Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 3513 | 91.15% | 35 | 61.40% |
Terje Bergstrom | 176 | 4.57% | 4 | 7.02% |
Chris Wilson | 48 | 1.25% | 1 | 1.75% |
Mikko Perttunen | 33 | 0.86% | 3 | 5.26% |
Luca Barbieri | 32 | 0.83% | 1 | 1.75% |
Nipun Gupta | 19 | 0.49% | 1 | 1.75% |
Amitoj Kaur Chawla | 8 | 0.21% | 1 | 1.75% |
Wei Yongjun | 5 | 0.13% | 1 | 1.75% |
Christoph Hellwig | 4 | 0.10% | 1 | 1.75% |
Robin Murphy | 3 | 0.08% | 1 | 1.75% |
Alexandre Courbot | 3 | 0.08% | 1 | 1.75% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.75% |
Uwe Kleine-König | 2 | 0.05% | 1 | 1.75% |
Linus Torvalds (pre-git) | 2 | 0.05% | 1 | 1.75% |
Lee Jones | 1 | 0.03% | 1 | 1.75% |
Randy Dunlap | 1 | 0.03% | 1 | 1.75% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 1.75% |
Linus Torvalds | 1 | 0.03% | 1 | 1.75% |
Total | 3854 | 57 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Avionic Design GmbH * Copyright (C) 2012-2013, NVIDIA Corporation */ #include <linux/debugfs.h> #include <linux/dma-mapping.h> #include <linux/host1x.h> #include <linux/of.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/of_device.h> #include "bus.h" #include "dev.h" static DEFINE_MUTEX(clients_lock); static LIST_HEAD(clients); static DEFINE_MUTEX(drivers_lock); static LIST_HEAD(drivers); static DEFINE_MUTEX(devices_lock); static LIST_HEAD(devices); struct host1x_subdev { struct host1x_client *client; struct device_node *np; struct list_head list; }; /** * host1x_subdev_add() - add a new subdevice with an associated device node * @device: host1x device to add the subdevice to * @driver: host1x driver containing the subdevices * @np: device node */ static int host1x_subdev_add(struct host1x_device *device, struct host1x_driver *driver, struct device_node *np) { struct host1x_subdev *subdev; struct device_node *child; int err; subdev = kzalloc(sizeof(*subdev), GFP_KERNEL); if (!subdev) return -ENOMEM; INIT_LIST_HEAD(&subdev->list); subdev->np = of_node_get(np); mutex_lock(&device->subdevs_lock); list_add_tail(&subdev->list, &device->subdevs); mutex_unlock(&device->subdevs_lock); /* recursively add children */ for_each_child_of_node(np, child) { if (of_match_node(driver->subdevs, child) && of_device_is_available(child)) { err = host1x_subdev_add(device, driver, child); if (err < 0) { /* XXX cleanup? */ of_node_put(child); return err; } } } return 0; } /** * host1x_subdev_del() - remove subdevice * @subdev: subdevice to remove */ static void host1x_subdev_del(struct host1x_subdev *subdev) { list_del(&subdev->list); of_node_put(subdev->np); kfree(subdev); } /** * host1x_device_parse_dt() - scan device tree and add matching subdevices * @device: host1x logical device * @driver: host1x driver */ static int host1x_device_parse_dt(struct host1x_device *device, struct host1x_driver *driver) { struct device_node *np; int err; for_each_child_of_node(device->dev.parent->of_node, np) { if (of_match_node(driver->subdevs, np) && of_device_is_available(np)) { err = host1x_subdev_add(device, driver, np); if (err < 0) { of_node_put(np); return err; } } } return 0; } static void host1x_subdev_register(struct host1x_device *device, struct host1x_subdev *subdev, struct host1x_client *client) { int err; /* * Move the subdevice to the list of active (registered) subdevices * and associate it with a client. At the same time, associate the * client with its parent device. */ mutex_lock(&device->subdevs_lock); mutex_lock(&device->clients_lock); list_move_tail(&client->list, &device->clients); list_move_tail(&subdev->list, &device->active); client->host = &device->dev; subdev->client = client; mutex_unlock(&device->clients_lock); mutex_unlock(&device->subdevs_lock); if (list_empty(&device->subdevs)) { err = device_add(&device->dev); if (err < 0) dev_err(&device->dev, "failed to add: %d\n", err); else device->registered = true; } } static void __host1x_subdev_unregister(struct host1x_device *device, struct host1x_subdev *subdev) { struct host1x_client *client = subdev->client; /* * If all subdevices have been activated, we're about to remove the * first active subdevice, so unload the driver first. */ if (list_empty(&device->subdevs)) { if (device->registered) { device->registered = false; device_del(&device->dev); } } /* * Move the subdevice back to the list of idle subdevices and remove * it from list of clients. */ mutex_lock(&device->clients_lock); subdev->client = NULL; client->host = NULL; list_move_tail(&subdev->list, &device->subdevs); /* * XXX: Perhaps don't do this here, but rather explicitly remove it * when the device is about to be deleted. * * This is somewhat complicated by the fact that this function is * used to remove the subdevice when a client is unregistered but * also when the composite device is about to be removed. */ list_del_init(&client->list); mutex_unlock(&device->clients_lock); } static void host1x_subdev_unregister(struct host1x_device *device, struct host1x_subdev *subdev) { mutex_lock(&device->subdevs_lock); __host1x_subdev_unregister(device, subdev); mutex_unlock(&device->subdevs_lock); } /** * host1x_device_init() - initialize a host1x logical device * @device: host1x logical device * * The driver for the host1x logical device can call this during execution of * its &host1x_driver.probe implementation to initialize each of its clients. * The client drivers access the subsystem specific driver data using the * &host1x_client.parent field and driver data associated with it (usually by * calling dev_get_drvdata()). */ int host1x_device_init(struct host1x_device *device) { struct host1x_client *client; int err; mutex_lock(&device->clients_lock); list_for_each_entry(client, &device->clients, list) { if (client->ops && client->ops->early_init) { err = client->ops->early_init(client); if (err < 0) { dev_err(&device->dev, "failed to early initialize %s: %d\n", dev_name(client->dev), err); goto teardown_late; } } } list_for_each_entry(client, &device->clients, list) { if (client->ops && client->ops->init) { err = client->ops->init(client); if (err < 0) { dev_err(&device->dev, "failed to initialize %s: %d\n", dev_name(client->dev), err); goto teardown; } } } mutex_unlock(&device->clients_lock); return 0; teardown: list_for_each_entry_continue_reverse(client, &device->clients, list) if (client->ops->exit) client->ops->exit(client); /* reset client to end of list for late teardown */ client = list_entry(&device->clients, struct host1x_client, list); teardown_late: list_for_each_entry_continue_reverse(client, &device->clients, list) if (client->ops->late_exit) client->ops->late_exit(client); mutex_unlock(&device->clients_lock); return err; } EXPORT_SYMBOL(host1x_device_init); /** * host1x_device_exit() - uninitialize host1x logical device * @device: host1x logical device * * When the driver for a host1x logical device is unloaded, it can call this * function to tear down each of its clients. Typically this is done after a * subsystem-specific data structure is removed and the functionality can no * longer be used. */ int host1x_device_exit(struct host1x_device *device) { struct host1x_client *client; int err; mutex_lock(&device->clients_lock); list_for_each_entry_reverse(client, &device->clients, list) { if (client->ops && client->ops->exit) { err = client->ops->exit(client); if (err < 0) { dev_err(&device->dev, "failed to cleanup %s: %d\n", dev_name(client->dev), err); mutex_unlock(&device->clients_lock); return err; } } } list_for_each_entry_reverse(client, &device->clients, list) { if (client->ops && client->ops->late_exit) { err = client->ops->late_exit(client); if (err < 0) { dev_err(&device->dev, "failed to late cleanup %s: %d\n", dev_name(client->dev), err); mutex_unlock(&device->clients_lock); return err; } } } mutex_unlock(&device->clients_lock); return 0; } EXPORT_SYMBOL(host1x_device_exit); static int host1x_add_client(struct host1x *host1x, struct host1x_client *client) { struct host1x_device *device; struct host1x_subdev *subdev; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { list_for_each_entry(subdev, &device->subdevs, list) { if (subdev->np == client->dev->of_node) { host1x_subdev_register(device, subdev, client); mutex_unlock(&host1x->devices_lock); return 0; } } } mutex_unlock(&host1x->devices_lock); return -ENODEV; } static int host1x_del_client(struct host1x *host1x, struct host1x_client *client) { struct host1x_device *device, *dt; struct host1x_subdev *subdev; mutex_lock(&host1x->devices_lock); list_for_each_entry_safe(device, dt, &host1x->devices, list) { list_for_each_entry(subdev, &device->active, list) { if (subdev->client == client) { host1x_subdev_unregister(device, subdev); mutex_unlock(&host1x->devices_lock); return 0; } } } mutex_unlock(&host1x->devices_lock); return -ENODEV; } static int host1x_device_match(struct device *dev, struct device_driver *drv) { return strcmp(dev_name(dev), drv->name) == 0; } static int host1x_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { struct device_node *np = dev->parent->of_node; unsigned int count = 0; struct property *p; const char *compat; /* * This duplicates most of of_device_uevent(), but the latter cannot * be called from modules and operates on dev->of_node, which is not * available in this case. * * Note that this is really only needed for backwards compatibility * with libdrm, which parses this information from sysfs and will * fail if it can't find the OF_FULLNAME, specifically. */ add_uevent_var(env, "OF_NAME=%pOFn", np); add_uevent_var(env, "OF_FULLNAME=%pOF", np); of_property_for_each_string(np, "compatible", p, compat) { add_uevent_var(env, "OF_COMPATIBLE_%u=%s", count, compat); count++; } add_uevent_var(env, "OF_COMPATIBLE_N=%u", count); return 0; } static int host1x_dma_configure(struct device *dev) { return of_dma_configure(dev, dev->of_node, true); } static const struct dev_pm_ops host1x_device_pm_ops = { .suspend = pm_generic_suspend, .resume = pm_generic_resume, .freeze = pm_generic_freeze, .thaw = pm_generic_thaw, .poweroff = pm_generic_poweroff, .restore = pm_generic_restore, }; struct bus_type host1x_bus_type = { .name = "host1x", .match = host1x_device_match, .uevent = host1x_device_uevent, .dma_configure = host1x_dma_configure, .pm = &host1x_device_pm_ops, }; static void __host1x_device_del(struct host1x_device *device) { struct host1x_subdev *subdev, *sd; struct host1x_client *client, *cl; mutex_lock(&device->subdevs_lock); /* unregister subdevices */ list_for_each_entry_safe(subdev, sd, &device->active, list) { /* * host1x_subdev_unregister() will remove the client from * any lists, so we'll need to manually add it back to the * list of idle clients. * * XXX: Alternatively, perhaps don't remove the client from * any lists in host1x_subdev_unregister() and instead do * that explicitly from host1x_unregister_client()? */ client = subdev->client; __host1x_subdev_unregister(device, subdev); /* add the client to the list of idle clients */ mutex_lock(&clients_lock); list_add_tail(&client->list, &clients); mutex_unlock(&clients_lock); } /* remove subdevices */ list_for_each_entry_safe(subdev, sd, &device->subdevs, list) host1x_subdev_del(subdev); mutex_unlock(&device->subdevs_lock); /* move clients to idle list */ mutex_lock(&clients_lock); mutex_lock(&device->clients_lock); list_for_each_entry_safe(client, cl, &device->clients, list) list_move_tail(&client->list, &clients); mutex_unlock(&device->clients_lock); mutex_unlock(&clients_lock); /* finally remove the device */ list_del_init(&device->list); } static void host1x_device_release(struct device *dev) { struct host1x_device *device = to_host1x_device(dev); __host1x_device_del(device); kfree(device); } static int host1x_device_add(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_client *client, *tmp; struct host1x_subdev *subdev; struct host1x_device *device; int err; device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) return -ENOMEM; device_initialize(&device->dev); mutex_init(&device->subdevs_lock); INIT_LIST_HEAD(&device->subdevs); INIT_LIST_HEAD(&device->active); mutex_init(&device->clients_lock); INIT_LIST_HEAD(&device->clients); INIT_LIST_HEAD(&device->list); device->driver = driver; device->dev.coherent_dma_mask = host1x->dev->coherent_dma_mask; device->dev.dma_mask = &device->dev.coherent_dma_mask; dev_set_name(&device->dev, "%s", driver->driver.name); device->dev.release = host1x_device_release; device->dev.bus = &host1x_bus_type; device->dev.parent = host1x->dev; of_dma_configure(&device->dev, host1x->dev->of_node, true); device->dev.dma_parms = &device->dma_parms; dma_set_max_seg_size(&device->dev, UINT_MAX); err = host1x_device_parse_dt(device, driver); if (err < 0) { kfree(device); return err; } list_add_tail(&device->list, &host1x->devices); mutex_lock(&clients_lock); list_for_each_entry_safe(client, tmp, &clients, list) { list_for_each_entry(subdev, &device->subdevs, list) { if (subdev->np == client->dev->of_node) { host1x_subdev_register(device, subdev, client); break; } } } mutex_unlock(&clients_lock); return 0; } /* * Removes a device by first unregistering any subdevices and then removing * itself from the list of devices. * * This function must be called with the host1x->devices_lock held. */ static void host1x_device_del(struct host1x *host1x, struct host1x_device *device) { if (device->registered) { device->registered = false; device_del(&device->dev); } put_device(&device->dev); } static void host1x_attach_driver(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_device *device; int err; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { if (device->driver == driver) { mutex_unlock(&host1x->devices_lock); return; } } err = host1x_device_add(host1x, driver); if (err < 0) dev_err(host1x->dev, "failed to allocate device: %d\n", err); mutex_unlock(&host1x->devices_lock); } static void host1x_detach_driver(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_device *device, *tmp; mutex_lock(&host1x->devices_lock); list_for_each_entry_safe(device, tmp, &host1x->devices, list) if (device->driver == driver) host1x_device_del(host1x, device); mutex_unlock(&host1x->devices_lock); } static int host1x_devices_show(struct seq_file *s, void *data) { struct host1x *host1x = s->private; struct host1x_device *device; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { struct host1x_subdev *subdev; seq_printf(s, "%s\n", dev_name(&device->dev)); mutex_lock(&device->subdevs_lock); list_for_each_entry(subdev, &device->active, list) seq_printf(s, " %pOFf: %s\n", subdev->np, dev_name(subdev->client->dev)); list_for_each_entry(subdev, &device->subdevs, list) seq_printf(s, " %pOFf:\n", subdev->np); mutex_unlock(&device->subdevs_lock); } mutex_unlock(&host1x->devices_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(host1x_devices); /** * host1x_register() - register a host1x controller * @host1x: host1x controller * * The host1x controller driver uses this to register a host1x controller with * the infrastructure. Note that all Tegra SoC generations have only ever come * with a single host1x instance, so this function is somewhat academic. */ int host1x_register(struct host1x *host1x) { struct host1x_driver *driver; mutex_lock(&devices_lock); list_add_tail(&host1x->list, &devices); mutex_unlock(&devices_lock); mutex_lock(&drivers_lock); list_for_each_entry(driver, &drivers, list) host1x_attach_driver(host1x, driver); mutex_unlock(&drivers_lock); debugfs_create_file("devices", S_IRUGO, host1x->debugfs, host1x, &host1x_devices_fops); return 0; } /** * host1x_unregister() - unregister a host1x controller * @host1x: host1x controller * * The host1x controller driver uses this to remove a host1x controller from * the infrastructure. */ int host1x_unregister(struct host1x *host1x) { struct host1x_driver *driver; mutex_lock(&drivers_lock); list_for_each_entry(driver, &drivers, list) host1x_detach_driver(host1x, driver); mutex_unlock(&drivers_lock); mutex_lock(&devices_lock); list_del_init(&host1x->list); mutex_unlock(&devices_lock); return 0; } static int host1x_device_probe(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->probe) return driver->probe(device); return 0; } static int host1x_device_remove(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->remove) return driver->remove(device); return 0; } static void host1x_device_shutdown(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->shutdown) driver->shutdown(device); } /** * host1x_driver_register_full() - register a host1x driver * @driver: host1x driver * @owner: owner module * * Drivers for host1x logical devices call this function to register a driver * with the infrastructure. Note that since these drive logical devices, the * registration of the driver actually triggers tho logical device creation. * A logical device will be created for each host1x instance. */ int host1x_driver_register_full(struct host1x_driver *driver, struct module *owner) { struct host1x *host1x; INIT_LIST_HEAD(&driver->list); mutex_lock(&drivers_lock); list_add_tail(&driver->list, &drivers); mutex_unlock(&drivers_lock); mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) host1x_attach_driver(host1x, driver); mutex_unlock(&devices_lock); driver->driver.bus = &host1x_bus_type; driver->driver.owner = owner; driver->driver.probe = host1x_device_probe; driver->driver.remove = host1x_device_remove; driver->driver.shutdown = host1x_device_shutdown; return driver_register(&driver->driver); } EXPORT_SYMBOL(host1x_driver_register_full); /** * host1x_driver_unregister() - unregister a host1x driver * @driver: host1x driver * * Unbinds the driver from each of the host1x logical devices that it is * bound to, effectively removing the subsystem devices that they represent. */ void host1x_driver_unregister(struct host1x_driver *driver) { struct host1x *host1x; driver_unregister(&driver->driver); mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) host1x_detach_driver(host1x, driver); mutex_unlock(&devices_lock); mutex_lock(&drivers_lock); list_del_init(&driver->list); mutex_unlock(&drivers_lock); } EXPORT_SYMBOL(host1x_driver_unregister); /** * __host1x_client_init() - initialize a host1x client * @client: host1x client * @key: lock class key for the client-specific mutex */ void __host1x_client_init(struct host1x_client *client, struct lock_class_key *key) { host1x_bo_cache_init(&client->cache); INIT_LIST_HEAD(&client->list); __mutex_init(&client->lock, "host1x client lock", key); client->usecount = 0; } EXPORT_SYMBOL(__host1x_client_init); /** * host1x_client_exit() - uninitialize a host1x client * @client: host1x client */ void host1x_client_exit(struct host1x_client *client) { mutex_destroy(&client->lock); } EXPORT_SYMBOL(host1x_client_exit); /** * __host1x_client_register() - register a host1x client * @client: host1x client * * Registers a host1x client with each host1x controller instance. Note that * each client will only match their parent host1x controller and will only be * associated with that instance. Once all clients have been registered with * their parent host1x controller, the infrastructure will set up the logical * device and call host1x_device_init(), which will in turn call each client's * &host1x_client_ops.init implementation. */ int __host1x_client_register(struct host1x_client *client) { struct host1x *host1x; int err; mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) { err = host1x_add_client(host1x, client); if (!err) { mutex_unlock(&devices_lock); return 0; } } mutex_unlock(&devices_lock); mutex_lock(&clients_lock); list_add_tail(&client->list, &clients); mutex_unlock(&clients_lock); return 0; } EXPORT_SYMBOL(__host1x_client_register); /** * host1x_client_unregister() - unregister a host1x client * @client: host1x client * * Removes a host1x client from its host1x controller instance. If a logical * device has already been initialized, it will be torn down. */ void host1x_client_unregister(struct host1x_client *client) { struct host1x_client *c; struct host1x *host1x; int err; mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) { err = host1x_del_client(host1x, client); if (!err) { mutex_unlock(&devices_lock); return; } } mutex_unlock(&devices_lock); mutex_lock(&clients_lock); list_for_each_entry(c, &clients, list) { if (c == client) { list_del_init(&c->list); break; } } mutex_unlock(&clients_lock); host1x_bo_cache_destroy(&client->cache); } EXPORT_SYMBOL(host1x_client_unregister); int host1x_client_suspend(struct host1x_client *client) { int err = 0; mutex_lock(&client->lock); if (client->usecount == 1) { if (client->ops && client->ops->suspend) { err = client->ops->suspend(client); if (err < 0) goto unlock; } } client->usecount--; dev_dbg(client->dev, "use count: %u\n", client->usecount); if (client->parent) { err = host1x_client_suspend(client->parent); if (err < 0) goto resume; } goto unlock; resume: if (client->usecount == 0) if (client->ops && client->ops->resume) client->ops->resume(client); client->usecount++; unlock: mutex_unlock(&client->lock); return err; } EXPORT_SYMBOL(host1x_client_suspend); int host1x_client_resume(struct host1x_client *client) { int err = 0; mutex_lock(&client->lock); if (client->parent) { err = host1x_client_resume(client->parent); if (err < 0) goto unlock; } if (client->usecount == 0) { if (client->ops && client->ops->resume) { err = client->ops->resume(client); if (err < 0) goto suspend; } } client->usecount++; dev_dbg(client->dev, "use count: %u\n", client->usecount); goto unlock; suspend: if (client->parent) host1x_client_suspend(client->parent); unlock: mutex_unlock(&client->lock); return err; } EXPORT_SYMBOL(host1x_client_resume); struct host1x_bo_mapping *host1x_bo_pin(struct device *dev, struct host1x_bo *bo, enum dma_data_direction dir, struct host1x_bo_cache *cache) { struct host1x_bo_mapping *mapping; if (cache) { mutex_lock(&cache->lock); list_for_each_entry(mapping, &cache->mappings, entry) { if (mapping->bo == bo && mapping->direction == dir) { kref_get(&mapping->ref); goto unlock; } } } mapping = bo->ops->pin(dev, bo, dir); if (IS_ERR(mapping)) goto unlock; spin_lock(&mapping->bo->lock); list_add_tail(&mapping->list, &bo->mappings); spin_unlock(&mapping->bo->lock); if (cache) { INIT_LIST_HEAD(&mapping->entry); mapping->cache = cache; list_add_tail(&mapping->entry, &cache->mappings); /* bump reference count to track the copy in the cache */ kref_get(&mapping->ref); } unlock: if (cache) mutex_unlock(&cache->lock); return mapping; } EXPORT_SYMBOL(host1x_bo_pin); static void __host1x_bo_unpin(struct kref *ref) { struct host1x_bo_mapping *mapping = to_host1x_bo_mapping(ref); /* * When the last reference of the mapping goes away, make sure to remove the mapping from * the cache. */ if (mapping->cache) list_del(&mapping->entry); spin_lock(&mapping->bo->lock); list_del(&mapping->list); spin_unlock(&mapping->bo->lock); mapping->bo->ops->unpin(mapping); } void host1x_bo_unpin(struct host1x_bo_mapping *mapping) { struct host1x_bo_cache *cache = mapping->cache; if (cache) mutex_lock(&cache->lock); kref_put(&mapping->ref, __host1x_bo_unpin); if (cache) mutex_unlock(&cache->lock); } EXPORT_SYMBOL(host1x_bo_unpin);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1