well. */ if (!(para1 & CFG_CSB_256x32)) { armada_drm_crtc_cursor_tran(dcrtc->base); reload = true; } if (dcrtc->cursor_hw_sz != (h << 16 | w)) { spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_update = false; armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0); spin_unlock_irq(&dcrtc->irq_lock); reload = true; } if (reload) { struct armada_gem_object *obj = dcrtc->cursor_obj; uint32_t *pix; /* Set the top-left corner of the cursor image */ pix = obj->addr; pix += yoff * s + xoff; armada_load_cursor_argb(dcrtc->base, pix, s, w, h); } /* Reload the cursor position, size and enable in the IRQ handler */ spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_hw_pos = yscr << 16 | xscr; dcrtc->cursor_hw_sz = h << 16 | w; dcrtc->cursor_update = true; armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA); spin_unlock_irq(&dcrtc->irq_lock); return 0; } static void cursor_update(void *data) { armada_drm_crtc_cursor_update(data, true); } static int armada_drm_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file, uint32_t handle, uint32_t w, uint32_t h) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_gem_object *obj = NULL; int ret; /* If no cursor support, replicate drm's return value */ if (!dcrtc->variant->has_spu_adv_reg) return -ENXIO; if (handle && w > 0 && h > 0) { /* maximum size is 64x32 or 32x64 */ if (w > 64 || h > 64 || (w > 32 && h > 32)) return -ENOMEM; obj = armada_gem_object_lookup(file, handle); if (!obj) return -ENOENT; /* Must be a kernel-mapped object */ if (!obj->addr) { drm_gem_object_put(&obj->obj); return -EINVAL; } if (obj->obj.size < w * h * 4) { DRM_ERROR("buffer is too small\n"); drm_gem_object_put(&obj->obj); return -ENOMEM; } } if (dcrtc->cursor_obj) { dcrtc->cursor_obj->update = NULL; dcrtc->cursor_obj->update_data = NULL; drm_gem_object_put(&dcrtc->cursor_obj->obj); } dcrtc->cursor_obj = obj; dcrtc->cursor_w = w; dcrtc->cursor_h = h; ret = armada_drm_crtc_cursor_update(dcrtc, true); if (obj) { obj->update_data = dcrtc; obj->update = cursor_update; } return ret; } static int armada_drm_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); int ret; /* If no cursor support, replicate drm's return value */ if (!dcrtc->variant->has_spu_adv_reg) return -EFAULT; dcrtc->cursor_x = x; dcrtc->cursor_y = y; ret = armada_drm_crtc_cursor_update(dcrtc, false); return ret; } static void armada_drm_crtc_destroy(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_private *priv = drm_to_armada_dev(crtc->dev); if (dcrtc->cursor_obj) drm_gem_object_put(&dcrtc->cursor_obj->obj); priv->dcrtc[dcrtc->num] = NULL; drm_crtc_cleanup(&dcrtc->crtc); if (dcrtc->variant->disable) dcrtc->variant->disable(dcrtc); writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ENA); of_node_put(dcrtc->crtc.port); kfree(dcrtc); } static int armada_drm_crtc_late_register(struct drm_crtc *crtc) { if (IS_ENABLED(CONFIG_DEBUG_FS)) armada_drm_crtc_debugfs_init(drm_to_armada_crtc(crtc)); return 0; } /* These are called under the vbl_lock. */ static int armada_drm_crtc_enable_vblank(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); unsigned long flags; spin_lock_irqsave(&dcrtc->irq_lock, flags); armada_drm_crtc_enable_irq(dcrtc, VSYNC_IRQ_ENA); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); return 0; } static void armada_drm_crtc_disable_vblank(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); unsigned long flags; spin_lock_irqsave(&dcrtc->irq_lock, flags); armada_drm_crtc_disable_irq(dcrtc, VSYNC_IRQ_ENA); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); } static const struct drm_crtc_funcs armada_crtc_funcs = { .reset = drm_atomic_helper_crtc_reset, .cursor_set = armada_drm_crtc_cursor_set, .cursor_move = armada_drm_crtc_cursor_move, .destroy = armada_drm_crtc_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .late_register = armada_drm_crtc_late_register, .enable_vblank = armada_drm_crtc_enable_vblank, .disable_vblank = armada_drm_crtc_disable_vblank, }; int armada_crtc_select_clock(struct armada_crtc *dcrtc, struct armada_clk_result *res, const struct armada_clocking_params *params, struct clk *clks[], size_t num_clks, unsigned long desired_khz) { unsigned long desired_hz = desired_khz * 1000; unsigned long desired_clk_hz; // requested clk input unsigned long real_clk_hz; // actual clk input unsigned long real_hz; // actual pixel clk unsigned long permillage; struct clk *clk; u32 div; int i; DRM_DEBUG_KMS("[CRTC:%u:%s] desired clock=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, desired_hz); for (i = 0; i < num_clks; i++) { clk = clks[i]; if (!clk) continue; if (params->settable & BIT(i)) { real_clk_hz = clk_round_rate(clk, desired_hz); desired_clk_hz = desired_hz; } else { real_clk_hz = clk_get_rate(clk); desired_clk_hz = real_clk_hz; } /* If the clock can do exactly the desired rate, we're done */ if (real_clk_hz == desired_hz) { real_hz = real_clk_hz; div = 1; goto found; } /* Calculate the divider - if invalid, we can't do this rate */ div = DIV_ROUND_CLOSEST(real_clk_hz, desired_hz); if (div == 0 || div > params->div_max) continue; /* Calculate the actual rate - HDMI requires -0.6%..+0.5% */ real_hz = DIV_ROUND_CLOSEST(real_clk_hz, div); DRM_DEBUG_KMS("[CRTC:%u:%s] clk=%u %luHz div=%u real=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, i, real_clk_hz, div, real_hz); /* Avoid repeated division */ if (real_hz < desired_hz) { permillage = real_hz / desired_khz; if (permillage < params->permillage_min) continue; } else { permillage = DIV_ROUND_UP(real_hz, desired_khz); if (permillage > params->permillage_max) continue; } goto found; } return -ERANGE; found: DRM_DEBUG_KMS("[CRTC:%u:%s] selected clk=%u %luHz div=%u real=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, i, real_clk_hz, div, real_hz); res->desired_clk_hz = desired_clk_hz; res->clk = clk; res->div = div; return i; } static int armada_drm_crtc_create(struct drm_device *drm, struct device *dev, struct resource *res, int irq, const struct armada_variant *variant, struct device_node *port) { struct armada_private *priv = drm_to_armada_dev(drm); struct armada_crtc *dcrtc; struct drm_plane *primary; void __iomem *base; int ret; base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); dcrtc = kzalloc(sizeof(*dcrtc), GFP_KERNEL); if (!dcrtc) { DRM_ERROR("failed to allocate Armada crtc\n"); return -ENOMEM; } if (dev != drm->dev) dev_set_drvdata(dev, dcrtc); dcrtc->variant = variant; dcrtc->base = base; dcrtc->num = drm->mode_config.num_crtc; dcrtc->cfg_dumb_ctrl = DUMB24_RGB888_0; dcrtc->spu_iopad_ctrl = CFG_VSCALE_LN_EN | CFG_IOPAD_DUMB24; spin_lock_init(&dcrtc->irq_lock); dcrtc->irq_ena = CLEAN_SPU_IRQ_ISR; /* Initialize some registers which we don't otherwise set */ writel_relaxed(0x00000001, dcrtc->base + LCD_CFG_SCLK_DIV); writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_BLANKCOLOR); writel_relaxed(dcrtc->spu_iopad_ctrl, dcrtc->base + LCD_SPU_IOPAD_CONTROL); writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_SRAM_PARA0); writel_relaxed(CFG_PDWN256x32 | CFG_PDWN256x24 | CFG_PDWN256x8 | CFG_PDWN32x32 | CFG_PDWN16x66 | CFG_PDWN32x66 | CFG_PDWN64x66, dcrtc->base + LCD_SPU_SRAM_PARA1); writel_relaxed(0x2032ff81, dcrtc->base + LCD_SPU_DMA_CTRL1); writel_relaxed(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR); writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR); ret = devm_request_irq(dev, irq, armada_drm_irq, 0, "armada_drm_crtc", dcrtc); if (ret < 0) goto err_crtc; if (dcrtc->variant->init) { ret = dcrtc->variant->init(dcrtc, dev); if (ret) goto err_crtc; } /* Ensure AXI pipeline is enabled */ armada_updatel(CFG_ARBFAST_ENA, 0, dcrtc->base + LCD_SPU_DMA_CTRL0); priv->dcrtc[dcrtc->num] = dcrtc; dcrtc->crtc.port = port; primary = kzalloc(sizeof(*primary), GFP_KERNEL); if (!primary) { ret = -ENOMEM; goto err_crtc; } ret = armada_drm_primary_plane_init(drm, primary); if (ret) { kfree(primary); goto err_crtc; } ret = drm_crtc_init_with_planes(drm, &dcrtc->crtc, primary, NULL, &armada_crtc_funcs, NULL); if (ret) goto err_crtc_init; drm_crtc_helper_add(&dcrtc->crtc, &armada_crtc_helper_funcs); ret = drm_mode_crtc_set_gamma_size(&dcrtc->crtc, 256); if (ret) return ret; drm_crtc_enable_color_mgmt(&dcrtc->crtc, 0, false, 256); return armada_overlay_plane_create(drm, 1 << dcrtc->num); err_crtc_init: primary->funcs->destroy(primary); err_crtc: kfree(dcrtc); return ret; } static int armada_lcd_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); int irq = platform_get_irq(pdev, 0); const struct armada_variant *variant; struct device_node *port = NULL; if (irq < 0) return irq; if (!dev->of_node) { const struct platform_device_id *id; id = platform_get_device_id(pdev); if (!id) return -ENXIO; variant = (const struct armada_variant *)id->driver_data; } else { const struct of_device_id *match; struct device_node *np, *parent = dev->of_node; match = of_match_device(dev->driver->of_match_table, dev); if (!match) return -ENXIO; np = of_get_child_by_name(parent, "ports"); if (np) parent = np; port = of_get_child_by_name(parent, "port"); of_node_put(np); if (!port) { dev_err(dev, "no port node found in %pOF\n", parent); return -ENXIO; } variant = match->data; } return armada_drm_crtc_create(drm, dev, res, irq, variant, port); } static void armada_lcd_unbind(struct device *dev, struct device *master, void *data) { struct armada_crtc *dcrtc = dev_get_drvdata(dev); armada_drm_crtc_destroy(&dcrtc->crtc); } static const struct component_ops armada_lcd_ops = { .bind = armada_lcd_bind, .unbind = armada_lcd_unbind, }; static int armada_lcd_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &armada_lcd_ops); } static int armada_lcd_remove(struct platform_device *pdev) { component_del(&pdev->dev, &armada_lcd_ops); return 0; } static const struct of_device_id armada_lcd_of_match[] = { { .compatible = "marvell,dove-lcd", .data = &armada510_ops, }, {} }; MODULE_DEVICE_TABLE(of, armada_lcd_of_match); static const struct platform_device_id armada_lcd_platform_ids[] = { { .name = "armada-lcd", .driver_data = (unsigned long)&armada510_ops, }, { .name = "armada-510-lcd", .driver_data = (unsigned long)&armada510_ops, }, { }, }; MODULE_DEVICE_TABLE(platform, armada_lcd_platform_ids); struct platform_driver armada_lcd_platform_driver = { .probe = armada_lcd_probe, .remove = armada_lcd_remove, .driver = { .name = "armada-lcd", .owner = THIS_MODULE, .of_match_table = armada_lcd_of_match, }, .id_table = armada_lcd_platform_ids, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1