/* SPDX-License-Identifier: GPL-2.0-only */ /* * * Copyright (c) 2011, Microsoft Corporation. * * Authors: * Haiyang Zhang <haiyangz@microsoft.com> * Hank Janssen <hjanssen@microsoft.com> * K. Y. Srinivasan <kys@microsoft.com> */ #ifndef _HYPERV_VMBUS_H #define _HYPERV_VMBUS_H #include <linux/list.h> #include <linux/bitops.h> #include <asm/sync_bitops.h> #include <asm/hyperv-tlfs.h> #include <linux/atomic.h> #include <linux/hyperv.h> #include <linux/interrupt.h> #include "hv_trace.h" /* * Timeout for services such as KVP and fcopy. */ #define HV_UTIL_TIMEOUT 30 /* * Timeout for guest-host handshake for services. */ #define HV_UTIL_NEGO_TIMEOUT 55 /* Definitions for the monitored notification facility */ union hv_monitor_trigger_group { u64 as_uint64; struct { u32 pending; u32 armed; }; }; struct hv_monitor_parameter { union hv_connection_id connectionid; u16 flagnumber; u16 rsvdz; }; union hv_monitor_trigger_state { u32 asu32; struct { u32 group_enable:4; u32 rsvdz:28; }; }; /* struct hv_monitor_page Layout */ /* ------------------------------------------------------ */ /* | 0 | TriggerState (4 bytes) | Rsvd1 (4 bytes) | */ /* | 8 | TriggerGroup[0] | */ /* | 10 | TriggerGroup[1] | */ /* | 18 | TriggerGroup[2] | */ /* | 20 | TriggerGroup[3] | */ /* | 28 | Rsvd2[0] | */ /* | 30 | Rsvd2[1] | */ /* | 38 | Rsvd2[2] | */ /* | 40 | NextCheckTime[0][0] | NextCheckTime[0][1] | */ /* | ... | */ /* | 240 | Latency[0][0..3] | */ /* | 340 | Rsvz3[0] | */ /* | 440 | Parameter[0][0] | */ /* | 448 | Parameter[0][1] | */ /* | ... | */ /* | 840 | Rsvd4[0] | */ /* ------------------------------------------------------ */ struct hv_monitor_page { union hv_monitor_trigger_state trigger_state; u32 rsvdz1; union hv_monitor_trigger_group trigger_group[4]; u64 rsvdz2[3]; s32 next_checktime[4][32]; u16 latency[4][32]; u64 rsvdz3[32]; struct hv_monitor_parameter parameter[4][32]; u8 rsvdz4[1984]; }; #define HV_HYPERCALL_PARAM_ALIGN sizeof(u64) /* Definition of the hv_post_message hypercall input structure. */ struct hv_input_post_message { union hv_connection_id connectionid; u32 reserved; u32 message_type; u32 payload_size; u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; }; enum { VMBUS_MESSAGE_CONNECTION_ID = 1, VMBUS_MESSAGE_CONNECTION_ID_4 = 4, VMBUS_MESSAGE_PORT_ID = 1, VMBUS_EVENT_CONNECTION_ID = 2, VMBUS_EVENT_PORT_ID = 2, VMBUS_MONITOR_CONNECTION_ID = 3, VMBUS_MONITOR_PORT_ID = 3, VMBUS_MESSAGE_SINT = 2, }; /* * Per cpu state for channel handling */ struct hv_per_cpu_context { void *synic_message_page; void *synic_event_page; /* * Starting with win8, we can take channel interrupts on any CPU; * we will manage the tasklet that handles events messages on a per CPU * basis. */ struct tasklet_struct msg_dpc; }; struct hv_context { /* We only support running on top of Hyper-V * So at this point this really can only contain the Hyper-V ID */ u64 guestid; struct hv_per_cpu_context __percpu *cpu_context; /* * To manage allocations in a NUMA node. * Array indexed by numa node ID. */ struct cpumask *hv_numa_map; }; extern struct hv_context hv_context; /* Hv Interface */ extern int hv_init(void); extern int hv_post_message(union hv_connection_id connection_id, enum hv_message_type message_type, void *payload, size_t payload_size); extern int hv_synic_alloc(void); extern void hv_synic_free(void); extern void hv_synic_enable_regs(unsigned int cpu); extern int hv_synic_init(unsigned int cpu); extern void hv_synic_disable_regs(unsigned int cpu); extern int hv_synic_cleanup(unsigned int cpu); /* Interface */ void hv_ringbuffer_pre_init(struct vmbus_channel *channel); int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, struct page *pages, u32 pagecnt, u32 max_pkt_size); void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info); int hv_ringbuffer_write(struct vmbus_channel *channel, const struct kvec *kv_list, u32 kv_count, u64 requestid, u64 *trans_id); int hv_ringbuffer_read(struct vmbus_channel *channel, void *buffer, u32 buflen, u32 *buffer_actual_len, u64 *requestid, bool raw); /* * The Maximum number of channels (16384) is determined by the size of the * interrupt page, which is HV_HYP_PAGE_SIZE. 1/2 of HV_HYP_PAGE_SIZE is to * send endpoint interrupts, and the other is to receive endpoint interrupts. */ #define MAX_NUM_CHANNELS ((HV_HYP_PAGE_SIZE >> 1) << 3) /* The value here must be in multiple of 32 */ #define MAX_NUM_CHANNELS_SUPPORTED 256 #define MAX_CHANNEL_RELIDS \ max(MAX_NUM_CHANNELS_SUPPORTED, HV_EVENT_FLAGS_COUNT) enum vmbus_connect_state { DISCONNECTED, CONNECTING, CONNECTED, DISCONNECTING }; #define MAX_SIZE_CHANNEL_MESSAGE HV_MESSAGE_PAYLOAD_BYTE_COUNT /* * The CPU that Hyper-V will interrupt for VMBUS messages, such as * CHANNELMSG_OFFERCHANNEL and CHANNELMSG_RESCIND_CHANNELOFFER. */ #define VMBUS_CONNECT_CPU 0 struct vmbus_connection { u32 msg_conn_id; atomic_t offer_in_progress; enum vmbus_connect_state conn_state; atomic_t next_gpadl_handle; struct completion unload_event; /* * Represents channel interrupts. Each bit position represents a * channel. When a channel sends an interrupt via VMBUS, it finds its * bit in the sendInterruptPage, set it and calls Hv to generate a port * event. The other end receives the port event and parse the * recvInterruptPage to see which bit is set */ void *int_page; void *send_int_page; void *recv_int_page; /* * 2 pages - 1st page for parent->child notification and 2nd * is child->parent notification */ struct hv_monitor_page *monitor_pages[2]; struct list_head chn_msg_list; spinlock_t channelmsg_lock; /* List of channels */ struct list_head chn_list; struct mutex channel_mutex; /* Array of channels */ struct vmbus_channel **channels; /* * An offer message is handled first on the work_queue, and then * is further handled on handle_primary_chan_wq or * handle_sub_chan_wq. */ struct workqueue_struct *work_queue; struct workqueue_struct *handle_primary_chan_wq; struct workqueue_struct *handle_sub_chan_wq; struct workqueue_struct *rescind_work_queue; /* * On suspension of the vmbus, the accumulated offer messages * must be dropped. */ bool ignore_any_offer_msg; /* * The number of sub-channels and hv_sock channels that should be * cleaned up upon suspend: sub-channels will be re-created upon * resume, and hv_sock channels should not survive suspend. */ atomic_t nr_chan_close_on_suspend; /* * vmbus_bus_suspend() waits for "nr_chan_close_on_suspend" to * drop to zero. */ struct completion ready_for_suspend_event; /* * The number of primary channels that should be "fixed up" * upon resume: these channels are re-offered upon resume, and some * fields of the channel offers (i.e. child_relid and connection_id) * can change, so the old offermsg must be fixed up, before the resume * callbacks of the VSC drivers start to further touch the channels. */ atomic_t nr_chan_fixup_on_resume; /* * vmbus_bus_resume() waits for "nr_chan_fixup_on_resume" to * drop to zero. */ struct completion ready_for_resume_event; }; struct vmbus_msginfo { /* Bookkeeping stuff */ struct list_head msglist_entry; /* The message itself */ unsigned char msg[]; }; extern struct vmbus_connection vmbus_connection; int vmbus_negotiate_version(struct vmbus_channel_msginfo *msginfo, u32 version); static inline void vmbus_send_interrupt(u32 relid) { sync_set_bit(relid, vmbus_connection.send_int_page); } enum vmbus_message_handler_type { /* The related handler can sleep. */ VMHT_BLOCKING = 0, /* The related handler must NOT sleep. */ VMHT_NON_BLOCKING = 1, }; struct vmbus_channel_message_table_entry { enum vmbus_channel_message_type message_type; enum vmbus_message_handler_type handler_type; void (*message_handler)(struct vmbus_channel_message_header *msg); u32 min_payload_len; }; extern const struct vmbus_channel_message_table_entry channel_message_table[CHANNELMSG_COUNT]; /* General vmbus interface */ struct hv_device *vmbus_device_create(const guid_t *type, const guid_t *instance, struct vmbus_channel *channel); int vmbus_device_register(struct hv_device *child_device_obj); void vmbus_device_unregister(struct hv_device *device_obj); int vmbus_add_channel_kobj(struct hv_device *device_obj, struct vmbus_channel *channel); void vmbus_remove_channel_attr_group(struct vmbus_channel *channel); void vmbus_channel_map_relid(struct vmbus_channel *channel); void vmbus_channel_unmap_relid(struct vmbus_channel *channel); struct vmbus_channel *relid2channel(u32 relid); void vmbus_free_channels(void); /* Connection interface */ int vmbus_connect(void); void vmbus_disconnect(void); int vmbus_post_msg(void *buffer, size_t buflen, bool can_sleep); void vmbus_on_event(unsigned long data); void vmbus_on_msg_dpc(unsigned long data); int hv_kvp_init(struct hv_util_service *srv); void hv_kvp_deinit(void); int hv_kvp_pre_suspend(void); int hv_kvp_pre_resume(void); void hv_kvp_onchannelcallback(void *context); int hv_vss_init(struct hv_util_service *srv); void hv_vss_deinit(void); int hv_vss_pre_suspend(void); int hv_vss_pre_resume(void); void hv_vss_onchannelcallback(void *context); int hv_fcopy_init(struct hv_util_service *srv); void hv_fcopy_deinit(void); int hv_fcopy_pre_suspend(void); int hv_fcopy_pre_resume(void); void hv_fcopy_onchannelcallback(void *context); void vmbus_initiate_unload(bool crash); static inline void hv_poll_channel(struct vmbus_channel *channel, void (*cb)(void *)) { if (!channel) return; cb(channel); } enum hvutil_device_state { HVUTIL_DEVICE_INIT = 0, /* driver is loaded, waiting for userspace */ HVUTIL_READY, /* userspace is registered */ HVUTIL_HOSTMSG_RECEIVED, /* message from the host was received */ HVUTIL_USERSPACE_REQ, /* request to userspace was sent */ HVUTIL_USERSPACE_RECV, /* reply from userspace was received */ HVUTIL_DEVICE_DYING, /* driver unload is in progress */ }; enum delay { INTERRUPT_DELAY = 0, MESSAGE_DELAY = 1, }; extern const struct vmbus_device vmbus_devs[]; static inline bool hv_is_perf_channel(struct vmbus_channel *channel) { return vmbus_devs[channel->device_id].perf_device; } static inline bool hv_is_allocated_cpu(unsigned int cpu) { struct vmbus_channel *channel, *sc; lockdep_assert_held(&vmbus_connection.channel_mutex); /* * List additions/deletions as well as updates of the target CPUs are * protected by channel_mutex. */ list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { if (!hv_is_perf_channel(channel)) continue; if (channel->target_cpu == cpu) return true; list_for_each_entry(sc, &channel->sc_list, sc_list) { if (sc->target_cpu == cpu) return true; } } return false; } static inline void hv_set_allocated_cpu(unsigned int cpu) { cpumask_set_cpu(cpu, &hv_context.hv_numa_map[cpu_to_node(cpu)]); } static inline void hv_clear_allocated_cpu(unsigned int cpu) { if (hv_is_allocated_cpu(cpu)) return; cpumask_clear_cpu(cpu, &hv_context.hv_numa_map[cpu_to_node(cpu)]); } static inline void hv_update_allocated_cpus(unsigned int old_cpu, unsigned int new_cpu) { hv_set_allocated_cpu(new_cpu); hv_clear_allocated_cpu(old_cpu); } #ifdef CONFIG_HYPERV_TESTING int hv_debug_add_dev_dir(struct hv_device *dev); void hv_debug_rm_dev_dir(struct hv_device *dev); void hv_debug_rm_all_dir(void); int hv_debug_init(void); void hv_debug_delay_test(struct vmbus_channel *channel, enum delay delay_type); #else /* CONFIG_HYPERV_TESTING */ static inline void hv_debug_rm_dev_dir(struct hv_device *dev) {}; static inline void hv_debug_rm_all_dir(void) {}; static inline void hv_debug_delay_test(struct vmbus_channel *channel, enum delay delay_type) {}; static inline int hv_debug_init(void) { return -1; } static inline int hv_debug_add_dev_dir(struct hv_device *dev) { return -1; } #endif /* CONFIG_HYPERV_TESTING */ #endif /* _HYPERV_VMBUS_H */