Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sascha Hauer | 1909 | 81.44% | 2 | 8.70% |
Philipp Zabel | 245 | 10.45% | 11 | 47.83% |
Steve Longerbeam | 64 | 2.73% | 1 | 4.35% |
Marek Vašut | 45 | 1.92% | 1 | 4.35% |
Emil Renner Berthing | 31 | 1.32% | 1 | 4.35% |
Sebastian Reichel | 23 | 0.98% | 1 | 4.35% |
Russell King | 18 | 0.77% | 1 | 4.35% |
Dan Carpenter | 2 | 0.09% | 1 | 4.35% |
Gustavo A. R. Silva | 2 | 0.09% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.09% | 1 | 4.35% |
Valentina Manea | 2 | 0.09% | 1 | 4.35% |
Colin Ian King | 1 | 0.04% | 1 | 4.35% |
Total | 2344 | 23 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <s.hauer@pengutronix.de> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define DC_MAP_CONF_PTR(n) (0x108 + ((n) & ~0x1) * 2) #define DC_MAP_CONF_VAL(n) (0x144 + ((n) & ~0x1) * 2) #define DC_EVT_NF 0 #define DC_EVT_NL 1 #define DC_EVT_EOF 2 #define DC_EVT_NFIELD 3 #define DC_EVT_EOL 4 #define DC_EVT_EOFIELD 5 #define DC_EVT_NEW_ADDR 6 #define DC_EVT_NEW_CHAN 7 #define DC_EVT_NEW_DATA 8 #define DC_EVT_NEW_ADDR_W_0 0 #define DC_EVT_NEW_ADDR_W_1 1 #define DC_EVT_NEW_CHAN_W_0 2 #define DC_EVT_NEW_CHAN_W_1 3 #define DC_EVT_NEW_DATA_W_0 4 #define DC_EVT_NEW_DATA_W_1 5 #define DC_EVT_NEW_ADDR_R_0 6 #define DC_EVT_NEW_ADDR_R_1 7 #define DC_EVT_NEW_CHAN_R_0 8 #define DC_EVT_NEW_CHAN_R_1 9 #define DC_EVT_NEW_DATA_R_0 10 #define DC_EVT_NEW_DATA_R_1 11 #define DC_WR_CH_CONF 0x0 #define DC_WR_CH_ADDR 0x4 #define DC_RL_CH(evt) (8 + ((evt) & ~0x1) * 2) #define DC_GEN 0xd4 #define DC_DISP_CONF1(disp) (0xd8 + (disp) * 4) #define DC_DISP_CONF2(disp) (0xe8 + (disp) * 4) #define DC_STAT 0x1c8 #define WROD(lf) (0x18 | ((lf) << 1)) #define WRG 0x01 #define WCLK 0xc9 #define SYNC_WAVE 0 #define NULL_WAVE (-1) #define DC_GEN_SYNC_1_6_SYNC (2 << 1) #define DC_GEN_SYNC_PRIORITY_1 (1 << 7) #define DC_WR_CH_CONF_WORD_SIZE_8 (0 << 0) #define DC_WR_CH_CONF_WORD_SIZE_16 (1 << 0) #define DC_WR_CH_CONF_WORD_SIZE_24 (2 << 0) #define DC_WR_CH_CONF_WORD_SIZE_32 (3 << 0) #define DC_WR_CH_CONF_DISP_ID_PARALLEL(i) (((i) & 0x1) << 3) #define DC_WR_CH_CONF_DISP_ID_SERIAL (2 << 3) #define DC_WR_CH_CONF_DISP_ID_ASYNC (3 << 4) #define DC_WR_CH_CONF_FIELD_MODE (1 << 9) #define DC_WR_CH_CONF_PROG_TYPE_NORMAL (4 << 5) #define DC_WR_CH_CONF_PROG_TYPE_MASK (7 << 5) #define DC_WR_CH_CONF_PROG_DI_ID (1 << 2) #define DC_WR_CH_CONF_PROG_DISP_ID(i) (((i) & 0x1) << 3) #define IPU_DC_NUM_CHANNELS 10 struct ipu_dc_priv; enum ipu_dc_map { IPU_DC_MAP_RGB24, IPU_DC_MAP_RGB565, IPU_DC_MAP_GBR24, /* TVEv2 */ IPU_DC_MAP_BGR666, IPU_DC_MAP_LVDS666, IPU_DC_MAP_BGR24, }; struct ipu_dc { /* The display interface number assigned to this dc channel */ unsigned int di; void __iomem *base; struct ipu_dc_priv *priv; int chno; bool in_use; }; struct ipu_dc_priv { void __iomem *dc_reg; void __iomem *dc_tmpl_reg; struct ipu_soc *ipu; struct device *dev; struct ipu_dc channels[IPU_DC_NUM_CHANNELS]; struct mutex mutex; struct completion comp; int use_count; }; static void dc_link_event(struct ipu_dc *dc, int event, int addr, int priority) { u32 reg; reg = readl(dc->base + DC_RL_CH(event)); reg &= ~(0xffff << (16 * (event & 0x1))); reg |= ((addr << 8) | priority) << (16 * (event & 0x1)); writel(reg, dc->base + DC_RL_CH(event)); } static void dc_write_tmpl(struct ipu_dc *dc, int word, u32 opcode, u32 operand, int map, int wave, int glue, int sync, int stop) { struct ipu_dc_priv *priv = dc->priv; u32 reg1, reg2; if (opcode == WCLK) { reg1 = (operand << 20) & 0xfff00000; reg2 = operand >> 12 | opcode << 1 | stop << 9; } else if (opcode == WRG) { reg1 = sync | glue << 4 | ++wave << 11 | ((operand << 15) & 0xffff8000); reg2 = operand >> 17 | opcode << 7 | stop << 9; } else { reg1 = sync | glue << 4 | ++wave << 11 | ++map << 15 | ((operand << 20) & 0xfff00000); reg2 = operand >> 12 | opcode << 4 | stop << 9; } writel(reg1, priv->dc_tmpl_reg + word * 8); writel(reg2, priv->dc_tmpl_reg + word * 8 + 4); } static int ipu_bus_format_to_map(u32 fmt) { switch (fmt) { default: WARN_ON(1); fallthrough; case MEDIA_BUS_FMT_RGB888_1X24: return IPU_DC_MAP_RGB24; case MEDIA_BUS_FMT_RGB565_1X16: return IPU_DC_MAP_RGB565; case MEDIA_BUS_FMT_GBR888_1X24: return IPU_DC_MAP_GBR24; case MEDIA_BUS_FMT_RGB666_1X18: return IPU_DC_MAP_BGR666; case MEDIA_BUS_FMT_RGB666_1X24_CPADHI: return IPU_DC_MAP_LVDS666; case MEDIA_BUS_FMT_BGR888_1X24: return IPU_DC_MAP_BGR24; } } int ipu_dc_init_sync(struct ipu_dc *dc, struct ipu_di *di, bool interlaced, u32 bus_format, u32 width) { struct ipu_dc_priv *priv = dc->priv; int addr, sync; u32 reg = 0; int map; dc->di = ipu_di_get_num(di); if (!IS_ALIGNED(width, 8)) { dev_warn(priv->dev, "%s: hactive does not align to 8 byte\n", __func__); } map = ipu_bus_format_to_map(bus_format); /* * In interlaced mode we need more counters to create the asymmetric * per-field VSYNC signals. The pixel active signal synchronising DC * to DI moves to signal generator #6 (see ipu-di.c). In progressive * mode counter #5 is used. */ sync = interlaced ? 6 : 5; /* Reserve 5 microcode template words for each DI */ if (dc->di) addr = 5; else addr = 0; if (interlaced) { dc_link_event(dc, DC_EVT_NL, addr, 3); dc_link_event(dc, DC_EVT_EOL, addr, 2); dc_link_event(dc, DC_EVT_NEW_DATA, addr, 1); /* Init template microcode */ dc_write_tmpl(dc, addr, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1); } else { dc_link_event(dc, DC_EVT_NL, addr + 2, 3); dc_link_event(dc, DC_EVT_EOL, addr + 3, 2); dc_link_event(dc, DC_EVT_NEW_DATA, addr + 1, 1); /* Init template microcode */ dc_write_tmpl(dc, addr + 2, WROD(0), 0, map, SYNC_WAVE, 8, sync, 1); dc_write_tmpl(dc, addr + 3, WROD(0), 0, map, SYNC_WAVE, 4, sync, 0); dc_write_tmpl(dc, addr + 4, WRG, 0, map, NULL_WAVE, 0, 0, 1); dc_write_tmpl(dc, addr + 1, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1); } dc_link_event(dc, DC_EVT_NF, 0, 0); dc_link_event(dc, DC_EVT_NFIELD, 0, 0); dc_link_event(dc, DC_EVT_EOF, 0, 0); dc_link_event(dc, DC_EVT_EOFIELD, 0, 0); dc_link_event(dc, DC_EVT_NEW_CHAN, 0, 0); dc_link_event(dc, DC_EVT_NEW_ADDR, 0, 0); reg = readl(dc->base + DC_WR_CH_CONF); if (interlaced) reg |= DC_WR_CH_CONF_FIELD_MODE; else reg &= ~DC_WR_CH_CONF_FIELD_MODE; writel(reg, dc->base + DC_WR_CH_CONF); writel(0x0, dc->base + DC_WR_CH_ADDR); writel(width, priv->dc_reg + DC_DISP_CONF2(dc->di)); return 0; } EXPORT_SYMBOL_GPL(ipu_dc_init_sync); void ipu_dc_enable(struct ipu_soc *ipu) { struct ipu_dc_priv *priv = ipu->dc_priv; mutex_lock(&priv->mutex); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_DC_EN); priv->use_count++; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_enable); void ipu_dc_enable_channel(struct ipu_dc *dc) { u32 reg; reg = readl(dc->base + DC_WR_CH_CONF); reg |= DC_WR_CH_CONF_PROG_TYPE_NORMAL; writel(reg, dc->base + DC_WR_CH_CONF); } EXPORT_SYMBOL_GPL(ipu_dc_enable_channel); void ipu_dc_disable_channel(struct ipu_dc *dc) { u32 val; val = readl(dc->base + DC_WR_CH_CONF); val &= ~DC_WR_CH_CONF_PROG_TYPE_MASK; writel(val, dc->base + DC_WR_CH_CONF); } EXPORT_SYMBOL_GPL(ipu_dc_disable_channel); void ipu_dc_disable(struct ipu_soc *ipu) { struct ipu_dc_priv *priv = ipu->dc_priv; mutex_lock(&priv->mutex); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_DC_EN); if (priv->use_count < 0) priv->use_count = 0; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_disable); static void ipu_dc_map_config(struct ipu_dc_priv *priv, enum ipu_dc_map map, int byte_num, int offset, int mask) { int ptr = map * 3 + byte_num; u32 reg; reg = readl(priv->dc_reg + DC_MAP_CONF_VAL(ptr)); reg &= ~(0xffff << (16 * (ptr & 0x1))); reg |= ((offset << 8) | mask) << (16 * (ptr & 0x1)); writel(reg, priv->dc_reg + DC_MAP_CONF_VAL(ptr)); reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map)); reg &= ~(0x1f << ((16 * (map & 0x1)) + (5 * byte_num))); reg |= ptr << ((16 * (map & 0x1)) + (5 * byte_num)); writel(reg, priv->dc_reg + DC_MAP_CONF_PTR(map)); } static void ipu_dc_map_clear(struct ipu_dc_priv *priv, int map) { u32 reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map)); writel(reg & ~(0xffff << (16 * (map & 0x1))), priv->dc_reg + DC_MAP_CONF_PTR(map)); } struct ipu_dc *ipu_dc_get(struct ipu_soc *ipu, int channel) { struct ipu_dc_priv *priv = ipu->dc_priv; struct ipu_dc *dc; if (channel >= IPU_DC_NUM_CHANNELS) return ERR_PTR(-ENODEV); dc = &priv->channels[channel]; mutex_lock(&priv->mutex); if (dc->in_use) { mutex_unlock(&priv->mutex); return ERR_PTR(-EBUSY); } dc->in_use = true; mutex_unlock(&priv->mutex); return dc; } EXPORT_SYMBOL_GPL(ipu_dc_get); void ipu_dc_put(struct ipu_dc *dc) { struct ipu_dc_priv *priv = dc->priv; mutex_lock(&priv->mutex); dc->in_use = false; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_put); int ipu_dc_init(struct ipu_soc *ipu, struct device *dev, unsigned long base, unsigned long template_base) { struct ipu_dc_priv *priv; static const int channel_offsets[] = { 0, 0x1c, 0x38, 0x54, 0x58, 0x5c, 0x78, 0, 0x94, 0xb4 }; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; mutex_init(&priv->mutex); priv->dev = dev; priv->ipu = ipu; priv->dc_reg = devm_ioremap(dev, base, PAGE_SIZE); priv->dc_tmpl_reg = devm_ioremap(dev, template_base, PAGE_SIZE); if (!priv->dc_reg || !priv->dc_tmpl_reg) return -ENOMEM; for (i = 0; i < IPU_DC_NUM_CHANNELS; i++) { priv->channels[i].chno = i; priv->channels[i].priv = priv; priv->channels[i].base = priv->dc_reg + channel_offsets[i]; } writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(1) | DC_WR_CH_CONF_PROG_DI_ID, priv->channels[1].base + DC_WR_CH_CONF); writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(0), priv->channels[5].base + DC_WR_CH_CONF); writel(DC_GEN_SYNC_1_6_SYNC | DC_GEN_SYNC_PRIORITY_1, priv->dc_reg + DC_GEN); ipu->dc_priv = priv; dev_dbg(dev, "DC base: 0x%08lx template base: 0x%08lx\n", base, template_base); /* rgb24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_RGB24); ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 0, 7, 0xff); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 1, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 2, 23, 0xff); /* red */ /* rgb565 */ ipu_dc_map_clear(priv, IPU_DC_MAP_RGB565); ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 0, 4, 0xf8); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 1, 10, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 2, 15, 0xf8); /* red */ /* gbr24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_GBR24); ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 2, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 1, 7, 0xff); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 0, 23, 0xff); /* red */ /* bgr666 */ ipu_dc_map_clear(priv, IPU_DC_MAP_BGR666); ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 0, 5, 0xfc); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 1, 11, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 2, 17, 0xfc); /* red */ /* lvds666 */ ipu_dc_map_clear(priv, IPU_DC_MAP_LVDS666); ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 0, 5, 0xfc); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 1, 13, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 2, 21, 0xfc); /* red */ /* bgr24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_BGR24); ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 2, 7, 0xff); /* red */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 1, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 0, 23, 0xff); /* blue */ return 0; } void ipu_dc_exit(struct ipu_soc *ipu) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1