Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krzysztof Helt | 669 | 27.61% | 3 | 5.36% |
Pavel Machek | 530 | 21.87% | 1 | 1.79% |
Guenter Roeck | 406 | 16.76% | 8 | 14.29% |
Jean Delvare | 222 | 9.16% | 9 | 16.07% |
Michael Abbott | 138 | 5.70% | 2 | 3.57% |
Axel Lin | 136 | 5.61% | 3 | 5.36% |
Greg Kroah-Hartman | 118 | 4.87% | 5 | 8.93% |
Mark M. Hoffman | 106 | 4.37% | 4 | 7.14% |
Linus Torvalds (pre-git) | 23 | 0.95% | 5 | 8.93% |
Christoph Hellwig | 14 | 0.58% | 2 | 3.57% |
Ingo Molnar | 12 | 0.50% | 1 | 1.79% |
Margit Schubert-While | 9 | 0.37% | 1 | 1.79% |
Alexey Dobriyan | 8 | 0.33% | 1 | 1.79% |
Stephen Kitt | 7 | 0.29% | 1 | 1.79% |
Linus Torvalds | 6 | 0.25% | 2 | 3.57% |
Julia Lawall | 5 | 0.21% | 1 | 1.79% |
Laurent Riffard | 5 | 0.21% | 1 | 1.79% |
Paul Fertser | 3 | 0.12% | 1 | 1.79% |
Thomas Gleixner | 2 | 0.08% | 1 | 1.79% |
Wolfram Sang | 1 | 0.04% | 1 | 1.79% |
OGAWA Hirofumi | 1 | 0.04% | 1 | 1.79% |
Andrey Borzenkov | 1 | 0.04% | 1 | 1.79% |
Uwe Kleine-König | 1 | 0.04% | 1 | 1.79% |
Total | 2423 | 56 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * adm1021.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and * Philip Edelbrock <phil@netroedge.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END }; enum chips { adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm, mc1066 }; /* adm1021 constants specified below */ /* The adm1021 registers */ /* Read-only */ /* For nr in 0-1 */ #define ADM1021_REG_TEMP(nr) (nr) #define ADM1021_REG_STATUS 0x02 /* 0x41 = AD, 0x49 = TI, 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi */ #define ADM1021_REG_MAN_ID 0xFE /* ADM1021 = 0x0X, ADM1023 = 0x3X */ #define ADM1021_REG_DEV_ID 0xFF /* These use different addresses for reading/writing */ #define ADM1021_REG_CONFIG_R 0x03 #define ADM1021_REG_CONFIG_W 0x09 #define ADM1021_REG_CONV_RATE_R 0x04 #define ADM1021_REG_CONV_RATE_W 0x0A /* These are for the ADM1023's additional precision on the remote temp sensor */ #define ADM1023_REG_REM_TEMP_PREC 0x10 #define ADM1023_REG_REM_OFFSET 0x11 #define ADM1023_REG_REM_OFFSET_PREC 0x12 #define ADM1023_REG_REM_TOS_PREC 0x13 #define ADM1023_REG_REM_THYST_PREC 0x14 /* limits */ /* For nr in 0-1 */ #define ADM1021_REG_TOS_R(nr) (0x05 + 2 * (nr)) #define ADM1021_REG_TOS_W(nr) (0x0B + 2 * (nr)) #define ADM1021_REG_THYST_R(nr) (0x06 + 2 * (nr)) #define ADM1021_REG_THYST_W(nr) (0x0C + 2 * (nr)) /* write-only */ #define ADM1021_REG_ONESHOT 0x0F /* Initial values */ /* * Note: Even though I left the low and high limits named os and hyst, * they don't quite work like a thermostat the way the LM75 does. I.e., * a lower temp than THYST actually triggers an alarm instead of * clearing it. Weird, ey? --Phil */ /* Each client has this additional data */ struct adm1021_data { struct i2c_client *client; enum chips type; const struct attribute_group *groups[3]; struct mutex update_lock; bool valid; /* true if following fields are valid */ char low_power; /* !=0 if device in low power mode */ unsigned long last_updated; /* In jiffies */ int temp_max[2]; /* Register values */ int temp_min[2]; int temp[2]; u8 alarms; /* Special values for ADM1023 only */ u8 remote_temp_offset; u8 remote_temp_offset_prec; }; /* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */ static bool read_only; static struct adm1021_data *adm1021_update_device(struct device *dev) { struct adm1021_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { int i; dev_dbg(dev, "Starting adm1021 update\n"); for (i = 0; i < 2; i++) { data->temp[i] = 1000 * (s8) i2c_smbus_read_byte_data( client, ADM1021_REG_TEMP(i)); data->temp_max[i] = 1000 * (s8) i2c_smbus_read_byte_data( client, ADM1021_REG_TOS_R(i)); if (data->type != lm84) { data->temp_min[i] = 1000 * (s8) i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(i)); } } data->alarms = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS) & 0x7c; if (data->type == adm1023) { /* * The ADM1023 provides 3 extra bits of precision for * the remote sensor in extra registers. */ data->temp[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_TEMP_PREC) >> 5); data->temp_max[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_TOS_PREC) >> 5); data->temp_min[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_THYST_PREC) >> 5); data->remote_temp_offset = i2c_smbus_read_byte_data(client, ADM1023_REG_REM_OFFSET); data->remote_temp_offset_prec = i2c_smbus_read_byte_data(client, ADM1023_REG_REM_OFFSET_PREC); } data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } static ssize_t temp_show(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp[index]); } static ssize_t temp_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp_max[index]); } static ssize_t temp_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp_min[index]); } static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> index) & 1); } static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static ssize_t temp_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; int reg_val, err; err = kstrtol(buf, 10, &temp); if (err) return err; temp /= 1000; mutex_lock(&data->update_lock); reg_val = clamp_val(temp, -128, 127); data->temp_max[index] = reg_val * 1000; if (!read_only) i2c_smbus_write_byte_data(client, ADM1021_REG_TOS_W(index), reg_val); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; int reg_val, err; err = kstrtol(buf, 10, &temp); if (err) return err; temp /= 1000; mutex_lock(&data->update_lock); reg_val = clamp_val(temp, -128, 127); data->temp_min[index] = reg_val * 1000; if (!read_only) i2c_smbus_write_byte_data(client, ADM1021_REG_THYST_W(index), reg_val); mutex_unlock(&data->update_lock); return count; } static ssize_t low_power_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->low_power); } static ssize_t low_power_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct adm1021_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; char low_power; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; low_power = val != 0; mutex_lock(&data->update_lock); if (low_power != data->low_power) { int config = i2c_smbus_read_byte_data( client, ADM1021_REG_CONFIG_R); data->low_power = low_power; i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W, (config & 0xBF) | (low_power << 6)); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 2); static DEVICE_ATTR_RO(alarms); static DEVICE_ATTR_RW(low_power); static struct attribute *adm1021_attributes[] = { &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_low_power.attr, NULL }; static const struct attribute_group adm1021_group = { .attrs = adm1021_attributes, }; static struct attribute *adm1021_min_attributes[] = { &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, NULL }; static const struct attribute_group adm1021_min_group = { .attrs = adm1021_min_attributes, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1021_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *type_name; int reg, conv_rate, status, config, man_id, dev_id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { pr_debug("detect failed, smbus byte data not supported!\n"); return -ENODEV; } status = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS); conv_rate = i2c_smbus_read_byte_data(client, ADM1021_REG_CONV_RATE_R); config = i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R); /* Check unused bits */ if ((status & 0x03) || (config & 0x3F) || (conv_rate & 0xF8)) { pr_debug("detect failed, chip not detected!\n"); return -ENODEV; } /* Determine the chip type. */ man_id = i2c_smbus_read_byte_data(client, ADM1021_REG_MAN_ID); dev_id = i2c_smbus_read_byte_data(client, ADM1021_REG_DEV_ID); if (man_id < 0 || dev_id < 0) return -ENODEV; if (man_id == 0x4d && dev_id == 0x01) { /* * dev_id 0x01 matches MAX6680, MAX6695, MAX6696, and possibly * others. Read register which is unsupported on MAX1617 but * exists on all those chips and compare with the dev_id * register. If it matches, it may be a MAX1617A. */ reg = i2c_smbus_read_byte_data(client, ADM1023_REG_REM_TEMP_PREC); if (reg != dev_id) return -ENODEV; type_name = "max1617a"; } else if (man_id == 0x41) { if ((dev_id & 0xF0) == 0x30) type_name = "adm1023"; else if ((dev_id & 0xF0) == 0x00) type_name = "adm1021"; else return -ENODEV; } else if (man_id == 0x49) type_name = "thmc10"; else if (man_id == 0x23) type_name = "gl523sm"; else if (man_id == 0x54) type_name = "mc1066"; else { int lte, rte, lhi, rhi, llo, rlo; /* extra checks for LM84 and MAX1617 to avoid misdetections */ llo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(0)); rlo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(1)); /* fail if any of the additional register reads failed */ if (llo < 0 || rlo < 0) return -ENODEV; lte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(0)); rte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(1)); lhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(0)); rhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(1)); /* * Fail for negative temperatures and negative high limits. * This check also catches read errors on the tested registers. */ if ((s8)lte < 0 || (s8)rte < 0 || (s8)lhi < 0 || (s8)rhi < 0) return -ENODEV; /* fail if all registers hold the same value */ if (lte == rte && lte == lhi && lte == rhi && lte == llo && lte == rlo) return -ENODEV; /* * LM84 Mfr ID is in a different place, * and it has more unused bits. Registers at 0xfe and 0xff * are undefined and return the most recently read value, * here the value of the configuration register. */ if (conv_rate == 0x00 && man_id == config && dev_id == config && (config & 0x7F) == 0x00 && (status & 0xAB) == 0x00) { type_name = "lm84"; } else { if ((config & 0x3f) || (status & 0x03)) return -ENODEV; /* fail if low limits are larger than high limits */ if ((s8)llo > lhi || (s8)rlo > rhi) return -ENODEV; type_name = "max1617"; } } pr_debug("Detected chip %s at adapter %d, address 0x%02x.\n", type_name, i2c_adapter_id(adapter), client->addr); strscpy(info->type, type_name, I2C_NAME_SIZE); return 0; } static void adm1021_init_client(struct i2c_client *client) { /* Enable ADC and disable suspend mode */ i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W, i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R) & 0xBF); /* Set Conversion rate to 1/sec (this can be tinkered with) */ i2c_smbus_write_byte_data(client, ADM1021_REG_CONV_RATE_W, 0x04); } static const struct i2c_device_id adm1021_id[]; static int adm1021_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct adm1021_data *data; struct device *hwmon_dev; data = devm_kzalloc(dev, sizeof(struct adm1021_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; data->type = i2c_match_id(adm1021_id, client)->driver_data; mutex_init(&data->update_lock); /* Initialize the ADM1021 chip */ if (data->type != lm84 && !read_only) adm1021_init_client(client); data->groups[0] = &adm1021_group; if (data->type != lm84) data->groups[1] = &adm1021_min_group; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adm1021_id[] = { { "adm1021", adm1021 }, { "adm1023", adm1023 }, { "max1617", max1617 }, { "max1617a", max1617a }, { "thmc10", thmc10 }, { "lm84", lm84 }, { "gl523sm", gl523sm }, { "mc1066", mc1066 }, { } }; MODULE_DEVICE_TABLE(i2c, adm1021_id); static struct i2c_driver adm1021_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1021", }, .probe = adm1021_probe, .id_table = adm1021_id, .detect = adm1021_detect, .address_list = normal_i2c, }; module_i2c_driver(adm1021_driver); MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " "Philip Edelbrock <phil@netroedge.com>"); MODULE_DESCRIPTION("adm1021 driver"); MODULE_LICENSE("GPL"); module_param(read_only, bool, 0); MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1