Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jakob Bornecrantz | 3467 | 27.49% | 26 | 12.75% |
Thomas Hellstrom | 2483 | 19.69% | 51 | 25.00% |
Sinclair Yeh | 1721 | 13.65% | 21 | 10.29% |
Deepak Rawat | 1511 | 11.98% | 18 | 8.82% |
Michael Banack | 1222 | 9.69% | 4 | 1.96% |
Martin Krastev | 1057 | 8.38% | 2 | 0.98% |
Zack Rusin | 568 | 4.50% | 20 | 9.80% |
Roland Scheidegger | 204 | 1.62% | 1 | 0.49% |
Daniel Vetter | 87 | 0.69% | 7 | 3.43% |
Ville Syrjälä | 74 | 0.59% | 14 | 6.86% |
Maxime Ripard | 70 | 0.56% | 7 | 3.43% |
Michel Dänzer | 48 | 0.38% | 3 | 1.47% |
Xi Wang | 20 | 0.16% | 1 | 0.49% |
Sam Ravnborg | 8 | 0.06% | 1 | 0.49% |
Joe Perches | 8 | 0.06% | 1 | 0.49% |
Thierry Reding | 6 | 0.05% | 2 | 0.98% |
Chris Wilson | 6 | 0.05% | 3 | 1.47% |
Maarten Lankhorst | 6 | 0.05% | 3 | 1.47% |
Sakari Ailus | 5 | 0.04% | 1 | 0.49% |
Bibby Hsieh | 5 | 0.04% | 1 | 0.49% |
Alexandru Gheorghe | 4 | 0.03% | 1 | 0.49% |
Thomas Zimmermann | 4 | 0.03% | 1 | 0.49% |
Christian König | 3 | 0.02% | 1 | 0.49% |
Keith Packard | 3 | 0.02% | 2 | 0.98% |
Alan Cox | 3 | 0.02% | 1 | 0.49% |
Rob Clark | 3 | 0.02% | 1 | 0.49% |
Christian Engelmayer | 2 | 0.02% | 1 | 0.49% |
Rashika Kheria | 2 | 0.02% | 1 | 0.49% |
Matt Roper | 2 | 0.02% | 1 | 0.49% |
Lee Jones | 2 | 0.02% | 1 | 0.49% |
Andrey Grodzovsky | 2 | 0.02% | 1 | 0.49% |
Laurent Pinchart | 1 | 0.01% | 1 | 0.49% |
Dave Airlie | 1 | 0.01% | 1 | 0.49% |
Thomas Wood | 1 | 0.01% | 1 | 0.49% |
Jesse Barnes | 1 | 0.01% | 1 | 0.49% |
Dirk Hohndel | 1 | 0.01% | 1 | 0.49% |
Total | 12611 | 204 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_kms.h" #include "vmwgfx_bo.h" #include "vmw_surface_cache.h" #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_damage_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_rect.h> #include <drm/drm_sysfs.h> void vmw_du_cleanup(struct vmw_display_unit *du) { struct vmw_private *dev_priv = vmw_priv(du->primary.dev); drm_plane_cleanup(&du->primary); if (vmw_cmd_supported(dev_priv)) drm_plane_cleanup(&du->cursor.base); drm_connector_unregister(&du->connector); drm_crtc_cleanup(&du->crtc); drm_encoder_cleanup(&du->encoder); drm_connector_cleanup(&du->connector); } /* * Display Unit Cursor functions */ static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps); static void vmw_cursor_update_mob(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY); struct vmw_svga_fifo_cmd_define_cursor { u32 cmd; SVGAFifoCmdDefineAlphaCursor cursor; }; /** * vmw_send_define_cursor_cmd - queue a define cursor command * @dev_priv: the private driver struct * @image: buffer which holds the cursor image * @width: width of the mouse cursor image * @height: height of the mouse cursor image * @hotspotX: the horizontal position of mouse hotspot * @hotspotY: the vertical position of mouse hotspot */ static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { struct vmw_svga_fifo_cmd_define_cursor *cmd; const u32 image_size = width * height * sizeof(*image); const u32 cmd_size = sizeof(*cmd) + image_size; /* Try to reserve fifocmd space and swallow any failures; such reservations cannot be left unconsumed for long under the risk of clogging other fifocmd users, so we treat reservations separtely from the way we treat other fallible KMS-atomic resources at prepare_fb */ cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); if (unlikely(!cmd)) return; memset(cmd, 0, sizeof(*cmd)); memcpy(&cmd[1], image, image_size); cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; cmd->cursor.id = 0; cmd->cursor.width = width; cmd->cursor.height = height; cmd->cursor.hotspotX = hotspotX; cmd->cursor.hotspotY = hotspotY; vmw_cmd_commit_flush(dev_priv, cmd_size); } /** * vmw_cursor_update_image - update the cursor image on the provided plane * @dev_priv: the private driver struct * @vps: the plane state of the cursor plane * @image: buffer which holds the cursor image * @width: width of the mouse cursor image * @height: height of the mouse cursor image * @hotspotX: the horizontal position of mouse hotspot * @hotspotY: the vertical position of mouse hotspot */ static void vmw_cursor_update_image(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { if (vps->cursor.bo) vmw_cursor_update_mob(dev_priv, vps, image, vps->base.crtc_w, vps->base.crtc_h, hotspotX, hotspotY); else vmw_send_define_cursor_cmd(dev_priv, image, width, height, hotspotX, hotspotY); } /** * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism * * Called from inside vmw_du_cursor_plane_atomic_update to actually * make the cursor-image live. * * @dev_priv: device to work with * @vps: the plane state of the cursor plane * @image: cursor source data to fill the MOB with * @width: source data width * @height: source data height * @hotspotX: cursor hotspot x * @hotspotY: cursor hotspot Y */ static void vmw_cursor_update_mob(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { SVGAGBCursorHeader *header; SVGAGBAlphaCursorHeader *alpha_header; const u32 image_size = width * height * sizeof(*image); header = vmw_bo_map_and_cache(vps->cursor.bo); alpha_header = &header->header.alphaHeader; memset(header, 0, sizeof(*header)); header->type = SVGA_ALPHA_CURSOR; header->sizeInBytes = image_size; alpha_header->hotspotX = hotspotX; alpha_header->hotspotY = hotspotY; alpha_header->width = width; alpha_header->height = height; memcpy(header + 1, image, image_size); vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID, vps->cursor.bo->tbo.resource->start); } static u32 vmw_du_cursor_mob_size(u32 w, u32 h) { return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader); } /** * vmw_du_cursor_plane_acquire_image -- Acquire the image data * @vps: cursor plane state */ static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps) { bool is_iomem; if (vps->surf) { if (vps->surf_mapped) return vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); return vps->surf->snooper.image; } else if (vps->bo) return ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem); return NULL; } static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps, struct vmw_plane_state *new_vps) { void *old_image; void *new_image; u32 size; bool changed; if (old_vps->base.crtc_w != new_vps->base.crtc_w || old_vps->base.crtc_h != new_vps->base.crtc_h) return true; if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x || old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y) return true; size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32); old_image = vmw_du_cursor_plane_acquire_image(old_vps); new_image = vmw_du_cursor_plane_acquire_image(new_vps); changed = false; if (old_image && new_image) changed = memcmp(old_image, new_image, size) != 0; return changed; } static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo) { if (!(*vbo)) return; ttm_bo_unpin(&(*vbo)->tbo); vmw_bo_unreference(vbo); } static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp, struct vmw_plane_state *vps) { u32 i; if (!vps->cursor.bo) return; vmw_du_cursor_plane_unmap_cm(vps); /* Look for a free slot to return this mob to the cache. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (!vcp->cursor_mobs[i]) { vcp->cursor_mobs[i] = vps->cursor.bo; vps->cursor.bo = NULL; return; } } /* Cache is full: See if this mob is bigger than an existing mob. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (vcp->cursor_mobs[i]->tbo.base.size < vps->cursor.bo->tbo.base.size) { vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); vcp->cursor_mobs[i] = vps->cursor.bo; vps->cursor.bo = NULL; return; } } /* Destroy it if it's not worth caching. */ vmw_du_destroy_cursor_mob(&vps->cursor.bo); } static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp, struct vmw_plane_state *vps) { struct vmw_private *dev_priv = vcp->base.dev->dev_private; u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); u32 i; u32 cursor_max_dim, mob_max_size; int ret; if (!dev_priv->has_mob || (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0) return -EINVAL; mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE); cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION); if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim || vps->base.crtc_h > cursor_max_dim) return -EINVAL; if (vps->cursor.bo) { if (vps->cursor.bo->tbo.base.size >= size) return 0; vmw_du_put_cursor_mob(vcp, vps); } /* Look for an unused mob in the cache. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (vcp->cursor_mobs[i] && vcp->cursor_mobs[i]->tbo.base.size >= size) { vps->cursor.bo = vcp->cursor_mobs[i]; vcp->cursor_mobs[i] = NULL; return 0; } } /* Create a new mob if we can't find an existing one. */ ret = vmw_bo_create_and_populate(dev_priv, size, VMW_BO_DOMAIN_MOB, &vps->cursor.bo); if (ret != 0) return ret; /* Fence the mob creation so we are guarateed to have the mob */ ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL); if (ret != 0) goto teardown; vmw_bo_fence_single(&vps->cursor.bo->tbo, NULL); ttm_bo_unreserve(&vps->cursor.bo->tbo); return 0; teardown: vmw_du_destroy_cursor_mob(&vps->cursor.bo); return ret; } static void vmw_cursor_update_position(struct vmw_private *dev_priv, bool show, int x, int y) { const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW : SVGA_CURSOR_ON_HIDE; uint32_t count; spin_lock(&dev_priv->cursor_lock); if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) { vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x); vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y); vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID); vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on); vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1); } else if (vmw_is_cursor_bypass3_enabled(dev_priv)) { vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); } else { vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on); } spin_unlock(&dev_priv->cursor_lock); } void vmw_kms_cursor_snoop(struct vmw_surface *srf, struct ttm_object_file *tfile, struct ttm_buffer_object *bo, SVGA3dCmdHeader *header) { struct ttm_bo_kmap_obj map; unsigned long kmap_offset; unsigned long kmap_num; SVGA3dCopyBox *box; unsigned box_count; void *virtual; bool is_iomem; struct vmw_dma_cmd { SVGA3dCmdHeader header; SVGA3dCmdSurfaceDMA dma; } *cmd; int i, ret; const struct SVGA3dSurfaceDesc *desc = vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT); const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock; cmd = container_of(header, struct vmw_dma_cmd, header); /* No snooper installed, nothing to copy */ if (!srf->snooper.image) return; if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { DRM_ERROR("face and mipmap for cursors should never != 0\n"); return; } if (cmd->header.size < 64) { DRM_ERROR("at least one full copy box must be given\n"); return; } box = (SVGA3dCopyBox *)&cmd[1]; box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / sizeof(SVGA3dCopyBox); if (cmd->dma.guest.ptr.offset % PAGE_SIZE || box->x != 0 || box->y != 0 || box->z != 0 || box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || box->d != 1 || box_count != 1 || box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) { /* TODO handle none page aligned offsets */ /* TODO handle more dst & src != 0 */ /* TODO handle more then one copy */ DRM_ERROR("Can't snoop dma request for cursor!\n"); DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", box->srcx, box->srcy, box->srcz, box->x, box->y, box->z, box->w, box->h, box->d, box_count, cmd->dma.guest.ptr.offset); return; } kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT; ret = ttm_bo_reserve(bo, true, false, NULL); if (unlikely(ret != 0)) { DRM_ERROR("reserve failed\n"); return; } ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); if (unlikely(ret != 0)) goto err_unreserve; virtual = ttm_kmap_obj_virtual(&map, &is_iomem); if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) { memcpy(srf->snooper.image, virtual, VMW_CURSOR_SNOOP_HEIGHT*image_pitch); } else { /* Image is unsigned pointer. */ for (i = 0; i < box->h; i++) memcpy(srf->snooper.image + i * image_pitch, virtual + i * cmd->dma.guest.pitch, box->w * desc->pitchBytesPerBlock); } srf->snooper.age++; ttm_bo_kunmap(&map); err_unreserve: ttm_bo_unreserve(bo); } /** * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots * * @dev_priv: Pointer to the device private struct. * * Clears all legacy hotspots. */ void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_crtc *crtc; drm_modeset_lock_all(dev); drm_for_each_crtc(crtc, dev) { du = vmw_crtc_to_du(crtc); du->hotspot_x = 0; du->hotspot_y = 0; } drm_modeset_unlock_all(dev); } void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_crtc *crtc; mutex_lock(&dev->mode_config.mutex); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { du = vmw_crtc_to_du(crtc); if (!du->cursor_surface || du->cursor_age == du->cursor_surface->snooper.age || !du->cursor_surface->snooper.image) continue; du->cursor_age = du->cursor_surface->snooper.age; vmw_send_define_cursor_cmd(dev_priv, du->cursor_surface->snooper.image, VMW_CURSOR_SNOOP_WIDTH, VMW_CURSOR_SNOOP_HEIGHT, du->hotspot_x + du->core_hotspot_x, du->hotspot_y + du->core_hotspot_y); } mutex_unlock(&dev->mode_config.mutex); } void vmw_du_cursor_plane_destroy(struct drm_plane *plane) { struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); u32 i; vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); drm_plane_cleanup(plane); } void vmw_du_primary_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); /* Planes are static in our case so we don't free it */ } /** * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface * * @vps: plane state associated with the display surface * @unreference: true if we also want to unreference the display. */ void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, bool unreference) { if (vps->surf) { if (vps->pinned) { vmw_resource_unpin(&vps->surf->res); vps->pinned--; } if (unreference) { if (vps->pinned) DRM_ERROR("Surface still pinned\n"); vmw_surface_unreference(&vps->surf); } } } /** * vmw_du_plane_cleanup_fb - Unpins the plane surface * * @plane: display plane * @old_state: Contains the FB to clean up * * Unpins the framebuffer surface * * Returns 0 on success */ void vmw_du_plane_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); vmw_du_plane_unpin_surf(vps, false); } /** * vmw_du_cursor_plane_map_cm - Maps the cursor mobs. * * @vps: plane_state * * Returns 0 on success */ static int vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps) { int ret; u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); struct ttm_buffer_object *bo; if (!vps->cursor.bo) return -EINVAL; bo = &vps->cursor.bo->tbo; if (bo->base.size < size) return -EINVAL; if (vps->cursor.bo->map.virtual) return 0; ret = ttm_bo_reserve(bo, false, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; vmw_bo_map_and_cache(vps->cursor.bo); ttm_bo_unreserve(bo); if (unlikely(ret != 0)) return -ENOMEM; return 0; } /** * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs. * * @vps: state of the cursor plane * * Returns 0 on success */ static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps) { int ret = 0; struct vmw_bo *vbo = vps->cursor.bo; if (!vbo || !vbo->map.virtual) return 0; ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL); if (likely(ret == 0)) { vmw_bo_unmap(vbo); ttm_bo_unreserve(&vbo->tbo); } return ret; } /** * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface * * @plane: cursor plane * @old_state: contains the state to clean up * * Unmaps all cursor bo mappings and unpins the cursor surface * * Returns 0 on success */ void vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); bool is_iomem; if (vps->surf_mapped) { vmw_bo_unmap(vps->surf->res.guest_memory_bo); vps->surf_mapped = false; } if (vps->bo && ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem)) { const int ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL); if (likely(ret == 0)) { ttm_bo_kunmap(&vps->bo->map); ttm_bo_unreserve(&vps->bo->tbo); } } vmw_du_cursor_plane_unmap_cm(vps); vmw_du_put_cursor_mob(vcp, vps); vmw_du_plane_unpin_surf(vps, false); if (vps->surf) { vmw_surface_unreference(&vps->surf); vps->surf = NULL; } if (vps->bo) { vmw_bo_unreference(&vps->bo); vps->bo = NULL; } } /** * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it * * @plane: display plane * @new_state: info on the new plane state, including the FB * * Returns 0 on success */ int vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct drm_framebuffer *fb = new_state->fb; struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); int ret = 0; if (vps->surf) { vmw_surface_unreference(&vps->surf); vps->surf = NULL; } if (vps->bo) { vmw_bo_unreference(&vps->bo); vps->bo = NULL; } if (fb) { if (vmw_framebuffer_to_vfb(fb)->bo) { vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; vmw_bo_reference(vps->bo); } else { vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; vmw_surface_reference(vps->surf); } } if (!vps->surf && vps->bo) { const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32); /* * Not using vmw_bo_map_and_cache() helper here as we need to * reserve the ttm_buffer_object first which * vmw_bo_map_and_cache() omits. */ ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; ret = ttm_bo_kmap(&vps->bo->tbo, 0, PFN_UP(size), &vps->bo->map); ttm_bo_unreserve(&vps->bo->tbo); if (unlikely(ret != 0)) return -ENOMEM; } else if (vps->surf && !vps->bo && vps->surf->res.guest_memory_bo) { WARN_ON(vps->surf->snooper.image); ret = ttm_bo_reserve(&vps->surf->res.guest_memory_bo->tbo, true, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); ttm_bo_unreserve(&vps->surf->res.guest_memory_bo->tbo); vps->surf_mapped = true; } if (vps->surf || vps->bo) { vmw_du_get_cursor_mob(vcp, vps); vmw_du_cursor_plane_map_cm(vps); } return 0; } void vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; struct vmw_private *dev_priv = vmw_priv(crtc->dev); struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state); s32 hotspot_x, hotspot_y; hotspot_x = du->hotspot_x; hotspot_y = du->hotspot_y; if (new_state->fb) { hotspot_x += new_state->fb->hot_x; hotspot_y += new_state->fb->hot_y; } du->cursor_surface = vps->surf; du->cursor_bo = vps->bo; if (!vps->surf && !vps->bo) { vmw_cursor_update_position(dev_priv, false, 0, 0); return; } vps->cursor.hotspot_x = hotspot_x; vps->cursor.hotspot_y = hotspot_y; if (vps->surf) { du->cursor_age = du->cursor_surface->snooper.age; } if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) { /* * If it hasn't changed, avoid making the device do extra * work by keeping the old cursor active. */ struct vmw_cursor_plane_state tmp = old_vps->cursor; old_vps->cursor = vps->cursor; vps->cursor = tmp; } else { void *image = vmw_du_cursor_plane_acquire_image(vps); if (image) vmw_cursor_update_image(dev_priv, vps, image, new_state->crtc_w, new_state->crtc_h, hotspot_x, hotspot_y); } du->cursor_x = new_state->crtc_x + du->set_gui_x; du->cursor_y = new_state->crtc_y + du->set_gui_y; vmw_cursor_update_position(dev_priv, true, du->cursor_x + hotspot_x, du->cursor_y + hotspot_y); du->core_hotspot_x = hotspot_x - du->hotspot_x; du->core_hotspot_y = hotspot_y - du->hotspot_y; } /** * vmw_du_primary_plane_atomic_check - check if the new state is okay * * @plane: display plane * @state: info on the new plane state, including the FB * * Check if the new state is settable given the current state. Other * than what the atomic helper checks, we care about crtc fitting * the FB and maintaining one active framebuffer. * * Returns 0 on success */ int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state = NULL; struct drm_framebuffer *new_fb = new_state->fb; int ret; if (new_state->crtc) crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, true); if (!ret && new_fb) { struct drm_crtc *crtc = new_state->crtc; struct vmw_display_unit *du = vmw_crtc_to_du(crtc); vmw_connector_state_to_vcs(du->connector.state); } return ret; } /** * vmw_du_cursor_plane_atomic_check - check if the new state is okay * * @plane: cursor plane * @state: info on the new plane state * * This is a chance to fail if the new cursor state does not fit * our requirements. * * Returns 0 on success */ int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); int ret = 0; struct drm_crtc_state *crtc_state = NULL; struct vmw_surface *surface = NULL; struct drm_framebuffer *fb = new_state->fb; if (new_state->crtc) crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc); ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); if (ret) return ret; /* Turning off */ if (!fb) return 0; /* A lot of the code assumes this */ if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", new_state->crtc_w, new_state->crtc_h); return -EINVAL; } if (!vmw_framebuffer_to_vfb(fb)->bo) { surface = vmw_framebuffer_to_vfbs(fb)->surface; WARN_ON(!surface); if (!surface || (!surface->snooper.image && !surface->res.guest_memory_bo)) { DRM_ERROR("surface not suitable for cursor\n"); return -EINVAL; } } return 0; } int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, crtc); struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); int connector_mask = drm_connector_mask(&du->connector); bool has_primary = new_state->plane_mask & drm_plane_mask(crtc->primary); /* We always want to have an active plane with an active CRTC */ if (has_primary != new_state->enable) return -EINVAL; if (new_state->connector_mask != connector_mask && new_state->connector_mask != 0) { DRM_ERROR("Invalid connectors configuration\n"); return -EINVAL; } /* * Our virtual device does not have a dot clock, so use the logical * clock value as the dot clock. */ if (new_state->mode.crtc_clock == 0) new_state->adjusted_mode.crtc_clock = new_state->mode.clock; return 0; } void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { } void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { } /** * vmw_du_crtc_duplicate_state - duplicate crtc state * @crtc: DRM crtc * * Allocates and returns a copy of the crtc state (both common and * vmw-specific) for the specified crtc. * * Returns: The newly allocated crtc state, or NULL on failure. */ struct drm_crtc_state * vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) { struct drm_crtc_state *state; struct vmw_crtc_state *vcs; if (WARN_ON(!crtc->state)) return NULL; vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); if (!vcs) return NULL; state = &vcs->base; __drm_atomic_helper_crtc_duplicate_state(crtc, state); return state; } /** * vmw_du_crtc_reset - creates a blank vmw crtc state * @crtc: DRM crtc * * Resets the atomic state for @crtc by freeing the state pointer (which * might be NULL, e.g. at driver load time) and allocating a new empty state * object. */ void vmw_du_crtc_reset(struct drm_crtc *crtc) { struct vmw_crtc_state *vcs; if (crtc->state) { __drm_atomic_helper_crtc_destroy_state(crtc->state); kfree(vmw_crtc_state_to_vcs(crtc->state)); } vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); if (!vcs) { DRM_ERROR("Cannot allocate vmw_crtc_state\n"); return; } __drm_atomic_helper_crtc_reset(crtc, &vcs->base); } /** * vmw_du_crtc_destroy_state - destroy crtc state * @crtc: DRM crtc * @state: state object to destroy * * Destroys the crtc state (both common and vmw-specific) for the * specified plane. */ void vmw_du_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { drm_atomic_helper_crtc_destroy_state(crtc, state); } /** * vmw_du_plane_duplicate_state - duplicate plane state * @plane: drm plane * * Allocates and returns a copy of the plane state (both common and * vmw-specific) for the specified plane. * * Returns: The newly allocated plane state, or NULL on failure. */ struct drm_plane_state * vmw_du_plane_duplicate_state(struct drm_plane *plane) { struct drm_plane_state *state; struct vmw_plane_state *vps; vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); if (!vps) return NULL; vps->pinned = 0; vps->cpp = 0; memset(&vps->cursor, 0, sizeof(vps->cursor)); /* Each ref counted resource needs to be acquired again */ if (vps->surf) (void) vmw_surface_reference(vps->surf); if (vps->bo) (void) vmw_bo_reference(vps->bo); state = &vps->base; __drm_atomic_helper_plane_duplicate_state(plane, state); return state; } /** * vmw_du_plane_reset - creates a blank vmw plane state * @plane: drm plane * * Resets the atomic state for @plane by freeing the state pointer (which might * be NULL, e.g. at driver load time) and allocating a new empty state object. */ void vmw_du_plane_reset(struct drm_plane *plane) { struct vmw_plane_state *vps; if (plane->state) vmw_du_plane_destroy_state(plane, plane->state); vps = kzalloc(sizeof(*vps), GFP_KERNEL); if (!vps) { DRM_ERROR("Cannot allocate vmw_plane_state\n"); return; } __drm_atomic_helper_plane_reset(plane, &vps->base); } /** * vmw_du_plane_destroy_state - destroy plane state * @plane: DRM plane * @state: state object to destroy * * Destroys the plane state (both common and vmw-specific) for the * specified plane. */ void vmw_du_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); /* Should have been freed by cleanup_fb */ if (vps->surf) vmw_surface_unreference(&vps->surf); if (vps->bo) vmw_bo_unreference(&vps->bo); drm_atomic_helper_plane_destroy_state(plane, state); } /** * vmw_du_connector_duplicate_state - duplicate connector state * @connector: DRM connector * * Allocates and returns a copy of the connector state (both common and * vmw-specific) for the specified connector. * * Returns: The newly allocated connector state, or NULL on failure. */ struct drm_connector_state * vmw_du_connector_duplicate_state(struct drm_connector *connector) { struct drm_connector_state *state; struct vmw_connector_state *vcs; if (WARN_ON(!connector->state)) return NULL; vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); if (!vcs) return NULL; state = &vcs->base; __drm_atomic_helper_connector_duplicate_state(connector, state); return state; } /** * vmw_du_connector_reset - creates a blank vmw connector state * @connector: DRM connector * * Resets the atomic state for @connector by freeing the state pointer (which * might be NULL, e.g. at driver load time) and allocating a new empty state * object. */ void vmw_du_connector_reset(struct drm_connector *connector) { struct vmw_connector_state *vcs; if (connector->state) { __drm_atomic_helper_connector_destroy_state(connector->state); kfree(vmw_connector_state_to_vcs(connector->state)); } vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); if (!vcs) { DRM_ERROR("Cannot allocate vmw_connector_state\n"); return; } __drm_atomic_helper_connector_reset(connector, &vcs->base); } /** * vmw_du_connector_destroy_state - destroy connector state * @connector: DRM connector * @state: state object to destroy * * Destroys the connector state (both common and vmw-specific) for the * specified plane. */ void vmw_du_connector_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { drm_atomic_helper_connector_destroy_state(connector, state); } /* * Generic framebuffer code */ /* * Surface framebuffer code */ static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) { struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(framebuffer); drm_framebuffer_cleanup(framebuffer); vmw_surface_unreference(&vfbs->surface); kfree(vfbs); } /** * vmw_kms_readback - Perform a readback from the screen system to * a buffer-object backed framebuffer. * * @dev_priv: Pointer to the device private structure. * @file_priv: Pointer to a struct drm_file identifying the caller. * Must be set to NULL if @user_fence_rep is NULL. * @vfb: Pointer to the buffer-object backed framebuffer. * @user_fence_rep: User-space provided structure for fence information. * Must be set to non-NULL if @file_priv is non-NULL. * @vclips: Array of clip rects. * @num_clips: Number of clip rects in @vclips. * * Returns 0 on success, negative error code on failure. -ERESTARTSYS if * interrupted. */ int vmw_kms_readback(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct drm_vmw_fence_rep __user *user_fence_rep, struct drm_vmw_rect *vclips, uint32_t num_clips) { switch (dev_priv->active_display_unit) { case vmw_du_screen_object: return vmw_kms_sou_readback(dev_priv, file_priv, vfb, user_fence_rep, vclips, num_clips, NULL); case vmw_du_screen_target: return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, user_fence_rep, NULL, vclips, num_clips, 1, NULL); default: WARN_ONCE(true, "Readback called with invalid display system.\n"); } return -ENOSYS; } static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { .destroy = vmw_framebuffer_surface_destroy, .dirty = drm_atomic_helper_dirtyfb, }; static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, struct vmw_surface *surface, struct vmw_framebuffer **out, const struct drm_mode_fb_cmd2 *mode_cmd, bool is_bo_proxy) { struct drm_device *dev = &dev_priv->drm; struct vmw_framebuffer_surface *vfbs; enum SVGA3dSurfaceFormat format; int ret; /* 3D is only supported on HWv8 and newer hosts */ if (dev_priv->active_display_unit == vmw_du_legacy) return -ENOSYS; /* * Sanity checks. */ if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { drm_dbg(&dev_priv->drm, "unsupported pixel format %p4cc / modifier 0x%llx\n", &mode_cmd->pixel_format, mode_cmd->modifier[0]); return -EINVAL; } /* Surface must be marked as a scanout. */ if (unlikely(!surface->metadata.scanout)) return -EINVAL; if (unlikely(surface->metadata.mip_levels[0] != 1 || surface->metadata.num_sizes != 1 || surface->metadata.base_size.width < mode_cmd->width || surface->metadata.base_size.height < mode_cmd->height || surface->metadata.base_size.depth != 1)) { DRM_ERROR("Incompatible surface dimensions " "for requested mode.\n"); return -EINVAL; } switch (mode_cmd->pixel_format) { case DRM_FORMAT_ARGB8888: format = SVGA3D_A8R8G8B8; break; case DRM_FORMAT_XRGB8888: format = SVGA3D_X8R8G8B8; break; case DRM_FORMAT_RGB565: format = SVGA3D_R5G6B5; break; case DRM_FORMAT_XRGB1555: format = SVGA3D_A1R5G5B5; break; default: DRM_ERROR("Invalid pixel format: %p4cc\n", &mode_cmd->pixel_format); return -EINVAL; } /* * For DX, surface format validation is done when surface->scanout * is set. */ if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { DRM_ERROR("Invalid surface format for requested mode.\n"); return -EINVAL; } vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); if (!vfbs) { ret = -ENOMEM; goto out_err1; } drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); vfbs->surface = vmw_surface_reference(surface); vfbs->base.user_handle = mode_cmd->handles[0]; vfbs->is_bo_proxy = is_bo_proxy; *out = &vfbs->base; ret = drm_framebuffer_init(dev, &vfbs->base.base, &vmw_framebuffer_surface_funcs); if (ret) goto out_err2; return 0; out_err2: vmw_surface_unreference(&surface); kfree(vfbs); out_err1: return ret; } /* * Buffer-object framebuffer code */ static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, struct drm_file *file_priv, unsigned int *handle) { struct vmw_framebuffer_bo *vfbd = vmw_framebuffer_to_vfbd(fb); return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); } static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) { struct vmw_framebuffer_bo *vfbd = vmw_framebuffer_to_vfbd(framebuffer); drm_framebuffer_cleanup(framebuffer); vmw_bo_unreference(&vfbd->buffer); kfree(vfbd); } static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { .create_handle = vmw_framebuffer_bo_create_handle, .destroy = vmw_framebuffer_bo_destroy, .dirty = drm_atomic_helper_dirtyfb, }; /** * vmw_create_bo_proxy - create a proxy surface for the buffer object * * @dev: DRM device * @mode_cmd: parameters for the new surface * @bo_mob: MOB backing the buffer object * @srf_out: newly created surface * * When the content FB is a buffer object, we create a surface as a proxy to the * same buffer. This way we can do a surface copy rather than a surface DMA. * This is a more efficient approach * * RETURNS: * 0 on success, error code otherwise */ static int vmw_create_bo_proxy(struct drm_device *dev, const struct drm_mode_fb_cmd2 *mode_cmd, struct vmw_bo *bo_mob, struct vmw_surface **srf_out) { struct vmw_surface_metadata metadata = {0}; uint32_t format; struct vmw_resource *res; unsigned int bytes_pp; int ret; switch (mode_cmd->pixel_format) { case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: format = SVGA3D_X8R8G8B8; bytes_pp = 4; break; case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB1555: format = SVGA3D_R5G6B5; bytes_pp = 2; break; case 8: format = SVGA3D_P8; bytes_pp = 1; break; default: DRM_ERROR("Invalid framebuffer format %p4cc\n", &mode_cmd->pixel_format); return -EINVAL; } metadata.format = format; metadata.mip_levels[0] = 1; metadata.num_sizes = 1; metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; metadata.base_size.height = mode_cmd->height; metadata.base_size.depth = 1; metadata.scanout = true; ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out); if (ret) { DRM_ERROR("Failed to allocate proxy content buffer\n"); return ret; } res = &(*srf_out)->res; /* Reserve and switch the backing mob. */ mutex_lock(&res->dev_priv->cmdbuf_mutex); (void) vmw_resource_reserve(res, false, true); vmw_bo_unreference(&res->guest_memory_bo); res->guest_memory_bo = vmw_bo_reference(bo_mob); res->guest_memory_offset = 0; vmw_resource_unreserve(res, false, false, false, NULL, 0); mutex_unlock(&res->dev_priv->cmdbuf_mutex); return 0; } static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, struct vmw_bo *bo, struct vmw_framebuffer **out, const struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_device *dev = &dev_priv->drm; struct vmw_framebuffer_bo *vfbd; unsigned int requested_size; int ret; requested_size = mode_cmd->height * mode_cmd->pitches[0]; if (unlikely(requested_size > bo->tbo.base.size)) { DRM_ERROR("Screen buffer object size is too small " "for requested mode.\n"); return -EINVAL; } if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { drm_dbg(&dev_priv->drm, "unsupported pixel format %p4cc / modifier 0x%llx\n", &mode_cmd->pixel_format, mode_cmd->modifier[0]); return -EINVAL; } vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); if (!vfbd) { ret = -ENOMEM; goto out_err1; } vfbd->base.base.obj[0] = &bo->tbo.base; drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); vfbd->base.bo = true; vfbd->buffer = vmw_bo_reference(bo); vfbd->base.user_handle = mode_cmd->handles[0]; *out = &vfbd->base; ret = drm_framebuffer_init(dev, &vfbd->base.base, &vmw_framebuffer_bo_funcs); if (ret) goto out_err2; return 0; out_err2: vmw_bo_unreference(&bo); kfree(vfbd); out_err1: return ret; } /** * vmw_kms_srf_ok - check if a surface can be created * * @dev_priv: Pointer to device private struct. * @width: requested width * @height: requested height * * Surfaces need to be less than texture size */ static bool vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) { if (width > dev_priv->texture_max_width || height > dev_priv->texture_max_height) return false; return true; } /** * vmw_kms_new_framebuffer - Create a new framebuffer. * * @dev_priv: Pointer to device private struct. * @bo: Pointer to buffer object to wrap the kms framebuffer around. * Either @bo or @surface must be NULL. * @surface: Pointer to a surface to wrap the kms framebuffer around. * Either @bo or @surface must be NULL. * @only_2d: No presents will occur to this buffer object based framebuffer. * This helps the code to do some important optimizations. * @mode_cmd: Frame-buffer metadata. */ struct vmw_framebuffer * vmw_kms_new_framebuffer(struct vmw_private *dev_priv, struct vmw_bo *bo, struct vmw_surface *surface, bool only_2d, const struct drm_mode_fb_cmd2 *mode_cmd) { struct vmw_framebuffer *vfb = NULL; bool is_bo_proxy = false; int ret; /* * We cannot use the SurfaceDMA command in an non-accelerated VM, * therefore, wrap the buffer object in a surface so we can use the * SurfaceCopy command. */ if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && bo && only_2d && mode_cmd->width > 64 && /* Don't create a proxy for cursor */ dev_priv->active_display_unit == vmw_du_screen_target) { ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd, bo, &surface); if (ret) return ERR_PTR(ret); is_bo_proxy = true; } /* Create the new framebuffer depending one what we have */ if (surface) { ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, mode_cmd, is_bo_proxy); /* * vmw_create_bo_proxy() adds a reference that is no longer * needed */ if (is_bo_proxy) vmw_surface_unreference(&surface); } else if (bo) { ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, mode_cmd); } else { BUG(); } if (ret) return ERR_PTR(ret); return vfb; } /* * Generic Kernel modesetting functions */ static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_framebuffer *vfb = NULL; struct vmw_surface *surface = NULL; struct vmw_bo *bo = NULL; int ret; /* returns either a bo or surface */ ret = vmw_user_lookup_handle(dev_priv, file_priv, mode_cmd->handles[0], &surface, &bo); if (ret) { DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", mode_cmd->handles[0], mode_cmd->handles[0]); goto err_out; } if (!bo && !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { DRM_ERROR("Surface size cannot exceed %dx%d\n", dev_priv->texture_max_width, dev_priv->texture_max_height); goto err_out; } vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, !(dev_priv->capabilities & SVGA_CAP_3D), mode_cmd); if (IS_ERR(vfb)) { ret = PTR_ERR(vfb); goto err_out; } err_out: /* vmw_user_lookup_handle takes one ref so does new_fb */ if (bo) vmw_user_bo_unref(bo); if (surface) vmw_surface_unreference(&surface); if (ret) { DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); return ERR_PTR(ret); } return &vfb->base; } /** * vmw_kms_check_display_memory - Validates display memory required for a * topology * @dev: DRM device * @num_rects: number of drm_rect in rects * @rects: array of drm_rect representing the topology to validate indexed by * crtc index. * * Returns: * 0 on success otherwise negative error code */ static int vmw_kms_check_display_memory(struct drm_device *dev, uint32_t num_rects, struct drm_rect *rects) { struct vmw_private *dev_priv = vmw_priv(dev); struct drm_rect bounding_box = {0}; u64 total_pixels = 0, pixel_mem, bb_mem; int i; for (i = 0; i < num_rects; i++) { /* * For STDU only individual screen (screen target) is limited by * SCREENTARGET_MAX_WIDTH/HEIGHT registers. */ if (dev_priv->active_display_unit == vmw_du_screen_target && (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { VMW_DEBUG_KMS("Screen size not supported.\n"); return -EINVAL; } /* Bounding box upper left is at (0,0). */ if (rects[i].x2 > bounding_box.x2) bounding_box.x2 = rects[i].x2; if (rects[i].y2 > bounding_box.y2) bounding_box.y2 = rects[i].y2; total_pixels += (u64) drm_rect_width(&rects[i]) * (u64) drm_rect_height(&rects[i]); } /* Virtual svga device primary limits are always in 32-bpp. */ pixel_mem = total_pixels * 4; /* * For HV10 and below prim_bb_mem is vram size. When * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is * limit on primary bounding box */ if (pixel_mem > dev_priv->max_primary_mem) { VMW_DEBUG_KMS("Combined output size too large.\n"); return -EINVAL; } /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ if (dev_priv->active_display_unit != vmw_du_screen_target || !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; if (bb_mem > dev_priv->max_primary_mem) { VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); return -EINVAL; } } return 0; } /** * vmw_crtc_state_and_lock - Return new or current crtc state with locked * crtc mutex * @state: The atomic state pointer containing the new atomic state * @crtc: The crtc * * This function returns the new crtc state if it's part of the state update. * Otherwise returns the current crtc state. It also makes sure that the * crtc mutex is locked. * * Returns: A valid crtc state pointer or NULL. It may also return a * pointer error, in particular -EDEADLK if locking needs to be rerun. */ static struct drm_crtc_state * vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_crtc_state *crtc_state; crtc_state = drm_atomic_get_new_crtc_state(state, crtc); if (crtc_state) { lockdep_assert_held(&crtc->mutex.mutex.base); } else { int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); if (ret != 0 && ret != -EALREADY) return ERR_PTR(ret); crtc_state = crtc->state; } return crtc_state; } /** * vmw_kms_check_implicit - Verify that all implicit display units scan out * from the same fb after the new state is committed. * @dev: The drm_device. * @state: The new state to be checked. * * Returns: * Zero on success, * -EINVAL on invalid state, * -EDEADLK if modeset locking needs to be rerun. */ static int vmw_kms_check_implicit(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_framebuffer *implicit_fb = NULL; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; struct drm_plane_state *plane_state; drm_for_each_crtc(crtc, dev) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); if (!du->is_implicit) continue; crtc_state = vmw_crtc_state_and_lock(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state || !crtc_state->enable) continue; /* * Can't move primary planes across crtcs, so this is OK. * It also means we don't need to take the plane mutex. */ plane_state = du->primary.state; if (plane_state->crtc != crtc) continue; if (!implicit_fb) implicit_fb = plane_state->fb; else if (implicit_fb != plane_state->fb) return -EINVAL; } return 0; } /** * vmw_kms_check_topology - Validates topology in drm_atomic_state * @dev: DRM device * @state: the driver state object * * Returns: * 0 on success otherwise negative error code */ static int vmw_kms_check_topology(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_rect *rects; struct drm_crtc *crtc; uint32_t i; int ret = 0; rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), GFP_KERNEL); if (!rects) return -ENOMEM; drm_for_each_crtc(crtc, dev) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct drm_crtc_state *crtc_state; i = drm_crtc_index(crtc); crtc_state = vmw_crtc_state_and_lock(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto clean; } if (!crtc_state) continue; if (crtc_state->enable) { rects[i].x1 = du->gui_x; rects[i].y1 = du->gui_y; rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; } else { rects[i].x1 = 0; rects[i].y1 = 0; rects[i].x2 = 0; rects[i].y2 = 0; } } /* Determine change to topology due to new atomic state */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct drm_connector *connector; struct drm_connector_state *conn_state; struct vmw_connector_state *vmw_conn_state; if (!du->pref_active && new_crtc_state->enable) { VMW_DEBUG_KMS("Enabling a disabled display unit\n"); ret = -EINVAL; goto clean; } /* * For vmwgfx each crtc has only one connector attached and it * is not changed so don't really need to check the * crtc->connector_mask and iterate over it. */ connector = &du->connector; conn_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); goto clean; } vmw_conn_state = vmw_connector_state_to_vcs(conn_state); vmw_conn_state->gui_x = du->gui_x; vmw_conn_state->gui_y = du->gui_y; } ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, rects); clean: kfree(rects); return ret; } /** * vmw_kms_atomic_check_modeset- validate state object for modeset changes * * @dev: DRM device * @state: the driver state object * * This is a simple wrapper around drm_atomic_helper_check_modeset() for * us to assign a value to mode->crtc_clock so that * drm_calc_timestamping_constants() won't throw an error message * * Returns: * Zero for success or -errno */ static int vmw_kms_atomic_check_modeset(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; bool need_modeset = false; int i, ret; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; ret = vmw_kms_check_implicit(dev, state); if (ret) { VMW_DEBUG_KMS("Invalid implicit state\n"); return ret; } for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (drm_atomic_crtc_needs_modeset(crtc_state)) need_modeset = true; } if (need_modeset) return vmw_kms_check_topology(dev, state); return ret; } static const struct drm_mode_config_funcs vmw_kms_funcs = { .fb_create = vmw_kms_fb_create, .atomic_check = vmw_kms_atomic_check_modeset, .atomic_commit = drm_atomic_helper_commit, }; static int vmw_kms_generic_present(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct vmw_surface *surface, uint32_t sid, int32_t destX, int32_t destY, struct drm_vmw_rect *clips, uint32_t num_clips) { return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, &surface->res, destX, destY, num_clips, 1, NULL, NULL); } int vmw_kms_present(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct vmw_surface *surface, uint32_t sid, int32_t destX, int32_t destY, struct drm_vmw_rect *clips, uint32_t num_clips) { int ret; switch (dev_priv->active_display_unit) { case vmw_du_screen_target: ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, &surface->res, destX, destY, num_clips, 1, NULL, NULL); break; case vmw_du_screen_object: ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, sid, destX, destY, clips, num_clips); break; default: WARN_ONCE(true, "Present called with invalid display system.\n"); ret = -ENOSYS; break; } if (ret) return ret; vmw_cmd_flush(dev_priv, false); return 0; } static void vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) { if (dev_priv->hotplug_mode_update_property) return; dev_priv->hotplug_mode_update_property = drm_property_create_range(&dev_priv->drm, DRM_MODE_PROP_IMMUTABLE, "hotplug_mode_update", 0, 1); } int vmw_kms_init(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; int ret; static const char *display_unit_names[] = { "Invalid", "Legacy", "Screen Object", "Screen Target", "Invalid (max)" }; drm_mode_config_init(dev); dev->mode_config.funcs = &vmw_kms_funcs; dev->mode_config.min_width = 1; dev->mode_config.min_height = 1; dev->mode_config.max_width = dev_priv->texture_max_width; dev->mode_config.max_height = dev_priv->texture_max_height; dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; drm_mode_create_suggested_offset_properties(dev); vmw_kms_create_hotplug_mode_update_property(dev_priv); ret = vmw_kms_stdu_init_display(dev_priv); if (ret) { ret = vmw_kms_sou_init_display(dev_priv); if (ret) /* Fallback */ ret = vmw_kms_ldu_init_display(dev_priv); } BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); drm_info(&dev_priv->drm, "%s display unit initialized\n", display_unit_names[dev_priv->active_display_unit]); return ret; } int vmw_kms_close(struct vmw_private *dev_priv) { int ret = 0; /* * Docs says we should take the lock before calling this function * but since it destroys encoders and our destructor calls * drm_encoder_cleanup which takes the lock we deadlock. */ drm_mode_config_cleanup(&dev_priv->drm); if (dev_priv->active_display_unit == vmw_du_legacy) ret = vmw_kms_ldu_close_display(dev_priv); return ret; } int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_cursor_bypass_arg *arg = data; struct vmw_display_unit *du; struct drm_crtc *crtc; int ret = 0; mutex_lock(&dev->mode_config.mutex); if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { du = vmw_crtc_to_du(crtc); du->hotspot_x = arg->xhot; du->hotspot_y = arg->yhot; } mutex_unlock(&dev->mode_config.mutex); return 0; } crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); if (!crtc) { ret = -ENOENT; goto out; } du = vmw_crtc_to_du(crtc); du->hotspot_x = arg->xhot; du->hotspot_y = arg->yhot; out: mutex_unlock(&dev->mode_config.mutex); return ret; } int vmw_kms_write_svga(struct vmw_private *vmw_priv, unsigned width, unsigned height, unsigned pitch, unsigned bpp, unsigned depth) { if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); else if (vmw_fifo_have_pitchlock(vmw_priv)) vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); vmw_write(vmw_priv, SVGA_REG_WIDTH, width); vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); return -EINVAL; } return 0; } bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, uint32_t pitch, uint32_t height) { return ((u64) pitch * (u64) height) < (u64) ((dev_priv->active_display_unit == vmw_du_screen_target) ? dev_priv->max_primary_mem : dev_priv->vram_size); } /** * vmw_du_update_layout - Update the display unit with topology from resolution * plugin and generate DRM uevent * @dev_priv: device private * @num_rects: number of drm_rect in rects * @rects: toplogy to update */ static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned int num_rects, struct drm_rect *rects) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_connector *con; struct drm_connector_list_iter conn_iter; struct drm_modeset_acquire_ctx ctx; struct drm_crtc *crtc; int ret; /* Currently gui_x/y is protected with the crtc mutex */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(&ctx, 0); retry: drm_for_each_crtc(crtc, dev) { ret = drm_modeset_lock(&crtc->mutex, &ctx); if (ret < 0) { if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } goto out_fini; } } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(con, &conn_iter) { du = vmw_connector_to_du(con); if (num_rects > du->unit) { du->pref_width = drm_rect_width(&rects[du->unit]); du->pref_height = drm_rect_height(&rects[du->unit]); du->pref_active = true; du->gui_x = rects[du->unit].x1; du->gui_y = rects[du->unit].y1; } else { du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; du->pref_active = false; du->gui_x = 0; du->gui_y = 0; } } drm_connector_list_iter_end(&conn_iter); list_for_each_entry(con, &dev->mode_config.connector_list, head) { du = vmw_connector_to_du(con); if (num_rects > du->unit) { drm_object_property_set_value (&con->base, dev->mode_config.suggested_x_property, du->gui_x); drm_object_property_set_value (&con->base, dev->mode_config.suggested_y_property, du->gui_y); } else { drm_object_property_set_value (&con->base, dev->mode_config.suggested_x_property, 0); drm_object_property_set_value (&con->base, dev->mode_config.suggested_y_property, 0); } con->status = vmw_du_connector_detect(con, true); } out_fini: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); mutex_unlock(&dev->mode_config.mutex); drm_sysfs_hotplug_event(dev); return 0; } int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size, struct drm_modeset_acquire_ctx *ctx) { struct vmw_private *dev_priv = vmw_priv(crtc->dev); int i; for (i = 0; i < size; i++) { DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, r[i], g[i], b[i]); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); } return 0; } int vmw_du_connector_dpms(struct drm_connector *connector, int mode) { return 0; } enum drm_connector_status vmw_du_connector_detect(struct drm_connector *connector, bool force) { uint32_t num_displays; struct drm_device *dev = connector->dev; struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_display_unit *du = vmw_connector_to_du(connector); num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); return ((vmw_connector_to_du(connector)->unit < num_displays && du->pref_active) ? connector_status_connected : connector_status_disconnected); } static struct drm_display_mode vmw_kms_connector_builtin[] = { /* 640x480@60Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 489, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1152x864@75Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x720@60Hz */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344, 1472, 1664, 0, 720, 723, 728, 748, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x768@60Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1472, 1664, 0, 768, 771, 778, 798, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x800@60Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1480, 1680, 0, 800, 803, 809, 831, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1280x960@60Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1488, 1800, 0, 960, 961, 964, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@60Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1360x768@60Hz */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1536, 1792, 0, 768, 771, 777, 795, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x1050@60Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x900@60Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1672, 1904, 0, 900, 903, 909, 934, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@60Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1680x1050@60Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1792x1344@60Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1853x1392@60Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1080@60Hz */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048, 2248, 2576, 0, 1080, 1083, 1088, 1120, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1200@60Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1440@60Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2560x1440@60Hz */ { DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608, 2640, 2720, 0, 1440, 1443, 1448, 1481, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 2560x1600@60Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2880x1800@60Hz */ { DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928, 2960, 3040, 0, 1800, 1803, 1809, 1852, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 3840x2160@60Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888, 3920, 4000, 0, 2160, 2163, 2168, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 3840x2400@60Hz */ { DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888, 3920, 4000, 0, 2400, 2403, 2409, 2469, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* Terminate */ { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, }; /** * vmw_guess_mode_timing - Provide fake timings for a * 60Hz vrefresh mode. * * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay * members filled in. */ void vmw_guess_mode_timing(struct drm_display_mode *mode) { mode->hsync_start = mode->hdisplay + 50; mode->hsync_end = mode->hsync_start + 50; mode->htotal = mode->hsync_end + 50; mode->vsync_start = mode->vdisplay + 50; mode->vsync_end = mode->vsync_start + 50; mode->vtotal = mode->vsync_end + 50; mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; } int vmw_du_connector_fill_modes(struct drm_connector *connector, uint32_t max_width, uint32_t max_height) { struct vmw_display_unit *du = vmw_connector_to_du(connector); struct drm_device *dev = connector->dev; struct vmw_private *dev_priv = vmw_priv(dev); struct drm_display_mode *mode = NULL; struct drm_display_mode *bmode; struct drm_display_mode prefmode = { DRM_MODE("preferred", DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }; int i; u32 assumed_bpp = 4; if (dev_priv->assume_16bpp) assumed_bpp = 2; max_width = min(max_width, dev_priv->texture_max_width); max_height = min(max_height, dev_priv->texture_max_height); /* * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ * HEIGHT registers. */ if (dev_priv->active_display_unit == vmw_du_screen_target) { max_width = min(max_width, dev_priv->stdu_max_width); max_height = min(max_height, dev_priv->stdu_max_height); } /* Add preferred mode */ mode = drm_mode_duplicate(dev, &prefmode); if (!mode) return 0; mode->hdisplay = du->pref_width; mode->vdisplay = du->pref_height; vmw_guess_mode_timing(mode); drm_mode_set_name(mode); if (vmw_kms_validate_mode_vram(dev_priv, mode->hdisplay * assumed_bpp, mode->vdisplay)) { drm_mode_probed_add(connector, mode); } else { drm_mode_destroy(dev, mode); mode = NULL; } if (du->pref_mode) { list_del_init(&du->pref_mode->head); drm_mode_destroy(dev, du->pref_mode); } /* mode might be null here, this is intended */ du->pref_mode = mode; for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { bmode = &vmw_kms_connector_builtin[i]; if (bmode->hdisplay > max_width || bmode->vdisplay > max_height) continue; if (!vmw_kms_validate_mode_vram(dev_priv, bmode->hdisplay * assumed_bpp, bmode->vdisplay)) continue; mode = drm_mode_duplicate(dev, bmode); if (!mode) return 0; drm_mode_probed_add(connector, mode); } drm_connector_list_update(connector); /* Move the prefered mode first, help apps pick the right mode. */ drm_mode_sort(&connector->modes); return 1; } /** * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl * @dev: drm device for the ioctl * @data: data pointer for the ioctl * @file_priv: drm file for the ioctl call * * Update preferred topology of display unit as per ioctl request. The topology * is expressed as array of drm_vmw_rect. * e.g. * [0 0 640 480] [640 0 800 600] [0 480 640 480] * * NOTE: * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside * device limit on topology, x + w and y + h (lower right) cannot be greater * than INT_MAX. So topology beyond these limits will return with error. * * Returns: * Zero on success, negative errno on failure. */ int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); struct drm_mode_config *mode_config = &dev->mode_config; struct drm_vmw_update_layout_arg *arg = (struct drm_vmw_update_layout_arg *)data; void __user *user_rects; struct drm_vmw_rect *rects; struct drm_rect *drm_rects; unsigned rects_size; int ret, i; if (!arg->num_outputs) { struct drm_rect def_rect = {0, 0, VMWGFX_MIN_INITIAL_WIDTH, VMWGFX_MIN_INITIAL_HEIGHT}; vmw_du_update_layout(dev_priv, 1, &def_rect); return 0; } rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), GFP_KERNEL); if (unlikely(!rects)) return -ENOMEM; user_rects = (void __user *)(unsigned long)arg->rects; ret = copy_from_user(rects, user_rects, rects_size); if (unlikely(ret != 0)) { DRM_ERROR("Failed to get rects.\n"); ret = -EFAULT; goto out_free; } drm_rects = (struct drm_rect *)rects; VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); for (i = 0; i < arg->num_outputs; i++) { struct drm_vmw_rect curr_rect; /* Verify user-space for overflow as kernel use drm_rect */ if ((rects[i].x + rects[i].w > INT_MAX) || (rects[i].y + rects[i].h > INT_MAX)) { ret = -ERANGE; goto out_free; } curr_rect = rects[i]; drm_rects[i].x1 = curr_rect.x; drm_rects[i].y1 = curr_rect.y; drm_rects[i].x2 = curr_rect.x + curr_rect.w; drm_rects[i].y2 = curr_rect.y + curr_rect.h; VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", drm_rects[i].x1, drm_rects[i].y1, drm_rects[i].x2, drm_rects[i].y2); /* * Currently this check is limiting the topology within * mode_config->max (which actually is max texture size * supported by virtual device). This limit is here to address * window managers that create a big framebuffer for whole * topology. */ if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || drm_rects[i].x2 > mode_config->max_width || drm_rects[i].y2 > mode_config->max_height) { VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", drm_rects[i].x1, drm_rects[i].y1, drm_rects[i].x2, drm_rects[i].y2); ret = -EINVAL; goto out_free; } } ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); if (ret == 0) vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); out_free: kfree(rects); return ret; } /** * vmw_kms_helper_dirty - Helper to build commands and perform actions based * on a set of cliprects and a set of display units. * * @dev_priv: Pointer to a device private structure. * @framebuffer: Pointer to the framebuffer on which to perform the actions. * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. * Cliprects are given in framebuffer coordinates. * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must * be NULL. Cliprects are given in source coordinates. * @dest_x: X coordinate offset for the crtc / destination clip rects. * @dest_y: Y coordinate offset for the crtc / destination clip rects. * @num_clips: Number of cliprects in the @clips or @vclips array. * @increment: Integer with which to increment the clip counter when looping. * Used to skip a predetermined number of clip rects. * @dirty: Closure structure. See the description of struct vmw_kms_dirty. */ int vmw_kms_helper_dirty(struct vmw_private *dev_priv, struct vmw_framebuffer *framebuffer, const struct drm_clip_rect *clips, const struct drm_vmw_rect *vclips, s32 dest_x, s32 dest_y, int num_clips, int increment, struct vmw_kms_dirty *dirty) { struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; struct drm_crtc *crtc; u32 num_units = 0; u32 i, k; dirty->dev_priv = dev_priv; /* If crtc is passed, no need to iterate over other display units */ if (dirty->crtc) { units[num_units++] = vmw_crtc_to_du(dirty->crtc); } else { list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, head) { struct drm_plane *plane = crtc->primary; if (plane->state->fb == &framebuffer->base) units[num_units++] = vmw_crtc_to_du(crtc); } } for (k = 0; k < num_units; k++) { struct vmw_display_unit *unit = units[k]; s32 crtc_x = unit->crtc.x; s32 crtc_y = unit->crtc.y; s32 crtc_width = unit->crtc.mode.hdisplay; s32 crtc_height = unit->crtc.mode.vdisplay; const struct drm_clip_rect *clips_ptr = clips; const struct drm_vmw_rect *vclips_ptr = vclips; dirty->unit = unit; if (dirty->fifo_reserve_size > 0) { dirty->cmd = VMW_CMD_RESERVE(dev_priv, dirty->fifo_reserve_size); if (!dirty->cmd) return -ENOMEM; memset(dirty->cmd, 0, dirty->fifo_reserve_size); } dirty->num_hits = 0; for (i = 0; i < num_clips; i++, clips_ptr += increment, vclips_ptr += increment) { s32 clip_left; s32 clip_top; /* * Select clip array type. Note that integer type * in @clips is unsigned short, whereas in @vclips * it's 32-bit. */ if (clips) { dirty->fb_x = (s32) clips_ptr->x1; dirty->fb_y = (s32) clips_ptr->y1; dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - crtc_x; dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - crtc_y; } else { dirty->fb_x = vclips_ptr->x; dirty->fb_y = vclips_ptr->y; dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + dest_x - crtc_x; dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + dest_y - crtc_y; } dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; /* Skip this clip if it's outside the crtc region */ if (dirty->unit_x1 >= crtc_width || dirty->unit_y1 >= crtc_height || dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) continue; /* Clip right and bottom to crtc limits */ dirty->unit_x2 = min_t(s32, dirty->unit_x2, crtc_width); dirty->unit_y2 = min_t(s32, dirty->unit_y2, crtc_height); /* Clip left and top to crtc limits */ clip_left = min_t(s32, dirty->unit_x1, 0); clip_top = min_t(s32, dirty->unit_y1, 0); dirty->unit_x1 -= clip_left; dirty->unit_y1 -= clip_top; dirty->fb_x -= clip_left; dirty->fb_y -= clip_top; dirty->clip(dirty); } dirty->fifo_commit(dirty); } return 0; } /** * vmw_kms_helper_validation_finish - Helper for post KMS command submission * cleanup and fencing * @dev_priv: Pointer to the device-private struct * @file_priv: Pointer identifying the client when user-space fencing is used * @ctx: Pointer to the validation context * @out_fence: If non-NULL, returned refcounted fence-pointer * @user_fence_rep: If non-NULL, pointer to user-space address area * in which to copy user-space fence info */ void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_validation_context *ctx, struct vmw_fence_obj **out_fence, struct drm_vmw_fence_rep __user * user_fence_rep) { struct vmw_fence_obj *fence = NULL; uint32_t handle = 0; int ret = 0; if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || out_fence) ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, file_priv ? &handle : NULL); vmw_validation_done(ctx, fence); if (file_priv) vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), ret, user_fence_rep, fence, handle, -1); if (out_fence) *out_fence = fence; else vmw_fence_obj_unreference(&fence); } /** * vmw_kms_update_proxy - Helper function to update a proxy surface from * its backing MOB. * * @res: Pointer to the surface resource * @clips: Clip rects in framebuffer (surface) space. * @num_clips: Number of clips in @clips. * @increment: Integer with which to increment the clip counter when looping. * Used to skip a predetermined number of clip rects. * * This function makes sure the proxy surface is updated from its backing MOB * using the region given by @clips. The surface resource @res and its backing * MOB needs to be reserved and validated on call. */ int vmw_kms_update_proxy(struct vmw_resource *res, const struct drm_clip_rect *clips, unsigned num_clips, int increment) { struct vmw_private *dev_priv = res->dev_priv; struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; struct { SVGA3dCmdHeader header; SVGA3dCmdUpdateGBImage body; } *cmd; SVGA3dBox *box; size_t copy_size = 0; int i; if (!clips) return 0; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips); if (!cmd) return -ENOMEM; for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { box = &cmd->body.box; cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; cmd->header.size = sizeof(cmd->body); cmd->body.image.sid = res->id; cmd->body.image.face = 0; cmd->body.image.mipmap = 0; if (clips->x1 > size->width || clips->x2 > size->width || clips->y1 > size->height || clips->y2 > size->height) { DRM_ERROR("Invalid clips outsize of framebuffer.\n"); return -EINVAL; } box->x = clips->x1; box->y = clips->y1; box->z = 0; box->w = clips->x2 - clips->x1; box->h = clips->y2 - clips->y1; box->d = 1; copy_size += sizeof(*cmd); } vmw_cmd_commit(dev_priv, copy_size); return 0; } /** * vmw_kms_create_implicit_placement_property - Set up the implicit placement * property. * * @dev_priv: Pointer to a device private struct. * * Sets up the implicit placement property unless it's already set up. */ void vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) { if (dev_priv->implicit_placement_property) return; dev_priv->implicit_placement_property = drm_property_create_range(&dev_priv->drm, DRM_MODE_PROP_IMMUTABLE, "implicit_placement", 0, 1); } /** * vmw_kms_suspend - Save modesetting state and turn modesetting off. * * @dev: Pointer to the drm device * Return: 0 on success. Negative error code on failure. */ int vmw_kms_suspend(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); dev_priv->suspend_state = drm_atomic_helper_suspend(dev); if (IS_ERR(dev_priv->suspend_state)) { int ret = PTR_ERR(dev_priv->suspend_state); DRM_ERROR("Failed kms suspend: %d\n", ret); dev_priv->suspend_state = NULL; return ret; } return 0; } /** * vmw_kms_resume - Re-enable modesetting and restore state * * @dev: Pointer to the drm device * Return: 0 on success. Negative error code on failure. * * State is resumed from a previous vmw_kms_suspend(). It's illegal * to call this function without a previous vmw_kms_suspend(). */ int vmw_kms_resume(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); int ret; if (WARN_ON(!dev_priv->suspend_state)) return 0; ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); dev_priv->suspend_state = NULL; return ret; } /** * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost * * @dev: Pointer to the drm device */ void vmw_kms_lost_device(struct drm_device *dev) { drm_atomic_helper_shutdown(dev); } /** * vmw_du_helper_plane_update - Helper to do plane update on a display unit. * @update: The closure structure. * * Call this helper after setting callbacks in &vmw_du_update_plane to do plane * update on display unit. * * Return: 0 on success or a negative error code on failure. */ int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) { struct drm_plane_state *state = update->plane->state; struct drm_plane_state *old_state = update->old_state; struct drm_atomic_helper_damage_iter iter; struct drm_rect clip; struct drm_rect bb; DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); uint32_t reserved_size = 0; uint32_t submit_size = 0; uint32_t curr_size = 0; uint32_t num_hits = 0; void *cmd_start; char *cmd_next; int ret; /* * Iterate in advance to check if really need plane update and find the * number of clips that actually are in plane src for fifo allocation. */ drm_atomic_helper_damage_iter_init(&iter, old_state, state); drm_atomic_for_each_plane_damage(&iter, &clip) num_hits++; if (num_hits == 0) return 0; if (update->vfb->bo) { struct vmw_framebuffer_bo *vfbbo = container_of(update->vfb, typeof(*vfbbo), base); /* * For screen targets we want a mappable bo, for everything else we want * accelerated i.e. host backed (vram or gmr) bo. If the display unit * is not screen target then mob's shouldn't be available. */ if (update->dev_priv->active_display_unit == vmw_du_screen_target) { vmw_bo_placement_set(vfbbo->buffer, VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); } else { WARN_ON(update->dev_priv->has_mob); vmw_bo_placement_set_default_accelerated(vfbbo->buffer); } ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); } else { struct vmw_framebuffer_surface *vfbs = container_of(update->vfb, typeof(*vfbs), base); ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 0, VMW_RES_DIRTY_NONE, NULL, NULL); } if (ret) return ret; ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); if (ret) goto out_unref; reserved_size = update->calc_fifo_size(update, num_hits); cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); if (!cmd_start) { ret = -ENOMEM; goto out_revert; } cmd_next = cmd_start; if (update->post_prepare) { curr_size = update->post_prepare(update, cmd_next); cmd_next += curr_size; submit_size += curr_size; } if (update->pre_clip) { curr_size = update->pre_clip(update, cmd_next, num_hits); cmd_next += curr_size; submit_size += curr_size; } bb.x1 = INT_MAX; bb.y1 = INT_MAX; bb.x2 = INT_MIN; bb.y2 = INT_MIN; drm_atomic_helper_damage_iter_init(&iter, old_state, state); drm_atomic_for_each_plane_damage(&iter, &clip) { uint32_t fb_x = clip.x1; uint32_t fb_y = clip.y1; vmw_du_translate_to_crtc(state, &clip); if (update->clip) { curr_size = update->clip(update, cmd_next, &clip, fb_x, fb_y); cmd_next += curr_size; submit_size += curr_size; } bb.x1 = min_t(int, bb.x1, clip.x1); bb.y1 = min_t(int, bb.y1, clip.y1); bb.x2 = max_t(int, bb.x2, clip.x2); bb.y2 = max_t(int, bb.y2, clip.y2); } curr_size = update->post_clip(update, cmd_next, &bb); submit_size += curr_size; if (reserved_size < submit_size) submit_size = 0; vmw_cmd_commit(update->dev_priv, submit_size); vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, update->out_fence, NULL); return ret; out_revert: vmw_validation_revert(&val_ctx); out_unref: vmw_validation_unref_lists(&val_ctx); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1