Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yannick Fertre | 7891 | 81.59% | 27 | 30.68% |
Philippe Cornu | 650 | 6.72% | 18 | 20.45% |
Raphael GALLAIS-POU - foss | 405 | 4.19% | 4 | 4.55% |
Marek Vašut | 239 | 2.47% | 3 | 3.41% |
Benjamin Gaignard | 151 | 1.56% | 3 | 3.41% |
Thomas Zimmermann | 139 | 1.44% | 3 | 3.41% |
Maxime Ripard | 66 | 0.68% | 10 | 11.36% |
Xiaomeng Tong | 22 | 0.23% | 1 | 1.14% |
Fabien Dessenne | 22 | 0.23% | 2 | 2.27% |
Jagan Teki | 19 | 0.20% | 2 | 2.27% |
Sam Ravnborg | 19 | 0.20% | 1 | 1.14% |
Daniel Vetter | 12 | 0.12% | 4 | 4.55% |
Laurent Pinchart | 11 | 0.11% | 3 | 3.41% |
Danilo Krummrich | 8 | 0.08% | 2 | 2.27% |
Nathan Chancellor | 8 | 0.08% | 1 | 1.14% |
Boris Brezillon | 3 | 0.03% | 1 | 1.14% |
Jyri Sarha | 3 | 0.03% | 1 | 1.14% |
Ahmad Fatoum | 2 | 0.02% | 1 | 1.14% |
Ben Widawsky | 1 | 0.01% | 1 | 1.14% |
Total | 9671 | 88 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2017 * * Authors: Philippe Cornu <philippe.cornu@st.com> * Yannick Fertre <yannick.fertre@st.com> * Fabien Dessenne <fabien.dessenne@st.com> * Mickael Reulier <mickael.reulier@st.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_graph.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_blend.h> #include <drm/drm_bridge.h> #include <drm/drm_device.h> #include <drm/drm_edid.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_atomic_helper.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_of.h> #include <drm/drm_probe_helper.h> #include <drm/drm_simple_kms_helper.h> #include <drm/drm_vblank.h> #include <video/videomode.h> #include "ltdc.h" #define NB_CRTC 1 #define CRTC_MASK GENMASK(NB_CRTC - 1, 0) #define MAX_IRQ 4 #define HWVER_10200 0x010200 #define HWVER_10300 0x010300 #define HWVER_20101 0x020101 #define HWVER_40100 0x040100 /* * The address of some registers depends on the HW version: such registers have * an extra offset specified with layer_ofs. */ #define LAY_OFS_0 0x80 #define LAY_OFS_1 0x100 #define LAY_OFS (ldev->caps.layer_ofs) /* Global register offsets */ #define LTDC_IDR 0x0000 /* IDentification */ #define LTDC_LCR 0x0004 /* Layer Count */ #define LTDC_SSCR 0x0008 /* Synchronization Size Configuration */ #define LTDC_BPCR 0x000C /* Back Porch Configuration */ #define LTDC_AWCR 0x0010 /* Active Width Configuration */ #define LTDC_TWCR 0x0014 /* Total Width Configuration */ #define LTDC_GCR 0x0018 /* Global Control */ #define LTDC_GC1R 0x001C /* Global Configuration 1 */ #define LTDC_GC2R 0x0020 /* Global Configuration 2 */ #define LTDC_SRCR 0x0024 /* Shadow Reload Configuration */ #define LTDC_GACR 0x0028 /* GAmma Correction */ #define LTDC_BCCR 0x002C /* Background Color Configuration */ #define LTDC_IER 0x0034 /* Interrupt Enable */ #define LTDC_ISR 0x0038 /* Interrupt Status */ #define LTDC_ICR 0x003C /* Interrupt Clear */ #define LTDC_LIPCR 0x0040 /* Line Interrupt Position Conf. */ #define LTDC_CPSR 0x0044 /* Current Position Status */ #define LTDC_CDSR 0x0048 /* Current Display Status */ #define LTDC_EDCR 0x0060 /* External Display Control */ #define LTDC_CCRCR 0x007C /* Computed CRC value */ #define LTDC_FUT 0x0090 /* Fifo underrun Threshold */ /* Layer register offsets */ #define LTDC_L1C0R (ldev->caps.layer_regs[0]) /* L1 configuration 0 */ #define LTDC_L1C1R (ldev->caps.layer_regs[1]) /* L1 configuration 1 */ #define LTDC_L1RCR (ldev->caps.layer_regs[2]) /* L1 reload control */ #define LTDC_L1CR (ldev->caps.layer_regs[3]) /* L1 control register */ #define LTDC_L1WHPCR (ldev->caps.layer_regs[4]) /* L1 window horizontal position configuration */ #define LTDC_L1WVPCR (ldev->caps.layer_regs[5]) /* L1 window vertical position configuration */ #define LTDC_L1CKCR (ldev->caps.layer_regs[6]) /* L1 color keying configuration */ #define LTDC_L1PFCR (ldev->caps.layer_regs[7]) /* L1 pixel format configuration */ #define LTDC_L1CACR (ldev->caps.layer_regs[8]) /* L1 constant alpha configuration */ #define LTDC_L1DCCR (ldev->caps.layer_regs[9]) /* L1 default color configuration */ #define LTDC_L1BFCR (ldev->caps.layer_regs[10]) /* L1 blending factors configuration */ #define LTDC_L1BLCR (ldev->caps.layer_regs[11]) /* L1 burst length configuration */ #define LTDC_L1PCR (ldev->caps.layer_regs[12]) /* L1 planar configuration */ #define LTDC_L1CFBAR (ldev->caps.layer_regs[13]) /* L1 color frame buffer address */ #define LTDC_L1CFBLR (ldev->caps.layer_regs[14]) /* L1 color frame buffer length */ #define LTDC_L1CFBLNR (ldev->caps.layer_regs[15]) /* L1 color frame buffer line number */ #define LTDC_L1AFBA0R (ldev->caps.layer_regs[16]) /* L1 auxiliary frame buffer address 0 */ #define LTDC_L1AFBA1R (ldev->caps.layer_regs[17]) /* L1 auxiliary frame buffer address 1 */ #define LTDC_L1AFBLR (ldev->caps.layer_regs[18]) /* L1 auxiliary frame buffer length */ #define LTDC_L1AFBLNR (ldev->caps.layer_regs[19]) /* L1 auxiliary frame buffer line number */ #define LTDC_L1CLUTWR (ldev->caps.layer_regs[20]) /* L1 CLUT write */ #define LTDC_L1CYR0R (ldev->caps.layer_regs[21]) /* L1 Conversion YCbCr RGB 0 */ #define LTDC_L1CYR1R (ldev->caps.layer_regs[22]) /* L1 Conversion YCbCr RGB 1 */ #define LTDC_L1FPF0R (ldev->caps.layer_regs[23]) /* L1 Flexible Pixel Format 0 */ #define LTDC_L1FPF1R (ldev->caps.layer_regs[24]) /* L1 Flexible Pixel Format 1 */ /* Bit definitions */ #define SSCR_VSH GENMASK(10, 0) /* Vertical Synchronization Height */ #define SSCR_HSW GENMASK(27, 16) /* Horizontal Synchronization Width */ #define BPCR_AVBP GENMASK(10, 0) /* Accumulated Vertical Back Porch */ #define BPCR_AHBP GENMASK(27, 16) /* Accumulated Horizontal Back Porch */ #define AWCR_AAH GENMASK(10, 0) /* Accumulated Active Height */ #define AWCR_AAW GENMASK(27, 16) /* Accumulated Active Width */ #define TWCR_TOTALH GENMASK(10, 0) /* TOTAL Height */ #define TWCR_TOTALW GENMASK(27, 16) /* TOTAL Width */ #define GCR_LTDCEN BIT(0) /* LTDC ENable */ #define GCR_DEN BIT(16) /* Dither ENable */ #define GCR_CRCEN BIT(19) /* CRC ENable */ #define GCR_PCPOL BIT(28) /* Pixel Clock POLarity-Inverted */ #define GCR_DEPOL BIT(29) /* Data Enable POLarity-High */ #define GCR_VSPOL BIT(30) /* Vertical Synchro POLarity-High */ #define GCR_HSPOL BIT(31) /* Horizontal Synchro POLarity-High */ #define GC1R_WBCH GENMASK(3, 0) /* Width of Blue CHannel output */ #define GC1R_WGCH GENMASK(7, 4) /* Width of Green Channel output */ #define GC1R_WRCH GENMASK(11, 8) /* Width of Red Channel output */ #define GC1R_PBEN BIT(12) /* Precise Blending ENable */ #define GC1R_DT GENMASK(15, 14) /* Dithering Technique */ #define GC1R_GCT GENMASK(19, 17) /* Gamma Correction Technique */ #define GC1R_SHREN BIT(21) /* SHadow Registers ENabled */ #define GC1R_BCP BIT(22) /* Background Colour Programmable */ #define GC1R_BBEN BIT(23) /* Background Blending ENabled */ #define GC1R_LNIP BIT(24) /* Line Number IRQ Position */ #define GC1R_TP BIT(25) /* Timing Programmable */ #define GC1R_IPP BIT(26) /* IRQ Polarity Programmable */ #define GC1R_SPP BIT(27) /* Sync Polarity Programmable */ #define GC1R_DWP BIT(28) /* Dither Width Programmable */ #define GC1R_STREN BIT(29) /* STatus Registers ENabled */ #define GC1R_BMEN BIT(31) /* Blind Mode ENabled */ #define GC2R_EDCA BIT(0) /* External Display Control Ability */ #define GC2R_STSAEN BIT(1) /* Slave Timing Sync Ability ENabled */ #define GC2R_DVAEN BIT(2) /* Dual-View Ability ENabled */ #define GC2R_DPAEN BIT(3) /* Dual-Port Ability ENabled */ #define GC2R_BW GENMASK(6, 4) /* Bus Width (log2 of nb of bytes) */ #define GC2R_EDCEN BIT(7) /* External Display Control ENabled */ #define SRCR_IMR BIT(0) /* IMmediate Reload */ #define SRCR_VBR BIT(1) /* Vertical Blanking Reload */ #define BCCR_BCBLACK 0x00 /* Background Color BLACK */ #define BCCR_BCBLUE GENMASK(7, 0) /* Background Color BLUE */ #define BCCR_BCGREEN GENMASK(15, 8) /* Background Color GREEN */ #define BCCR_BCRED GENMASK(23, 16) /* Background Color RED */ #define BCCR_BCWHITE GENMASK(23, 0) /* Background Color WHITE */ #define IER_LIE BIT(0) /* Line Interrupt Enable */ #define IER_FUWIE BIT(1) /* Fifo Underrun Warning Interrupt Enable */ #define IER_TERRIE BIT(2) /* Transfer ERRor Interrupt Enable */ #define IER_RRIE BIT(3) /* Register Reload Interrupt Enable */ #define IER_FUEIE BIT(6) /* Fifo Underrun Error Interrupt Enable */ #define IER_CRCIE BIT(7) /* CRC Error Interrupt Enable */ #define CPSR_CYPOS GENMASK(15, 0) /* Current Y position */ #define ISR_LIF BIT(0) /* Line Interrupt Flag */ #define ISR_FUWIF BIT(1) /* Fifo Underrun Warning Interrupt Flag */ #define ISR_TERRIF BIT(2) /* Transfer ERRor Interrupt Flag */ #define ISR_RRIF BIT(3) /* Register Reload Interrupt Flag */ #define ISR_FUEIF BIT(6) /* Fifo Underrun Error Interrupt Flag */ #define ISR_CRCIF BIT(7) /* CRC Error Interrupt Flag */ #define EDCR_OCYEN BIT(25) /* Output Conversion to YCbCr 422: ENable */ #define EDCR_OCYSEL BIT(26) /* Output Conversion to YCbCr 422: SELection of the CCIR */ #define EDCR_OCYCO BIT(27) /* Output Conversion to YCbCr 422: Chrominance Order */ #define LXCR_LEN BIT(0) /* Layer ENable */ #define LXCR_COLKEN BIT(1) /* Color Keying Enable */ #define LXCR_CLUTEN BIT(4) /* Color Look-Up Table ENable */ #define LXCR_HMEN BIT(8) /* Horizontal Mirroring ENable */ #define LXWHPCR_WHSTPOS GENMASK(11, 0) /* Window Horizontal StarT POSition */ #define LXWHPCR_WHSPPOS GENMASK(27, 16) /* Window Horizontal StoP POSition */ #define LXWVPCR_WVSTPOS GENMASK(10, 0) /* Window Vertical StarT POSition */ #define LXWVPCR_WVSPPOS GENMASK(26, 16) /* Window Vertical StoP POSition */ #define LXPFCR_PF GENMASK(2, 0) /* Pixel Format */ #define PF_FLEXIBLE 0x7 /* Flexible Pixel Format selected */ #define LXCACR_CONSTA GENMASK(7, 0) /* CONSTant Alpha */ #define LXBFCR_BF2 GENMASK(2, 0) /* Blending Factor 2 */ #define LXBFCR_BF1 GENMASK(10, 8) /* Blending Factor 1 */ #define LXBFCR_BOR GENMASK(18, 16) /* Blending ORder */ #define LXCFBLR_CFBLL GENMASK(12, 0) /* Color Frame Buffer Line Length */ #define LXCFBLR_CFBP GENMASK(31, 16) /* Color Frame Buffer Pitch in bytes */ #define LXCFBLNR_CFBLN GENMASK(10, 0) /* Color Frame Buffer Line Number */ #define LXCR_C1R_YIA BIT(0) /* Ycbcr 422 Interleaved Ability */ #define LXCR_C1R_YSPA BIT(1) /* Ycbcr 420 Semi-Planar Ability */ #define LXCR_C1R_YFPA BIT(2) /* Ycbcr 420 Full-Planar Ability */ #define LXCR_C1R_SCA BIT(31) /* SCaling Ability*/ #define LxPCR_YREN BIT(9) /* Y Rescale Enable for the color dynamic range */ #define LxPCR_OF BIT(8) /* Odd pixel First */ #define LxPCR_CBF BIT(7) /* CB component First */ #define LxPCR_YF BIT(6) /* Y component First */ #define LxPCR_YCM GENMASK(5, 4) /* Ycbcr Conversion Mode */ #define YCM_I 0x0 /* Interleaved 422 */ #define YCM_SP 0x1 /* Semi-Planar 420 */ #define YCM_FP 0x2 /* Full-Planar 420 */ #define LxPCR_YCEN BIT(3) /* YCbCr-to-RGB Conversion Enable */ #define LXRCR_IMR BIT(0) /* IMmediate Reload */ #define LXRCR_VBR BIT(1) /* Vertical Blanking Reload */ #define LXRCR_GRMSK BIT(2) /* Global (centralized) Reload MaSKed */ #define CLUT_SIZE 256 #define CONSTA_MAX 0xFF /* CONSTant Alpha MAX= 1.0 */ #define BF1_PAXCA 0x600 /* Pixel Alpha x Constant Alpha */ #define BF1_CA 0x400 /* Constant Alpha */ #define BF2_1PAXCA 0x007 /* 1 - (Pixel Alpha x Constant Alpha) */ #define BF2_1CA 0x005 /* 1 - Constant Alpha */ #define NB_PF 8 /* Max nb of HW pixel format */ #define FUT_DFT 128 /* Default value of fifo underrun threshold */ /* * Skip the first value and the second in case CRC was enabled during * the thread irq. This is to be sure CRC value is relevant for the * frame. */ #define CRC_SKIP_FRAMES 2 enum ltdc_pix_fmt { PF_NONE, /* RGB formats */ PF_ARGB8888, /* ARGB [32 bits] */ PF_RGBA8888, /* RGBA [32 bits] */ PF_ABGR8888, /* ABGR [32 bits] */ PF_BGRA8888, /* BGRA [32 bits] */ PF_RGB888, /* RGB [24 bits] */ PF_BGR888, /* BGR [24 bits] */ PF_RGB565, /* RGB [16 bits] */ PF_BGR565, /* BGR [16 bits] */ PF_ARGB1555, /* ARGB A:1 bit RGB:15 bits [16 bits] */ PF_ARGB4444, /* ARGB A:4 bits R/G/B: 4 bits each [16 bits] */ /* Indexed formats */ PF_L8, /* Indexed 8 bits [8 bits] */ PF_AL44, /* Alpha:4 bits + indexed 4 bits [8 bits] */ PF_AL88 /* Alpha:8 bits + indexed 8 bits [16 bits] */ }; /* The index gives the encoding of the pixel format for an HW version */ static const enum ltdc_pix_fmt ltdc_pix_fmt_a0[NB_PF] = { PF_ARGB8888, /* 0x00 */ PF_RGB888, /* 0x01 */ PF_RGB565, /* 0x02 */ PF_ARGB1555, /* 0x03 */ PF_ARGB4444, /* 0x04 */ PF_L8, /* 0x05 */ PF_AL44, /* 0x06 */ PF_AL88 /* 0x07 */ }; static const enum ltdc_pix_fmt ltdc_pix_fmt_a1[NB_PF] = { PF_ARGB8888, /* 0x00 */ PF_RGB888, /* 0x01 */ PF_RGB565, /* 0x02 */ PF_RGBA8888, /* 0x03 */ PF_AL44, /* 0x04 */ PF_L8, /* 0x05 */ PF_ARGB1555, /* 0x06 */ PF_ARGB4444 /* 0x07 */ }; static const enum ltdc_pix_fmt ltdc_pix_fmt_a2[NB_PF] = { PF_ARGB8888, /* 0x00 */ PF_ABGR8888, /* 0x01 */ PF_RGBA8888, /* 0x02 */ PF_BGRA8888, /* 0x03 */ PF_RGB565, /* 0x04 */ PF_BGR565, /* 0x05 */ PF_RGB888, /* 0x06 */ PF_NONE /* 0x07 */ }; static const u32 ltdc_drm_fmt_a0[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_RGB565, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_C8 }; static const u32 ltdc_drm_fmt_a1[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_C8 }; static const u32 ltdc_drm_fmt_a2[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888, DRM_FORMAT_BGRA8888, DRM_FORMAT_BGRX8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGR565, DRM_FORMAT_RGB888, DRM_FORMAT_BGR888, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_C8 }; static const u32 ltdc_drm_fmt_ycbcr_cp[] = { DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_UYVY, DRM_FORMAT_VYUY }; static const u32 ltdc_drm_fmt_ycbcr_sp[] = { DRM_FORMAT_NV12, DRM_FORMAT_NV21 }; static const u32 ltdc_drm_fmt_ycbcr_fp[] = { DRM_FORMAT_YUV420, DRM_FORMAT_YVU420 }; /* Layer register offsets */ static const u32 ltdc_layer_regs_a0[] = { 0x80, /* L1 configuration 0 */ 0x00, /* not available */ 0x00, /* not available */ 0x84, /* L1 control register */ 0x88, /* L1 window horizontal position configuration */ 0x8c, /* L1 window vertical position configuration */ 0x90, /* L1 color keying configuration */ 0x94, /* L1 pixel format configuration */ 0x98, /* L1 constant alpha configuration */ 0x9c, /* L1 default color configuration */ 0xa0, /* L1 blending factors configuration */ 0x00, /* not available */ 0x00, /* not available */ 0xac, /* L1 color frame buffer address */ 0xb0, /* L1 color frame buffer length */ 0xb4, /* L1 color frame buffer line number */ 0x00, /* not available */ 0x00, /* not available */ 0x00, /* not available */ 0x00, /* not available */ 0xc4, /* L1 CLUT write */ 0x00, /* not available */ 0x00, /* not available */ 0x00, /* not available */ 0x00 /* not available */ }; static const u32 ltdc_layer_regs_a1[] = { 0x80, /* L1 configuration 0 */ 0x84, /* L1 configuration 1 */ 0x00, /* L1 reload control */ 0x88, /* L1 control register */ 0x8c, /* L1 window horizontal position configuration */ 0x90, /* L1 window vertical position configuration */ 0x94, /* L1 color keying configuration */ 0x98, /* L1 pixel format configuration */ 0x9c, /* L1 constant alpha configuration */ 0xa0, /* L1 default color configuration */ 0xa4, /* L1 blending factors configuration */ 0xa8, /* L1 burst length configuration */ 0x00, /* not available */ 0xac, /* L1 color frame buffer address */ 0xb0, /* L1 color frame buffer length */ 0xb4, /* L1 color frame buffer line number */ 0xb8, /* L1 auxiliary frame buffer address 0 */ 0xbc, /* L1 auxiliary frame buffer address 1 */ 0xc0, /* L1 auxiliary frame buffer length */ 0xc4, /* L1 auxiliary frame buffer line number */ 0xc8, /* L1 CLUT write */ 0x00, /* not available */ 0x00, /* not available */ 0x00, /* not available */ 0x00 /* not available */ }; static const u32 ltdc_layer_regs_a2[] = { 0x100, /* L1 configuration 0 */ 0x104, /* L1 configuration 1 */ 0x108, /* L1 reload control */ 0x10c, /* L1 control register */ 0x110, /* L1 window horizontal position configuration */ 0x114, /* L1 window vertical position configuration */ 0x118, /* L1 color keying configuration */ 0x11c, /* L1 pixel format configuration */ 0x120, /* L1 constant alpha configuration */ 0x124, /* L1 default color configuration */ 0x128, /* L1 blending factors configuration */ 0x12c, /* L1 burst length configuration */ 0x130, /* L1 planar configuration */ 0x134, /* L1 color frame buffer address */ 0x138, /* L1 color frame buffer length */ 0x13c, /* L1 color frame buffer line number */ 0x140, /* L1 auxiliary frame buffer address 0 */ 0x144, /* L1 auxiliary frame buffer address 1 */ 0x148, /* L1 auxiliary frame buffer length */ 0x14c, /* L1 auxiliary frame buffer line number */ 0x150, /* L1 CLUT write */ 0x16c, /* L1 Conversion YCbCr RGB 0 */ 0x170, /* L1 Conversion YCbCr RGB 1 */ 0x174, /* L1 Flexible Pixel Format 0 */ 0x178 /* L1 Flexible Pixel Format 1 */ }; static const u64 ltdc_format_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; static const struct regmap_config stm32_ltdc_regmap_cfg = { .reg_bits = 32, .val_bits = 32, .reg_stride = sizeof(u32), .max_register = 0x400, .use_relaxed_mmio = true, .cache_type = REGCACHE_NONE, }; static const u32 ltdc_ycbcr2rgb_coeffs[DRM_COLOR_ENCODING_MAX][DRM_COLOR_RANGE_MAX][2] = { [DRM_COLOR_YCBCR_BT601][DRM_COLOR_YCBCR_LIMITED_RANGE] = { 0x02040199, /* (b_cb = 516 / r_cr = 409) */ 0x006400D0 /* (g_cb = 100 / g_cr = 208) */ }, [DRM_COLOR_YCBCR_BT601][DRM_COLOR_YCBCR_FULL_RANGE] = { 0x01C60167, /* (b_cb = 454 / r_cr = 359) */ 0x005800B7 /* (g_cb = 88 / g_cr = 183) */ }, [DRM_COLOR_YCBCR_BT709][DRM_COLOR_YCBCR_LIMITED_RANGE] = { 0x021D01CB, /* (b_cb = 541 / r_cr = 459) */ 0x00370089 /* (g_cb = 55 / g_cr = 137) */ }, [DRM_COLOR_YCBCR_BT709][DRM_COLOR_YCBCR_FULL_RANGE] = { 0x01DB0193, /* (b_cb = 475 / r_cr = 403) */ 0x00300078 /* (g_cb = 48 / g_cr = 120) */ } /* BT2020 not supported */ }; static inline struct ltdc_device *crtc_to_ltdc(struct drm_crtc *crtc) { return (struct ltdc_device *)crtc->dev->dev_private; } static inline struct ltdc_device *plane_to_ltdc(struct drm_plane *plane) { return (struct ltdc_device *)plane->dev->dev_private; } static inline struct ltdc_device *encoder_to_ltdc(struct drm_encoder *enc) { return (struct ltdc_device *)enc->dev->dev_private; } static inline enum ltdc_pix_fmt to_ltdc_pixelformat(u32 drm_fmt) { enum ltdc_pix_fmt pf; switch (drm_fmt) { case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: pf = PF_ARGB8888; break; case DRM_FORMAT_ABGR8888: case DRM_FORMAT_XBGR8888: pf = PF_ABGR8888; break; case DRM_FORMAT_RGBA8888: case DRM_FORMAT_RGBX8888: pf = PF_RGBA8888; break; case DRM_FORMAT_BGRA8888: case DRM_FORMAT_BGRX8888: pf = PF_BGRA8888; break; case DRM_FORMAT_RGB888: pf = PF_RGB888; break; case DRM_FORMAT_BGR888: pf = PF_BGR888; break; case DRM_FORMAT_RGB565: pf = PF_RGB565; break; case DRM_FORMAT_BGR565: pf = PF_BGR565; break; case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: pf = PF_ARGB1555; break; case DRM_FORMAT_ARGB4444: case DRM_FORMAT_XRGB4444: pf = PF_ARGB4444; break; case DRM_FORMAT_C8: pf = PF_L8; break; default: pf = PF_NONE; break; /* Note: There are no DRM_FORMAT for AL44 and AL88 */ } return pf; } static inline u32 ltdc_set_flexible_pixel_format(struct drm_plane *plane, enum ltdc_pix_fmt pix_fmt) { struct ltdc_device *ldev = plane_to_ltdc(plane); u32 lofs = plane->index * LAY_OFS, ret = PF_FLEXIBLE; int psize, alen, apos, rlen, rpos, glen, gpos, blen, bpos; switch (pix_fmt) { case PF_BGR888: psize = 3; alen = 0; apos = 0; rlen = 8; rpos = 0; glen = 8; gpos = 8; blen = 8; bpos = 16; break; case PF_ARGB1555: psize = 2; alen = 1; apos = 15; rlen = 5; rpos = 10; glen = 5; gpos = 5; blen = 5; bpos = 0; break; case PF_ARGB4444: psize = 2; alen = 4; apos = 12; rlen = 4; rpos = 8; glen = 4; gpos = 4; blen = 4; bpos = 0; break; case PF_L8: psize = 1; alen = 0; apos = 0; rlen = 8; rpos = 0; glen = 8; gpos = 0; blen = 8; bpos = 0; break; case PF_AL44: psize = 1; alen = 4; apos = 4; rlen = 4; rpos = 0; glen = 4; gpos = 0; blen = 4; bpos = 0; break; case PF_AL88: psize = 2; alen = 8; apos = 8; rlen = 8; rpos = 0; glen = 8; gpos = 0; blen = 8; bpos = 0; break; default: ret = NB_PF; /* error case, trace msg is handled by the caller */ break; } if (ret == PF_FLEXIBLE) { regmap_write(ldev->regmap, LTDC_L1FPF0R + lofs, (rlen << 14) + (rpos << 9) + (alen << 5) + apos); regmap_write(ldev->regmap, LTDC_L1FPF1R + lofs, (psize << 18) + (blen << 14) + (bpos << 9) + (glen << 5) + gpos); } return ret; } /* * All non-alpha color formats derived from native alpha color formats are * either characterized by a FourCC format code */ static inline u32 is_xrgb(u32 drm) { return ((drm & 0xFF) == 'X' || ((drm >> 8) & 0xFF) == 'X'); } static inline void ltdc_set_ycbcr_config(struct drm_plane *plane, u32 drm_pix_fmt) { struct ltdc_device *ldev = plane_to_ltdc(plane); struct drm_plane_state *state = plane->state; u32 lofs = plane->index * LAY_OFS; u32 val; switch (drm_pix_fmt) { case DRM_FORMAT_YUYV: val = (YCM_I << 4) | LxPCR_YF | LxPCR_CBF; break; case DRM_FORMAT_YVYU: val = (YCM_I << 4) | LxPCR_YF; break; case DRM_FORMAT_UYVY: val = (YCM_I << 4) | LxPCR_CBF; break; case DRM_FORMAT_VYUY: val = (YCM_I << 4); break; case DRM_FORMAT_NV12: val = (YCM_SP << 4) | LxPCR_CBF; break; case DRM_FORMAT_NV21: val = (YCM_SP << 4); break; case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: val = (YCM_FP << 4); break; default: /* RGB or not a YCbCr supported format */ DRM_ERROR("Unsupported pixel format: %u\n", drm_pix_fmt); return; } /* Enable limited range */ if (state->color_range == DRM_COLOR_YCBCR_LIMITED_RANGE) val |= LxPCR_YREN; /* enable ycbcr conversion */ val |= LxPCR_YCEN; regmap_write(ldev->regmap, LTDC_L1PCR + lofs, val); } static inline void ltdc_set_ycbcr_coeffs(struct drm_plane *plane) { struct ltdc_device *ldev = plane_to_ltdc(plane); struct drm_plane_state *state = plane->state; enum drm_color_encoding enc = state->color_encoding; enum drm_color_range ran = state->color_range; u32 lofs = plane->index * LAY_OFS; if (enc != DRM_COLOR_YCBCR_BT601 && enc != DRM_COLOR_YCBCR_BT709) { DRM_ERROR("color encoding %d not supported, use bt601 by default\n", enc); /* set by default color encoding to DRM_COLOR_YCBCR_BT601 */ enc = DRM_COLOR_YCBCR_BT601; } if (ran != DRM_COLOR_YCBCR_LIMITED_RANGE && ran != DRM_COLOR_YCBCR_FULL_RANGE) { DRM_ERROR("color range %d not supported, use limited range by default\n", ran); /* set by default color range to DRM_COLOR_YCBCR_LIMITED_RANGE */ ran = DRM_COLOR_YCBCR_LIMITED_RANGE; } DRM_DEBUG_DRIVER("Color encoding=%d, range=%d\n", enc, ran); regmap_write(ldev->regmap, LTDC_L1CYR0R + lofs, ltdc_ycbcr2rgb_coeffs[enc][ran][0]); regmap_write(ldev->regmap, LTDC_L1CYR1R + lofs, ltdc_ycbcr2rgb_coeffs[enc][ran][1]); } static inline void ltdc_irq_crc_handle(struct ltdc_device *ldev, struct drm_crtc *crtc) { u32 crc; int ret; if (ldev->crc_skip_count < CRC_SKIP_FRAMES) { ldev->crc_skip_count++; return; } /* Get the CRC of the frame */ ret = regmap_read(ldev->regmap, LTDC_CCRCR, &crc); if (ret) return; /* Report to DRM the CRC (hw dependent feature) */ drm_crtc_add_crc_entry(crtc, true, drm_crtc_accurate_vblank_count(crtc), &crc); } static irqreturn_t ltdc_irq_thread(int irq, void *arg) { struct drm_device *ddev = arg; struct ltdc_device *ldev = ddev->dev_private; struct drm_crtc *crtc = drm_crtc_from_index(ddev, 0); /* Line IRQ : trigger the vblank event */ if (ldev->irq_status & ISR_LIF) { drm_crtc_handle_vblank(crtc); /* Early return if CRC is not active */ if (ldev->crc_active) ltdc_irq_crc_handle(ldev, crtc); } mutex_lock(&ldev->err_lock); if (ldev->irq_status & ISR_TERRIF) ldev->transfer_err++; if (ldev->irq_status & ISR_FUEIF) ldev->fifo_err++; if (ldev->irq_status & ISR_FUWIF) ldev->fifo_warn++; mutex_unlock(&ldev->err_lock); return IRQ_HANDLED; } static irqreturn_t ltdc_irq(int irq, void *arg) { struct drm_device *ddev = arg; struct ltdc_device *ldev = ddev->dev_private; /* * Read & Clear the interrupt status * In order to write / read registers in this critical section * very quickly, the regmap functions are not used. */ ldev->irq_status = readl_relaxed(ldev->regs + LTDC_ISR); writel_relaxed(ldev->irq_status, ldev->regs + LTDC_ICR); return IRQ_WAKE_THREAD; } /* * DRM_CRTC */ static void ltdc_crtc_update_clut(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_color_lut *lut; u32 val; int i; if (!crtc->state->color_mgmt_changed || !crtc->state->gamma_lut) return; lut = (struct drm_color_lut *)crtc->state->gamma_lut->data; for (i = 0; i < CLUT_SIZE; i++, lut++) { val = ((lut->red << 8) & 0xff0000) | (lut->green & 0xff00) | (lut->blue >> 8) | (i << 24); regmap_write(ldev->regmap, LTDC_L1CLUTWR, val); } } static void ltdc_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; DRM_DEBUG_DRIVER("\n"); pm_runtime_get_sync(ddev->dev); /* Sets the background color value */ regmap_write(ldev->regmap, LTDC_BCCR, BCCR_BCBLACK); /* Enable IRQ */ regmap_set_bits(ldev->regmap, LTDC_IER, IER_FUWIE | IER_FUEIE | IER_RRIE | IER_TERRIE); /* Commit shadow registers = update planes at next vblank */ if (!ldev->caps.plane_reg_shadow) regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_VBR); drm_crtc_vblank_on(crtc); } static void ltdc_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; int layer_index = 0; DRM_DEBUG_DRIVER("\n"); drm_crtc_vblank_off(crtc); /* Disable all layers */ for (layer_index = 0; layer_index < ldev->caps.nb_layers; layer_index++) regmap_write_bits(ldev->regmap, LTDC_L1CR + layer_index * LAY_OFS, LXCR_CLUTEN | LXCR_LEN, 0); /* disable IRQ */ regmap_clear_bits(ldev->regmap, LTDC_IER, IER_FUWIE | IER_FUEIE | IER_RRIE | IER_TERRIE); /* immediately commit disable of layers before switching off LTDC */ if (!ldev->caps.plane_reg_shadow) regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_IMR); pm_runtime_put_sync(ddev->dev); /* clear interrupt error counters */ mutex_lock(&ldev->err_lock); ldev->transfer_err = 0; ldev->fifo_err = 0; ldev->fifo_warn = 0; mutex_unlock(&ldev->err_lock); } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status ltdc_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; result = clk_round_rate(ldev->pixel_clk, target); DRM_DEBUG_DRIVER("clk rate target %d, available %d\n", target, result); /* Filter modes according to the max frequency supported by the pads */ if (result > ldev->caps.pad_max_freq_hz) return MODE_CLOCK_HIGH; /* * Accept all "preferred" modes: * - this is important for panels because panel clock tolerances are * bigger than hdmi ones and there is no reason to not accept them * (the fps may vary a little but it is not a problem). * - the hdmi preferred mode will be accepted too, but userland will * be able to use others hdmi "valid" modes if necessary. */ if (mode->type & DRM_MODE_TYPE_PREFERRED) return MODE_OK; /* * Filter modes according to the clock value, particularly useful for * hdmi modes that require precise pixel clocks. */ if (result < target_min || result > target_max) return MODE_CLOCK_RANGE; return MODE_OK; } static bool ltdc_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); int rate = mode->clock * 1000; if (clk_set_rate(ldev->pixel_clk, rate) < 0) { DRM_ERROR("Cannot set rate (%dHz) for pixel clk\n", rate); return false; } adjusted_mode->clock = clk_get_rate(ldev->pixel_clk) / 1000; DRM_DEBUG_DRIVER("requested clock %dkHz, adjusted clock %dkHz\n", mode->clock, adjusted_mode->clock); return true; } static void ltdc_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; struct drm_connector_list_iter iter; struct drm_connector *connector = NULL; struct drm_encoder *encoder = NULL, *en_iter; struct drm_bridge *bridge = NULL, *br_iter; struct drm_display_mode *mode = &crtc->state->adjusted_mode; u32 hsync, vsync, accum_hbp, accum_vbp, accum_act_w, accum_act_h; u32 total_width, total_height; u32 bus_formats = MEDIA_BUS_FMT_RGB888_1X24; u32 bus_flags = 0; u32 val; int ret; /* get encoder from crtc */ drm_for_each_encoder(en_iter, ddev) if (en_iter->crtc == crtc) { encoder = en_iter; break; } if (encoder) { /* get bridge from encoder */ list_for_each_entry(br_iter, &encoder->bridge_chain, chain_node) if (br_iter->encoder == encoder) { bridge = br_iter; break; } /* Get the connector from encoder */ drm_connector_list_iter_begin(ddev, &iter); drm_for_each_connector_iter(connector, &iter) if (connector->encoder == encoder) break; drm_connector_list_iter_end(&iter); } if (bridge && bridge->timings) { bus_flags = bridge->timings->input_bus_flags; } else if (connector) { bus_flags = connector->display_info.bus_flags; if (connector->display_info.num_bus_formats) bus_formats = connector->display_info.bus_formats[0]; } if (!pm_runtime_active(ddev->dev)) { ret = pm_runtime_get_sync(ddev->dev); if (ret) { DRM_ERROR("Failed to set mode, cannot get sync\n"); return; } } DRM_DEBUG_DRIVER("CRTC:%d mode:%s\n", crtc->base.id, mode->name); DRM_DEBUG_DRIVER("Video mode: %dx%d", mode->hdisplay, mode->vdisplay); DRM_DEBUG_DRIVER(" hfp %d hbp %d hsl %d vfp %d vbp %d vsl %d\n", mode->hsync_start - mode->hdisplay, mode->htotal - mode->hsync_end, mode->hsync_end - mode->hsync_start, mode->vsync_start - mode->vdisplay, mode->vtotal - mode->vsync_end, mode->vsync_end - mode->vsync_start); /* Convert video timings to ltdc timings */ hsync = mode->hsync_end - mode->hsync_start - 1; vsync = mode->vsync_end - mode->vsync_start - 1; accum_hbp = mode->htotal - mode->hsync_start - 1; accum_vbp = mode->vtotal - mode->vsync_start - 1; accum_act_w = accum_hbp + mode->hdisplay; accum_act_h = accum_vbp + mode->vdisplay; total_width = mode->htotal - 1; total_height = mode->vtotal - 1; /* Configures the HS, VS, DE and PC polarities. Default Active Low */ val = 0; if (mode->flags & DRM_MODE_FLAG_PHSYNC) val |= GCR_HSPOL; if (mode->flags & DRM_MODE_FLAG_PVSYNC) val |= GCR_VSPOL; if (bus_flags & DRM_BUS_FLAG_DE_LOW) val |= GCR_DEPOL; if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE) val |= GCR_PCPOL; regmap_update_bits(ldev->regmap, LTDC_GCR, GCR_HSPOL | GCR_VSPOL | GCR_DEPOL | GCR_PCPOL, val); /* Set Synchronization size */ val = (hsync << 16) | vsync; regmap_update_bits(ldev->regmap, LTDC_SSCR, SSCR_VSH | SSCR_HSW, val); /* Set Accumulated Back porch */ val = (accum_hbp << 16) | accum_vbp; regmap_update_bits(ldev->regmap, LTDC_BPCR, BPCR_AVBP | BPCR_AHBP, val); /* Set Accumulated Active Width */ val = (accum_act_w << 16) | accum_act_h; regmap_update_bits(ldev->regmap, LTDC_AWCR, AWCR_AAW | AWCR_AAH, val); /* Set total width & height */ val = (total_width << 16) | total_height; regmap_update_bits(ldev->regmap, LTDC_TWCR, TWCR_TOTALH | TWCR_TOTALW, val); regmap_write(ldev->regmap, LTDC_LIPCR, (accum_act_h + 1)); /* Configure the output format (hw version dependent) */ if (ldev->caps.ycbcr_output) { /* Input video dynamic_range & colorimetry */ int vic = drm_match_cea_mode(mode); u32 val; if (vic == 6 || vic == 7 || vic == 21 || vic == 22 || vic == 2 || vic == 3 || vic == 17 || vic == 18) /* ITU-R BT.601 */ val = 0; else /* ITU-R BT.709 */ val = EDCR_OCYSEL; switch (bus_formats) { case MEDIA_BUS_FMT_YUYV8_1X16: /* enable ycbcr output converter */ regmap_write(ldev->regmap, LTDC_EDCR, EDCR_OCYEN | val); break; case MEDIA_BUS_FMT_YVYU8_1X16: /* enable ycbcr output converter & invert chrominance order */ regmap_write(ldev->regmap, LTDC_EDCR, EDCR_OCYEN | EDCR_OCYCO | val); break; default: /* disable ycbcr output converter */ regmap_write(ldev->regmap, LTDC_EDCR, 0); break; } } } static void ltdc_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; struct drm_pending_vblank_event *event = crtc->state->event; DRM_DEBUG_ATOMIC("\n"); ltdc_crtc_update_clut(crtc); /* Commit shadow registers = update planes at next vblank */ if (!ldev->caps.plane_reg_shadow) regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_VBR); if (event) { crtc->state->event = NULL; spin_lock_irq(&ddev->event_lock); if (drm_crtc_vblank_get(crtc) == 0) drm_crtc_arm_vblank_event(crtc, event); else drm_crtc_send_vblank_event(crtc, event); spin_unlock_irq(&ddev->event_lock); } } static bool ltdc_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_device *ddev = crtc->dev; struct ltdc_device *ldev = ddev->dev_private; int line, vactive_start, vactive_end, vtotal; if (stime) *stime = ktime_get(); /* The active area starts after vsync + front porch and ends * at vsync + front porc + display size. * The total height also include back porch. * We have 3 possible cases to handle: * - line < vactive_start: vpos = line - vactive_start and will be * negative * - vactive_start < line < vactive_end: vpos = line - vactive_start * and will be positive * - line > vactive_end: vpos = line - vtotal - vactive_start * and will negative * * Computation for the two first cases are identical so we can * simplify the code and only test if line > vactive_end */ if (pm_runtime_active(ddev->dev)) { regmap_read(ldev->regmap, LTDC_CPSR, &line); line &= CPSR_CYPOS; regmap_read(ldev->regmap, LTDC_BPCR, &vactive_start); vactive_start &= BPCR_AVBP; regmap_read(ldev->regmap, LTDC_AWCR, &vactive_end); vactive_end &= AWCR_AAH; regmap_read(ldev->regmap, LTDC_TWCR, &vtotal); vtotal &= TWCR_TOTALH; if (line > vactive_end) *vpos = line - vtotal - vactive_start; else *vpos = line - vactive_start; } else { *vpos = 0; } *hpos = 0; if (etime) *etime = ktime_get(); return true; } static const struct drm_crtc_helper_funcs ltdc_crtc_helper_funcs = { .mode_valid = ltdc_crtc_mode_valid, .mode_fixup = ltdc_crtc_mode_fixup, .mode_set_nofb = ltdc_crtc_mode_set_nofb, .atomic_flush = ltdc_crtc_atomic_flush, .atomic_enable = ltdc_crtc_atomic_enable, .atomic_disable = ltdc_crtc_atomic_disable, .get_scanout_position = ltdc_crtc_get_scanout_position, }; static int ltdc_crtc_enable_vblank(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_crtc_state *state = crtc->state; DRM_DEBUG_DRIVER("\n"); if (state->enable) regmap_set_bits(ldev->regmap, LTDC_IER, IER_LIE); else return -EPERM; return 0; } static void ltdc_crtc_disable_vblank(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); DRM_DEBUG_DRIVER("\n"); regmap_clear_bits(ldev->regmap, LTDC_IER, IER_LIE); } static int ltdc_crtc_set_crc_source(struct drm_crtc *crtc, const char *source) { struct ltdc_device *ldev; int ret; DRM_DEBUG_DRIVER("\n"); if (!crtc) return -ENODEV; ldev = crtc_to_ltdc(crtc); if (source && strcmp(source, "auto") == 0) { ldev->crc_active = true; ret = regmap_set_bits(ldev->regmap, LTDC_GCR, GCR_CRCEN); } else if (!source) { ldev->crc_active = false; ret = regmap_clear_bits(ldev->regmap, LTDC_GCR, GCR_CRCEN); } else { ret = -EINVAL; } ldev->crc_skip_count = 0; return ret; } static int ltdc_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source, size_t *values_cnt) { DRM_DEBUG_DRIVER("\n"); if (!crtc) return -ENODEV; if (source && strcmp(source, "auto") != 0) { DRM_DEBUG_DRIVER("Unknown CRC source %s for %s\n", source, crtc->name); return -EINVAL; } *values_cnt = 1; return 0; } static void ltdc_crtc_atomic_print_state(struct drm_printer *p, const struct drm_crtc_state *state) { struct drm_crtc *crtc = state->crtc; struct ltdc_device *ldev = crtc_to_ltdc(crtc); drm_printf(p, "\ttransfer_error=%d\n", ldev->transfer_err); drm_printf(p, "\tfifo_underrun_error=%d\n", ldev->fifo_err); drm_printf(p, "\tfifo_underrun_warning=%d\n", ldev->fifo_warn); drm_printf(p, "\tfifo_underrun_threshold=%d\n", ldev->fifo_threshold); } static const struct drm_crtc_funcs ltdc_crtc_funcs = { .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .enable_vblank = ltdc_crtc_enable_vblank, .disable_vblank = ltdc_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .atomic_print_state = ltdc_crtc_atomic_print_state, }; static const struct drm_crtc_funcs ltdc_crtc_with_crc_support_funcs = { .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .enable_vblank = ltdc_crtc_enable_vblank, .disable_vblank = ltdc_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .set_crc_source = ltdc_crtc_set_crc_source, .verify_crc_source = ltdc_crtc_verify_crc_source, .atomic_print_state = ltdc_crtc_atomic_print_state, }; /* * DRM_PLANE */ static int ltdc_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_framebuffer *fb = new_plane_state->fb; u32 src_w, src_h; DRM_DEBUG_DRIVER("\n"); if (!fb) return 0; /* convert src_ from 16:16 format */ src_w = new_plane_state->src_w >> 16; src_h = new_plane_state->src_h >> 16; /* Reject scaling */ if (src_w != new_plane_state->crtc_w || src_h != new_plane_state->crtc_h) { DRM_DEBUG_DRIVER("Scaling is not supported"); return -EINVAL; } return 0; } static void ltdc_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct ltdc_device *ldev = plane_to_ltdc(plane); struct drm_plane_state *newstate = drm_atomic_get_new_plane_state(state, plane); struct drm_framebuffer *fb = newstate->fb; u32 lofs = plane->index * LAY_OFS; u32 x0 = newstate->crtc_x; u32 x1 = newstate->crtc_x + newstate->crtc_w - 1; u32 y0 = newstate->crtc_y; u32 y1 = newstate->crtc_y + newstate->crtc_h - 1; u32 src_x, src_y, src_w, src_h; u32 val, pitch_in_bytes, line_length, line_number, ahbp, avbp, bpcr; u32 paddr, paddr1, paddr2; enum ltdc_pix_fmt pf; if (!newstate->crtc || !fb) { DRM_DEBUG_DRIVER("fb or crtc NULL"); return; } /* convert src_ from 16:16 format */ src_x = newstate->src_x >> 16; src_y = newstate->src_y >> 16; src_w = newstate->src_w >> 16; src_h = newstate->src_h >> 16; DRM_DEBUG_DRIVER("plane:%d fb:%d (%dx%d)@(%d,%d) -> (%dx%d)@(%d,%d)\n", plane->base.id, fb->base.id, src_w, src_h, src_x, src_y, newstate->crtc_w, newstate->crtc_h, newstate->crtc_x, newstate->crtc_y); regmap_read(ldev->regmap, LTDC_BPCR, &bpcr); ahbp = (bpcr & BPCR_AHBP) >> 16; avbp = bpcr & BPCR_AVBP; /* Configures the horizontal start and stop position */ val = ((x1 + 1 + ahbp) << 16) + (x0 + 1 + ahbp); regmap_write_bits(ldev->regmap, LTDC_L1WHPCR + lofs, LXWHPCR_WHSTPOS | LXWHPCR_WHSPPOS, val); /* Configures the vertical start and stop position */ val = ((y1 + 1 + avbp) << 16) + (y0 + 1 + avbp); regmap_write_bits(ldev->regmap, LTDC_L1WVPCR + lofs, LXWVPCR_WVSTPOS | LXWVPCR_WVSPPOS, val); /* Specifies the pixel format */ pf = to_ltdc_pixelformat(fb->format->format); for (val = 0; val < NB_PF; val++) if (ldev->caps.pix_fmt_hw[val] == pf) break; /* Use the flexible color format feature if necessary and available */ if (ldev->caps.pix_fmt_flex && val == NB_PF) val = ltdc_set_flexible_pixel_format(plane, pf); if (val == NB_PF) { DRM_ERROR("Pixel format %.4s not supported\n", (char *)&fb->format->format); val = 0; /* set by default ARGB 32 bits */ } regmap_write_bits(ldev->regmap, LTDC_L1PFCR + lofs, LXPFCR_PF, val); /* Specifies the constant alpha value */ val = newstate->alpha >> 8; regmap_write_bits(ldev->regmap, LTDC_L1CACR + lofs, LXCACR_CONSTA, val); /* Specifies the blending factors */ val = BF1_PAXCA | BF2_1PAXCA; if (!fb->format->has_alpha) val = BF1_CA | BF2_1CA; /* Manage hw-specific capabilities */ if (ldev->caps.non_alpha_only_l1 && plane->type != DRM_PLANE_TYPE_PRIMARY) val = BF1_PAXCA | BF2_1PAXCA; if (ldev->caps.dynamic_zorder) { val |= (newstate->normalized_zpos << 16); regmap_write_bits(ldev->regmap, LTDC_L1BFCR + lofs, LXBFCR_BF2 | LXBFCR_BF1 | LXBFCR_BOR, val); } else { regmap_write_bits(ldev->regmap, LTDC_L1BFCR + lofs, LXBFCR_BF2 | LXBFCR_BF1, val); } /* Sets the FB address */ paddr = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 0); if (newstate->rotation & DRM_MODE_REFLECT_X) paddr += (fb->format->cpp[0] * (x1 - x0 + 1)) - 1; if (newstate->rotation & DRM_MODE_REFLECT_Y) paddr += (fb->pitches[0] * (y1 - y0)); DRM_DEBUG_DRIVER("fb: phys 0x%08x", paddr); regmap_write(ldev->regmap, LTDC_L1CFBAR + lofs, paddr); /* Configures the color frame buffer pitch in bytes & line length */ line_length = fb->format->cpp[0] * (x1 - x0 + 1) + (ldev->caps.bus_width >> 3) - 1; if (newstate->rotation & DRM_MODE_REFLECT_Y) /* Compute negative value (signed on 16 bits) for the picth */ pitch_in_bytes = 0x10000 - fb->pitches[0]; else pitch_in_bytes = fb->pitches[0]; val = (pitch_in_bytes << 16) | line_length; regmap_write_bits(ldev->regmap, LTDC_L1CFBLR + lofs, LXCFBLR_CFBLL | LXCFBLR_CFBP, val); /* Configures the frame buffer line number */ line_number = y1 - y0 + 1; regmap_write_bits(ldev->regmap, LTDC_L1CFBLNR + lofs, LXCFBLNR_CFBLN, line_number); if (ldev->caps.ycbcr_input) { if (fb->format->is_yuv) { switch (fb->format->format) { case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: /* Configure the auxiliary frame buffer address 0 */ paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1); if (newstate->rotation & DRM_MODE_REFLECT_X) paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1; if (newstate->rotation & DRM_MODE_REFLECT_Y) paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1; regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1); break; case DRM_FORMAT_YUV420: /* Configure the auxiliary frame buffer address 0 & 1 */ paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1); paddr2 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 2); if (newstate->rotation & DRM_MODE_REFLECT_X) { paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1; paddr2 += ((fb->format->cpp[2] * (x1 - x0 + 1)) >> 1) - 1; } if (newstate->rotation & DRM_MODE_REFLECT_Y) { paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1; paddr2 += (fb->pitches[2] * (y1 - y0 - 1)) >> 1; } regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1); regmap_write(ldev->regmap, LTDC_L1AFBA1R + lofs, paddr2); break; case DRM_FORMAT_YVU420: /* Configure the auxiliary frame buffer address 0 & 1 */ paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 2); paddr2 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1); if (newstate->rotation & DRM_MODE_REFLECT_X) { paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1; paddr2 += ((fb->format->cpp[2] * (x1 - x0 + 1)) >> 1) - 1; } if (newstate->rotation & DRM_MODE_REFLECT_Y) { paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1; paddr2 += (fb->pitches[2] * (y1 - y0 - 1)) >> 1; } regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1); regmap_write(ldev->regmap, LTDC_L1AFBA1R + lofs, paddr2); break; } /* * Set the length and the number of lines of the auxiliary * buffers if the framebuffer contains more than one plane. */ if (fb->format->num_planes > 1) { if (newstate->rotation & DRM_MODE_REFLECT_Y) /* * Compute negative value (signed on 16 bits) * for the picth */ pitch_in_bytes = 0x10000 - fb->pitches[1]; else pitch_in_bytes = fb->pitches[1]; line_length = ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) + (ldev->caps.bus_width >> 3) - 1; /* Configure the auxiliary buffer length */ val = (pitch_in_bytes << 16) | line_length; regmap_write(ldev->regmap, LTDC_L1AFBLR + lofs, val); /* Configure the auxiliary frame buffer line number */ val = line_number >> 1; regmap_write(ldev->regmap, LTDC_L1AFBLNR + lofs, val); } /* Configure YCbC conversion coefficient */ ltdc_set_ycbcr_coeffs(plane); /* Configure YCbCr format and enable/disable conversion */ ltdc_set_ycbcr_config(plane, fb->format->format); } else { /* disable ycbcr conversion */ regmap_write(ldev->regmap, LTDC_L1PCR + lofs, 0); } } /* Enable layer and CLUT if needed */ val = fb->format->format == DRM_FORMAT_C8 ? LXCR_CLUTEN : 0; val |= LXCR_LEN; /* Enable horizontal mirroring if requested */ if (newstate->rotation & DRM_MODE_REFLECT_X) val |= LXCR_HMEN; regmap_write_bits(ldev->regmap, LTDC_L1CR + lofs, LXCR_LEN | LXCR_CLUTEN | LXCR_HMEN, val); /* Commit shadow registers = update plane at next vblank */ if (ldev->caps.plane_reg_shadow) regmap_write_bits(ldev->regmap, LTDC_L1RCR + lofs, LXRCR_IMR | LXRCR_VBR | LXRCR_GRMSK, LXRCR_VBR); ldev->plane_fpsi[plane->index].counter++; mutex_lock(&ldev->err_lock); if (ldev->transfer_err) { DRM_WARN("ltdc transfer error: %d\n", ldev->transfer_err); ldev->transfer_err = 0; } if (ldev->caps.fifo_threshold) { if (ldev->fifo_err) { DRM_WARN("ltdc fifo underrun: please verify display mode\n"); ldev->fifo_err = 0; } } else { if (ldev->fifo_warn >= ldev->fifo_threshold) { DRM_WARN("ltdc fifo underrun: please verify display mode\n"); ldev->fifo_warn = 0; } } mutex_unlock(&ldev->err_lock); } static void ltdc_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, plane); struct ltdc_device *ldev = plane_to_ltdc(plane); u32 lofs = plane->index * LAY_OFS; /* Disable layer */ regmap_write_bits(ldev->regmap, LTDC_L1CR + lofs, LXCR_LEN | LXCR_CLUTEN | LXCR_HMEN, 0); /* Commit shadow registers = update plane at next vblank */ if (ldev->caps.plane_reg_shadow) regmap_write_bits(ldev->regmap, LTDC_L1RCR + lofs, LXRCR_IMR | LXRCR_VBR | LXRCR_GRMSK, LXRCR_VBR); DRM_DEBUG_DRIVER("CRTC:%d plane:%d\n", oldstate->crtc->base.id, plane->base.id); } static void ltdc_plane_atomic_print_state(struct drm_printer *p, const struct drm_plane_state *state) { struct drm_plane *plane = state->plane; struct ltdc_device *ldev = plane_to_ltdc(plane); struct fps_info *fpsi = &ldev->plane_fpsi[plane->index]; int ms_since_last; ktime_t now; now = ktime_get(); ms_since_last = ktime_to_ms(ktime_sub(now, fpsi->last_timestamp)); drm_printf(p, "\tuser_updates=%dfps\n", DIV_ROUND_CLOSEST(fpsi->counter * 1000, ms_since_last)); fpsi->last_timestamp = now; fpsi->counter = 0; } static const struct drm_plane_funcs ltdc_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .atomic_print_state = ltdc_plane_atomic_print_state, }; static const struct drm_plane_helper_funcs ltdc_plane_helper_funcs = { .atomic_check = ltdc_plane_atomic_check, .atomic_update = ltdc_plane_atomic_update, .atomic_disable = ltdc_plane_atomic_disable, }; static struct drm_plane *ltdc_plane_create(struct drm_device *ddev, enum drm_plane_type type, int index) { unsigned long possible_crtcs = CRTC_MASK; struct ltdc_device *ldev = ddev->dev_private; struct device *dev = ddev->dev; struct drm_plane *plane; unsigned int i, nb_fmt = 0; u32 *formats; u32 drm_fmt; const u64 *modifiers = ltdc_format_modifiers; u32 lofs = index * LAY_OFS; u32 val; int ret; /* Allocate the biggest size according to supported color formats */ formats = devm_kzalloc(dev, (ldev->caps.pix_fmt_nb + ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp) + ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp) + ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp)) * sizeof(*formats), GFP_KERNEL); for (i = 0; i < ldev->caps.pix_fmt_nb; i++) { drm_fmt = ldev->caps.pix_fmt_drm[i]; /* Manage hw-specific capabilities */ if (ldev->caps.non_alpha_only_l1) /* XR24 & RX24 like formats supported only on primary layer */ if (type != DRM_PLANE_TYPE_PRIMARY && is_xrgb(drm_fmt)) continue; formats[nb_fmt++] = drm_fmt; } /* Add YCbCr supported pixel formats */ if (ldev->caps.ycbcr_input) { regmap_read(ldev->regmap, LTDC_L1C1R + lofs, &val); if (val & LXCR_C1R_YIA) { memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_cp, ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp) * sizeof(*formats)); nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp); } if (val & LXCR_C1R_YSPA) { memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_sp, ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp) * sizeof(*formats)); nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp); } if (val & LXCR_C1R_YFPA) { memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_fp, ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp) * sizeof(*formats)); nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp); } } plane = devm_kzalloc(dev, sizeof(*plane), GFP_KERNEL); if (!plane) return NULL; ret = drm_universal_plane_init(ddev, plane, possible_crtcs, <dc_plane_funcs, formats, nb_fmt, modifiers, type, NULL); if (ret < 0) return NULL; if (ldev->caps.ycbcr_input) { if (val & (LXCR_C1R_YIA | LXCR_C1R_YSPA | LXCR_C1R_YFPA)) drm_plane_create_color_properties(plane, BIT(DRM_COLOR_YCBCR_BT601) | BIT(DRM_COLOR_YCBCR_BT709), BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) | BIT(DRM_COLOR_YCBCR_FULL_RANGE), DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE); } drm_plane_helper_add(plane, <dc_plane_helper_funcs); drm_plane_create_alpha_property(plane); DRM_DEBUG_DRIVER("plane:%d created\n", plane->base.id); return plane; } static void ltdc_plane_destroy_all(struct drm_device *ddev) { struct drm_plane *plane, *plane_temp; list_for_each_entry_safe(plane, plane_temp, &ddev->mode_config.plane_list, head) drm_plane_cleanup(plane); } static int ltdc_crtc_init(struct drm_device *ddev, struct drm_crtc *crtc) { struct ltdc_device *ldev = ddev->dev_private; struct drm_plane *primary, *overlay; int supported_rotations = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; unsigned int i; int ret; primary = ltdc_plane_create(ddev, DRM_PLANE_TYPE_PRIMARY, 0); if (!primary) { DRM_ERROR("Can not create primary plane\n"); return -EINVAL; } if (ldev->caps.dynamic_zorder) drm_plane_create_zpos_property(primary, 0, 0, ldev->caps.nb_layers - 1); else drm_plane_create_zpos_immutable_property(primary, 0); if (ldev->caps.plane_rotation) drm_plane_create_rotation_property(primary, DRM_MODE_ROTATE_0, supported_rotations); /* Init CRTC according to its hardware features */ if (ldev->caps.crc) ret = drm_crtc_init_with_planes(ddev, crtc, primary, NULL, <dc_crtc_with_crc_support_funcs, NULL); else ret = drm_crtc_init_with_planes(ddev, crtc, primary, NULL, <dc_crtc_funcs, NULL); if (ret) { DRM_ERROR("Can not initialize CRTC\n"); goto cleanup; } drm_crtc_helper_add(crtc, <dc_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(crtc, CLUT_SIZE); drm_crtc_enable_color_mgmt(crtc, 0, false, CLUT_SIZE); DRM_DEBUG_DRIVER("CRTC:%d created\n", crtc->base.id); /* Add planes. Note : the first layer is used by primary plane */ for (i = 1; i < ldev->caps.nb_layers; i++) { overlay = ltdc_plane_create(ddev, DRM_PLANE_TYPE_OVERLAY, i); if (!overlay) { ret = -ENOMEM; DRM_ERROR("Can not create overlay plane %d\n", i); goto cleanup; } if (ldev->caps.dynamic_zorder) drm_plane_create_zpos_property(overlay, i, 0, ldev->caps.nb_layers - 1); else drm_plane_create_zpos_immutable_property(overlay, i); if (ldev->caps.plane_rotation) drm_plane_create_rotation_property(overlay, DRM_MODE_ROTATE_0, supported_rotations); } return 0; cleanup: ltdc_plane_destroy_all(ddev); return ret; } static void ltdc_encoder_disable(struct drm_encoder *encoder) { struct drm_device *ddev = encoder->dev; struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); /* Disable LTDC */ regmap_clear_bits(ldev->regmap, LTDC_GCR, GCR_LTDCEN); /* Set to sleep state the pinctrl whatever type of encoder */ pinctrl_pm_select_sleep_state(ddev->dev); } static void ltdc_encoder_enable(struct drm_encoder *encoder) { struct drm_device *ddev = encoder->dev; struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); /* set fifo underrun threshold register */ if (ldev->caps.fifo_threshold) regmap_write(ldev->regmap, LTDC_FUT, ldev->fifo_threshold); /* Enable LTDC */ regmap_set_bits(ldev->regmap, LTDC_GCR, GCR_LTDCEN); } static void ltdc_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *ddev = encoder->dev; DRM_DEBUG_DRIVER("\n"); /* * Set to default state the pinctrl only with DPI type. * Others types like DSI, don't need pinctrl due to * internal bridge (the signals do not come out of the chipset). */ if (encoder->encoder_type == DRM_MODE_ENCODER_DPI) pinctrl_pm_select_default_state(ddev->dev); } static const struct drm_encoder_helper_funcs ltdc_encoder_helper_funcs = { .disable = ltdc_encoder_disable, .enable = ltdc_encoder_enable, .mode_set = ltdc_encoder_mode_set, }; static int ltdc_encoder_init(struct drm_device *ddev, struct drm_bridge *bridge) { struct drm_encoder *encoder; int ret; encoder = devm_kzalloc(ddev->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; encoder->possible_crtcs = CRTC_MASK; encoder->possible_clones = 0; /* No cloning support */ drm_simple_encoder_init(ddev, encoder, DRM_MODE_ENCODER_DPI); drm_encoder_helper_add(encoder, <dc_encoder_helper_funcs); ret = drm_bridge_attach(encoder, bridge, NULL, 0); if (ret) { if (ret != -EPROBE_DEFER) drm_encoder_cleanup(encoder); return ret; } DRM_DEBUG_DRIVER("Bridge encoder:%d created\n", encoder->base.id); return 0; } static int ltdc_get_caps(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; u32 bus_width_log2, lcr, gc2r; /* * at least 1 layer must be managed & the number of layers * must not exceed LTDC_MAX_LAYER */ regmap_read(ldev->regmap, LTDC_LCR, &lcr); ldev->caps.nb_layers = clamp((int)lcr, 1, LTDC_MAX_LAYER); /* set data bus width */ regmap_read(ldev->regmap, LTDC_GC2R, &gc2r); bus_width_log2 = (gc2r & GC2R_BW) >> 4; ldev->caps.bus_width = 8 << bus_width_log2; regmap_read(ldev->regmap, LTDC_IDR, &ldev->caps.hw_version); switch (ldev->caps.hw_version) { case HWVER_10200: case HWVER_10300: ldev->caps.layer_ofs = LAY_OFS_0; ldev->caps.layer_regs = ltdc_layer_regs_a0; ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a0; ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a0; ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a0); ldev->caps.pix_fmt_flex = false; /* * Hw older versions support non-alpha color formats derived * from native alpha color formats only on the primary layer. * For instance, RG16 native format without alpha works fine * on 2nd layer but XR24 (derived color format from AR24) * does not work on 2nd layer. */ ldev->caps.non_alpha_only_l1 = true; ldev->caps.pad_max_freq_hz = 90000000; if (ldev->caps.hw_version == HWVER_10200) ldev->caps.pad_max_freq_hz = 65000000; ldev->caps.nb_irq = 2; ldev->caps.ycbcr_input = false; ldev->caps.ycbcr_output = false; ldev->caps.plane_reg_shadow = false; ldev->caps.crc = false; ldev->caps.dynamic_zorder = false; ldev->caps.plane_rotation = false; ldev->caps.fifo_threshold = false; break; case HWVER_20101: ldev->caps.layer_ofs = LAY_OFS_0; ldev->caps.layer_regs = ltdc_layer_regs_a1; ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a1; ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a1; ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a1); ldev->caps.pix_fmt_flex = false; ldev->caps.non_alpha_only_l1 = false; ldev->caps.pad_max_freq_hz = 150000000; ldev->caps.nb_irq = 4; ldev->caps.ycbcr_input = false; ldev->caps.ycbcr_output = false; ldev->caps.plane_reg_shadow = false; ldev->caps.crc = false; ldev->caps.dynamic_zorder = false; ldev->caps.plane_rotation = false; ldev->caps.fifo_threshold = false; break; case HWVER_40100: ldev->caps.layer_ofs = LAY_OFS_1; ldev->caps.layer_regs = ltdc_layer_regs_a2; ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a2; ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a2; ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a2); ldev->caps.pix_fmt_flex = true; ldev->caps.non_alpha_only_l1 = false; ldev->caps.pad_max_freq_hz = 90000000; ldev->caps.nb_irq = 2; ldev->caps.ycbcr_input = true; ldev->caps.ycbcr_output = true; ldev->caps.plane_reg_shadow = true; ldev->caps.crc = true; ldev->caps.dynamic_zorder = true; ldev->caps.plane_rotation = true; ldev->caps.fifo_threshold = true; break; default: return -ENODEV; } return 0; } void ltdc_suspend(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); clk_disable_unprepare(ldev->pixel_clk); } int ltdc_resume(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; int ret; DRM_DEBUG_DRIVER("\n"); ret = clk_prepare_enable(ldev->pixel_clk); if (ret) { DRM_ERROR("failed to enable pixel clock (%d)\n", ret); return ret; } return 0; } int ltdc_load(struct drm_device *ddev) { struct platform_device *pdev = to_platform_device(ddev->dev); struct ltdc_device *ldev = ddev->dev_private; struct device *dev = ddev->dev; struct device_node *np = dev->of_node; struct drm_bridge *bridge; struct drm_panel *panel; struct drm_crtc *crtc; struct reset_control *rstc; struct resource *res; int irq, i, nb_endpoints; int ret = -ENODEV; DRM_DEBUG_DRIVER("\n"); /* Get number of endpoints */ nb_endpoints = of_graph_get_endpoint_count(np); if (!nb_endpoints) return -ENODEV; ldev->pixel_clk = devm_clk_get(dev, "lcd"); if (IS_ERR(ldev->pixel_clk)) { if (PTR_ERR(ldev->pixel_clk) != -EPROBE_DEFER) DRM_ERROR("Unable to get lcd clock\n"); return PTR_ERR(ldev->pixel_clk); } if (clk_prepare_enable(ldev->pixel_clk)) { DRM_ERROR("Unable to prepare pixel clock\n"); return -ENODEV; } /* Get endpoints if any */ for (i = 0; i < nb_endpoints; i++) { ret = drm_of_find_panel_or_bridge(np, 0, i, &panel, &bridge); /* * If at least one endpoint is -ENODEV, continue probing, * else if at least one endpoint returned an error * (ie -EPROBE_DEFER) then stop probing. */ if (ret == -ENODEV) continue; else if (ret) goto err; if (panel) { bridge = drm_panel_bridge_add_typed(panel, DRM_MODE_CONNECTOR_DPI); if (IS_ERR(bridge)) { DRM_ERROR("panel-bridge endpoint %d\n", i); ret = PTR_ERR(bridge); goto err; } } if (bridge) { ret = ltdc_encoder_init(ddev, bridge); if (ret) { if (ret != -EPROBE_DEFER) DRM_ERROR("init encoder endpoint %d\n", i); goto err; } } } rstc = devm_reset_control_get_exclusive(dev, NULL); mutex_init(&ldev->err_lock); if (!IS_ERR(rstc)) { reset_control_assert(rstc); usleep_range(10, 20); reset_control_deassert(rstc); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ldev->regs = devm_ioremap_resource(dev, res); if (IS_ERR(ldev->regs)) { DRM_ERROR("Unable to get ltdc registers\n"); ret = PTR_ERR(ldev->regs); goto err; } ldev->regmap = devm_regmap_init_mmio(&pdev->dev, ldev->regs, &stm32_ltdc_regmap_cfg); if (IS_ERR(ldev->regmap)) { DRM_ERROR("Unable to regmap ltdc registers\n"); ret = PTR_ERR(ldev->regmap); goto err; } ret = ltdc_get_caps(ddev); if (ret) { DRM_ERROR("hardware identifier (0x%08x) not supported!\n", ldev->caps.hw_version); goto err; } /* Disable interrupts */ if (ldev->caps.fifo_threshold) regmap_clear_bits(ldev->regmap, LTDC_IER, IER_LIE | IER_RRIE | IER_FUWIE | IER_TERRIE); else regmap_clear_bits(ldev->regmap, LTDC_IER, IER_LIE | IER_RRIE | IER_FUWIE | IER_TERRIE | IER_FUEIE); DRM_DEBUG_DRIVER("ltdc hw version 0x%08x\n", ldev->caps.hw_version); /* initialize default value for fifo underrun threshold & clear interrupt error counters */ ldev->transfer_err = 0; ldev->fifo_err = 0; ldev->fifo_warn = 0; ldev->fifo_threshold = FUT_DFT; for (i = 0; i < ldev->caps.nb_irq; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err; } ret = devm_request_threaded_irq(dev, irq, ltdc_irq, ltdc_irq_thread, IRQF_ONESHOT, dev_name(dev), ddev); if (ret) { DRM_ERROR("Failed to register LTDC interrupt\n"); goto err; } } crtc = devm_kzalloc(dev, sizeof(*crtc), GFP_KERNEL); if (!crtc) { DRM_ERROR("Failed to allocate crtc\n"); ret = -ENOMEM; goto err; } ret = ltdc_crtc_init(ddev, crtc); if (ret) { DRM_ERROR("Failed to init crtc\n"); goto err; } ret = drm_vblank_init(ddev, NB_CRTC); if (ret) { DRM_ERROR("Failed calling drm_vblank_init()\n"); goto err; } clk_disable_unprepare(ldev->pixel_clk); pinctrl_pm_select_sleep_state(ddev->dev); pm_runtime_enable(ddev->dev); return 0; err: for (i = 0; i < nb_endpoints; i++) drm_of_panel_bridge_remove(ddev->dev->of_node, 0, i); clk_disable_unprepare(ldev->pixel_clk); return ret; } void ltdc_unload(struct drm_device *ddev) { struct device *dev = ddev->dev; int nb_endpoints, i; DRM_DEBUG_DRIVER("\n"); nb_endpoints = of_graph_get_endpoint_count(dev->of_node); for (i = 0; i < nb_endpoints; i++) drm_of_panel_bridge_remove(ddev->dev->of_node, 0, i); pm_runtime_disable(ddev->dev); } MODULE_AUTHOR("Philippe Cornu <philippe.cornu@st.com>"); MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>"); MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>"); MODULE_AUTHOR("Mickael Reulier <mickael.reulier@st.com>"); MODULE_DESCRIPTION("STMicroelectronics ST DRM LTDC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1