Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Max Schwarz | 3265 | 61.78% | 2 | 5.56% |
David Wu | 1250 | 23.65% | 8 | 22.22% |
addy ke | 418 | 7.91% | 4 | 11.11% |
John Keeping | 165 | 3.12% | 2 | 5.56% |
Doug Anderson | 77 | 1.46% | 3 | 8.33% |
Jagan Teki | 20 | 0.38% | 1 | 2.78% |
Andy Yan | 14 | 0.26% | 1 | 2.78% |
Yakir Yang | 12 | 0.23% | 1 | 2.78% |
Krzysztof Kozlowski | 12 | 0.23% | 1 | 2.78% |
Randy Dunlap | 11 | 0.21% | 1 | 2.78% |
Alexandru M Stan | 8 | 0.15% | 1 | 2.78% |
Luis de Bethencourt | 7 | 0.13% | 1 | 2.78% |
Dmitry Torokhov | 6 | 0.11% | 1 | 2.78% |
Andy Shevchenko | 6 | 0.11% | 1 | 2.78% |
Ondrej Jirman | 3 | 0.06% | 1 | 2.78% |
Uwe Kleine-König | 2 | 0.04% | 1 | 2.78% |
Dejin Zheng | 2 | 0.04% | 1 | 2.78% |
Dan Carpenter | 2 | 0.04% | 1 | 2.78% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.78% |
Julia Lawall | 1 | 0.02% | 1 | 2.78% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 2.78% |
Wolfram Sang | 1 | 0.02% | 1 | 2.78% |
Total | 5285 | 36 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for I2C adapter in Rockchip RK3xxx SoC * * Max Schwarz <max.schwarz@online.de> * based on the patches by Rockchip Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/spinlock.h> #include <linux/clk.h> #include <linux/wait.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/math64.h> /* Register Map */ #define REG_CON 0x00 /* control register */ #define REG_CLKDIV 0x04 /* clock divisor register */ #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */ #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */ #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */ #define REG_MRXCNT 0x14 /* number of bytes to be received */ #define REG_IEN 0x18 /* interrupt enable */ #define REG_IPD 0x1c /* interrupt pending */ #define REG_FCNT 0x20 /* finished count */ /* Data buffer offsets */ #define TXBUFFER_BASE 0x100 #define RXBUFFER_BASE 0x200 /* REG_CON bits */ #define REG_CON_EN BIT(0) enum { REG_CON_MOD_TX = 0, /* transmit data */ REG_CON_MOD_REGISTER_TX, /* select register and restart */ REG_CON_MOD_RX, /* receive data */ REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes * register addr */ }; #define REG_CON_MOD(mod) ((mod) << 1) #define REG_CON_MOD_MASK (BIT(1) | BIT(2)) #define REG_CON_START BIT(3) #define REG_CON_STOP BIT(4) #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8) #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) #define REG_CON_STA_CFG(cfg) ((cfg) << 12) #define REG_CON_STO_CFG(cfg) ((cfg) << 14) /* REG_MRXADDR bits */ #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ /* REG_IEN/REG_IPD bits */ #define REG_INT_BTF BIT(0) /* a byte was transmitted */ #define REG_INT_BRF BIT(1) /* a byte was received */ #define REG_INT_MBTF BIT(2) /* master data transmit finished */ #define REG_INT_MBRF BIT(3) /* master data receive finished */ #define REG_INT_START BIT(4) /* START condition generated */ #define REG_INT_STOP BIT(5) /* STOP condition generated */ #define REG_INT_NAKRCV BIT(6) /* NACK received */ #define REG_INT_ALL 0x7f /* Constants */ #define WAIT_TIMEOUT 1000 /* ms */ #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */ /** * struct i2c_spec_values - I2C specification values for various modes * @min_hold_start_ns: min hold time (repeated) START condition * @min_low_ns: min LOW period of the SCL clock * @min_high_ns: min HIGH period of the SCL cloc * @min_setup_start_ns: min set-up time for a repeated START conditio * @max_data_hold_ns: max data hold time * @min_data_setup_ns: min data set-up time * @min_setup_stop_ns: min set-up time for STOP condition * @min_hold_buffer_ns: min bus free time between a STOP and * START condition */ struct i2c_spec_values { unsigned long min_hold_start_ns; unsigned long min_low_ns; unsigned long min_high_ns; unsigned long min_setup_start_ns; unsigned long max_data_hold_ns; unsigned long min_data_setup_ns; unsigned long min_setup_stop_ns; unsigned long min_hold_buffer_ns; }; static const struct i2c_spec_values standard_mode_spec = { .min_hold_start_ns = 4000, .min_low_ns = 4700, .min_high_ns = 4000, .min_setup_start_ns = 4700, .max_data_hold_ns = 3450, .min_data_setup_ns = 250, .min_setup_stop_ns = 4000, .min_hold_buffer_ns = 4700, }; static const struct i2c_spec_values fast_mode_spec = { .min_hold_start_ns = 600, .min_low_ns = 1300, .min_high_ns = 600, .min_setup_start_ns = 600, .max_data_hold_ns = 900, .min_data_setup_ns = 100, .min_setup_stop_ns = 600, .min_hold_buffer_ns = 1300, }; static const struct i2c_spec_values fast_mode_plus_spec = { .min_hold_start_ns = 260, .min_low_ns = 500, .min_high_ns = 260, .min_setup_start_ns = 260, .max_data_hold_ns = 400, .min_data_setup_ns = 50, .min_setup_stop_ns = 260, .min_hold_buffer_ns = 500, }; /** * struct rk3x_i2c_calced_timings - calculated V1 timings * @div_low: Divider output for low * @div_high: Divider output for high * @tuning: Used to adjust setup/hold data time, * setup/hold start time and setup stop time for * v1's calc_timings, the tuning should all be 0 * for old hardware anyone using v0's calc_timings. */ struct rk3x_i2c_calced_timings { unsigned long div_low; unsigned long div_high; unsigned int tuning; }; enum rk3x_i2c_state { STATE_IDLE, STATE_START, STATE_READ, STATE_WRITE, STATE_STOP }; /** * struct rk3x_i2c_soc_data - SOC-specific data * @grf_offset: offset inside the grf regmap for setting the i2c type * @calc_timings: Callback function for i2c timing information calculated */ struct rk3x_i2c_soc_data { int grf_offset; int (*calc_timings)(unsigned long, struct i2c_timings *, struct rk3x_i2c_calced_timings *); }; /** * struct rk3x_i2c - private data of the controller * @adap: corresponding I2C adapter * @dev: device for this controller * @soc_data: related soc data struct * @regs: virtual memory area * @clk: function clk for rk3399 or function & Bus clks for others * @pclk: Bus clk for rk3399 * @clk_rate_nb: i2c clk rate change notify * @t: I2C known timing information * @lock: spinlock for the i2c bus * @wait: the waitqueue to wait for i2c transfer * @busy: the condition for the event to wait for * @msg: current i2c message * @addr: addr of i2c slave device * @mode: mode of i2c transfer * @is_last_msg: flag determines whether it is the last msg in this transfer * @state: state of i2c transfer * @processed: byte length which has been send or received * @error: error code for i2c transfer */ struct rk3x_i2c { struct i2c_adapter adap; struct device *dev; const struct rk3x_i2c_soc_data *soc_data; /* Hardware resources */ void __iomem *regs; struct clk *clk; struct clk *pclk; struct notifier_block clk_rate_nb; /* Settings */ struct i2c_timings t; /* Synchronization & notification */ spinlock_t lock; wait_queue_head_t wait; bool busy; /* Current message */ struct i2c_msg *msg; u8 addr; unsigned int mode; bool is_last_msg; /* I2C state machine */ enum rk3x_i2c_state state; unsigned int processed; int error; }; static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, unsigned int offset) { writel(value, i2c->regs + offset); } static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) { return readl(i2c->regs + offset); } /* Reset all interrupt pending bits */ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) { i2c_writel(i2c, REG_INT_ALL, REG_IPD); } /** * rk3x_i2c_start - Generate a START condition, which triggers a REG_INT_START interrupt. * @i2c: target controller data */ static void rk3x_i2c_start(struct rk3x_i2c *i2c) { u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; i2c_writel(i2c, REG_INT_START, REG_IEN); /* enable adapter with correct mode, send START condition */ val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; /* if we want to react to NACK, set ACTACK bit */ if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) val |= REG_CON_ACTACK; i2c_writel(i2c, val, REG_CON); } /** * rk3x_i2c_stop - Generate a STOP condition, which triggers a REG_INT_STOP interrupt. * @i2c: target controller data * @error: Error code to return in rk3x_i2c_xfer */ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) { unsigned int ctrl; i2c->processed = 0; i2c->msg = NULL; i2c->error = error; if (i2c->is_last_msg) { /* Enable stop interrupt */ i2c_writel(i2c, REG_INT_STOP, REG_IEN); i2c->state = STATE_STOP; ctrl = i2c_readl(i2c, REG_CON); ctrl |= REG_CON_STOP; i2c_writel(i2c, ctrl, REG_CON); } else { /* Signal rk3x_i2c_xfer to start the next message. */ i2c->busy = false; i2c->state = STATE_IDLE; /* * The HW is actually not capable of REPEATED START. But we can * get the intended effect by resetting its internal state * and issuing an ordinary START. */ ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; i2c_writel(i2c, ctrl, REG_CON); /* signal that we are finished with the current msg */ wake_up(&i2c->wait); } } /** * rk3x_i2c_prepare_read - Setup a read according to i2c->msg * @i2c: target controller data */ static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) { unsigned int len = i2c->msg->len - i2c->processed; u32 con; con = i2c_readl(i2c, REG_CON); /* * The hw can read up to 32 bytes at a time. If we need more than one * chunk, send an ACK after the last byte of the current chunk. */ if (len > 32) { len = 32; con &= ~REG_CON_LASTACK; } else { con |= REG_CON_LASTACK; } /* make sure we are in plain RX mode if we read a second chunk */ if (i2c->processed != 0) { con &= ~REG_CON_MOD_MASK; con |= REG_CON_MOD(REG_CON_MOD_RX); } i2c_writel(i2c, con, REG_CON); i2c_writel(i2c, len, REG_MRXCNT); } /** * rk3x_i2c_fill_transmit_buf - Fill the transmit buffer with data from i2c->msg * @i2c: target controller data */ static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) { unsigned int i, j; u32 cnt = 0; u32 val; u8 byte; for (i = 0; i < 8; ++i) { val = 0; for (j = 0; j < 4; ++j) { if ((i2c->processed == i2c->msg->len) && (cnt != 0)) break; if (i2c->processed == 0 && cnt == 0) byte = (i2c->addr & 0x7f) << 1; else byte = i2c->msg->buf[i2c->processed++]; val |= byte << (j * 8); cnt++; } i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); if (i2c->processed == i2c->msg->len) break; } i2c_writel(i2c, cnt, REG_MTXCNT); } /* IRQ handlers for individual states */ static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) { if (!(ipd & REG_INT_START)) { rk3x_i2c_stop(i2c, -EIO); dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); rk3x_i2c_clean_ipd(i2c); return; } /* ack interrupt */ i2c_writel(i2c, REG_INT_START, REG_IPD); /* disable start bit */ i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); /* enable appropriate interrupts and transition */ if (i2c->mode == REG_CON_MOD_TX) { i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); i2c->state = STATE_WRITE; rk3x_i2c_fill_transmit_buf(i2c); } else { /* in any other case, we are going to be reading. */ i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); i2c->state = STATE_READ; rk3x_i2c_prepare_read(i2c); } } static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) { if (!(ipd & REG_INT_MBTF)) { rk3x_i2c_stop(i2c, -EIO); dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); rk3x_i2c_clean_ipd(i2c); return; } /* ack interrupt */ i2c_writel(i2c, REG_INT_MBTF, REG_IPD); /* are we finished? */ if (i2c->processed == i2c->msg->len) rk3x_i2c_stop(i2c, i2c->error); else rk3x_i2c_fill_transmit_buf(i2c); } static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) { unsigned int i; unsigned int len = i2c->msg->len - i2c->processed; u32 val; u8 byte; /* we only care for MBRF here. */ if (!(ipd & REG_INT_MBRF)) return; /* ack interrupt (read also produces a spurious START flag, clear it too) */ i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD); /* Can only handle a maximum of 32 bytes at a time */ if (len > 32) len = 32; /* read the data from receive buffer */ for (i = 0; i < len; ++i) { if (i % 4 == 0) val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); byte = (val >> ((i % 4) * 8)) & 0xff; i2c->msg->buf[i2c->processed++] = byte; } /* are we finished? */ if (i2c->processed == i2c->msg->len) rk3x_i2c_stop(i2c, i2c->error); else rk3x_i2c_prepare_read(i2c); } static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) { unsigned int con; if (!(ipd & REG_INT_STOP)) { rk3x_i2c_stop(i2c, -EIO); dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); rk3x_i2c_clean_ipd(i2c); return; } /* ack interrupt */ i2c_writel(i2c, REG_INT_STOP, REG_IPD); /* disable STOP bit */ con = i2c_readl(i2c, REG_CON); con &= ~REG_CON_STOP; i2c_writel(i2c, con, REG_CON); i2c->busy = false; i2c->state = STATE_IDLE; /* signal rk3x_i2c_xfer that we are finished */ wake_up(&i2c->wait); } static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) { struct rk3x_i2c *i2c = dev_id; unsigned int ipd; spin_lock(&i2c->lock); ipd = i2c_readl(i2c, REG_IPD); if (i2c->state == STATE_IDLE) { dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); rk3x_i2c_clean_ipd(i2c); goto out; } dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); /* Clean interrupt bits we don't care about */ ipd &= ~(REG_INT_BRF | REG_INT_BTF); if (ipd & REG_INT_NAKRCV) { /* * We got a NACK in the last operation. Depending on whether * IGNORE_NAK is set, we have to stop the operation and report * an error. */ i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); ipd &= ~REG_INT_NAKRCV; if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) rk3x_i2c_stop(i2c, -ENXIO); } /* is there anything left to handle? */ if ((ipd & REG_INT_ALL) == 0) goto out; switch (i2c->state) { case STATE_START: rk3x_i2c_handle_start(i2c, ipd); break; case STATE_WRITE: rk3x_i2c_handle_write(i2c, ipd); break; case STATE_READ: rk3x_i2c_handle_read(i2c, ipd); break; case STATE_STOP: rk3x_i2c_handle_stop(i2c, ipd); break; case STATE_IDLE: break; } out: spin_unlock(&i2c->lock); return IRQ_HANDLED; } /** * rk3x_i2c_get_spec - Get timing values of I2C specification * @speed: Desired SCL frequency * * Return: Matched i2c_spec_values. */ static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) { if (speed <= I2C_MAX_STANDARD_MODE_FREQ) return &standard_mode_spec; else if (speed <= I2C_MAX_FAST_MODE_FREQ) return &fast_mode_spec; else return &fast_mode_plus_spec; } /** * rk3x_i2c_v0_calc_timings - Calculate divider values for desired SCL frequency * @clk_rate: I2C input clock rate * @t: Known I2C timing information * @t_calc: Caculated rk3x private timings that would be written into regs * * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case * a best-effort divider value is returned in divs. If the target rate is * too high, we silently use the highest possible rate. */ static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, struct i2c_timings *t, struct rk3x_i2c_calced_timings *t_calc) { unsigned long min_low_ns, min_high_ns; unsigned long max_low_ns, min_total_ns; unsigned long clk_rate_khz, scl_rate_khz; unsigned long min_low_div, min_high_div; unsigned long max_low_div; unsigned long min_div_for_hold, min_total_div; unsigned long extra_div, extra_low_div, ideal_low_div; unsigned long data_hold_buffer_ns = 50; const struct i2c_spec_values *spec; int ret = 0; /* Only support standard-mode and fast-mode */ if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)) t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ; /* prevent scl_rate_khz from becoming 0 */ if (WARN_ON(t->bus_freq_hz < 1000)) t->bus_freq_hz = 1000; /* * min_low_ns: The minimum number of ns we need to hold low to * meet I2C specification, should include fall time. * min_high_ns: The minimum number of ns we need to hold high to * meet I2C specification, should include rise time. * max_low_ns: The maximum number of ns we can hold low to meet * I2C specification. * * Note: max_low_ns should be (maximum data hold time * 2 - buffer) * This is because the i2c host on Rockchip holds the data line * for half the low time. */ spec = rk3x_i2c_get_spec(t->bus_freq_hz); min_high_ns = t->scl_rise_ns + spec->min_high_ns; /* * Timings for repeated start: * - controller appears to drop SDA at .875x (7/8) programmed clk high. * - controller appears to keep SCL high for 2x programmed clk high. * * We need to account for those rules in picking our "high" time so * we meet tSU;STA and tHD;STA times. */ min_high_ns = max(min_high_ns, DIV_ROUND_UP( (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); min_high_ns = max(min_high_ns, DIV_ROUND_UP( (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + spec->min_high_ns), 2)); min_low_ns = t->scl_fall_ns + spec->min_low_ns; max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns; min_total_ns = min_low_ns + min_high_ns; /* Adjust to avoid overflow */ clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); scl_rate_khz = t->bus_freq_hz / 1000; /* * We need the total div to be >= this number * so we don't clock too fast. */ min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); /* These are the min dividers needed for min hold times. */ min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); min_div_for_hold = (min_low_div + min_high_div); /* * This is the maximum divider so we don't go over the maximum. * We don't round up here (we round down) since this is a maximum. */ max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); if (min_low_div > max_low_div) { WARN_ONCE(true, "Conflicting, min_low_div %lu, max_low_div %lu\n", min_low_div, max_low_div); max_low_div = min_low_div; } if (min_div_for_hold > min_total_div) { /* * Time needed to meet hold requirements is important. * Just use that. */ t_calc->div_low = min_low_div; t_calc->div_high = min_high_div; } else { /* * We've got to distribute some time among the low and high * so we don't run too fast. */ extra_div = min_total_div - min_div_for_hold; /* * We'll try to split things up perfectly evenly, * biasing slightly towards having a higher div * for low (spend more time low). */ ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, scl_rate_khz * 8 * min_total_ns); /* Don't allow it to go over the maximum */ if (ideal_low_div > max_low_div) ideal_low_div = max_low_div; /* * Handle when the ideal low div is going to take up * more than we have. */ if (ideal_low_div > min_low_div + extra_div) ideal_low_div = min_low_div + extra_div; /* Give low the "ideal" and give high whatever extra is left */ extra_low_div = ideal_low_div - min_low_div; t_calc->div_low = ideal_low_div; t_calc->div_high = min_high_div + (extra_div - extra_low_div); } /* * Adjust to the fact that the hardware has an implicit "+1". * NOTE: Above calculations always produce div_low > 0 and div_high > 0. */ t_calc->div_low--; t_calc->div_high--; /* Give the tuning value 0, that would not update con register */ t_calc->tuning = 0; /* Maximum divider supported by hw is 0xffff */ if (t_calc->div_low > 0xffff) { t_calc->div_low = 0xffff; ret = -EINVAL; } if (t_calc->div_high > 0xffff) { t_calc->div_high = 0xffff; ret = -EINVAL; } return ret; } /** * rk3x_i2c_v1_calc_timings - Calculate timing values for desired SCL frequency * @clk_rate: I2C input clock rate * @t: Known I2C timing information * @t_calc: Caculated rk3x private timings that would be written into regs * * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case * a best-effort divider value is returned in divs. If the target rate is * too high, we silently use the highest possible rate. * The following formulas are v1's method to calculate timings. * * l = divl + 1; * h = divh + 1; * s = sda_update_config + 1; * u = start_setup_config + 1; * p = stop_setup_config + 1; * T = Tclk_i2c; * * tHigh = 8 * h * T; * tLow = 8 * l * T; * * tHD;sda = (l * s + 1) * T; * tSU;sda = [(8 - s) * l + 1] * T; * tI2C = 8 * (l + h) * T; * * tSU;sta = (8h * u + 1) * T; * tHD;sta = [8h * (u + 1) - 1] * T; * tSU;sto = (8h * p + 1) * T; */ static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, struct i2c_timings *t, struct rk3x_i2c_calced_timings *t_calc) { unsigned long min_low_ns, min_high_ns; unsigned long min_setup_start_ns, min_setup_data_ns; unsigned long min_setup_stop_ns, max_hold_data_ns; unsigned long clk_rate_khz, scl_rate_khz; unsigned long min_low_div, min_high_div; unsigned long min_div_for_hold, min_total_div; unsigned long extra_div, extra_low_div; unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; const struct i2c_spec_values *spec; int ret = 0; /* Support standard-mode, fast-mode and fast-mode plus */ if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ)) t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ; /* prevent scl_rate_khz from becoming 0 */ if (WARN_ON(t->bus_freq_hz < 1000)) t->bus_freq_hz = 1000; /* * min_low_ns: The minimum number of ns we need to hold low to * meet I2C specification, should include fall time. * min_high_ns: The minimum number of ns we need to hold high to * meet I2C specification, should include rise time. */ spec = rk3x_i2c_get_spec(t->bus_freq_hz); /* calculate min-divh and min-divl */ clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); scl_rate_khz = t->bus_freq_hz / 1000; min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); min_high_ns = t->scl_rise_ns + spec->min_high_ns; min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); min_low_ns = t->scl_fall_ns + spec->min_low_ns; min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); /* * Final divh and divl must be greater than 0, otherwise the * hardware would not output the i2c clk. */ min_high_div = (min_high_div < 1) ? 2 : min_high_div; min_low_div = (min_low_div < 1) ? 2 : min_low_div; /* These are the min dividers needed for min hold times. */ min_div_for_hold = (min_low_div + min_high_div); /* * This is the maximum divider so we don't go over the maximum. * We don't round up here (we round down) since this is a maximum. */ if (min_div_for_hold >= min_total_div) { /* * Time needed to meet hold requirements is important. * Just use that. */ t_calc->div_low = min_low_div; t_calc->div_high = min_high_div; } else { /* * We've got to distribute some time among the low and high * so we don't run too fast. * We'll try to split things up by the scale of min_low_div and * min_high_div, biasing slightly towards having a higher div * for low (spend more time low). */ extra_div = min_total_div - min_div_for_hold; extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, min_div_for_hold); t_calc->div_low = min_low_div + extra_low_div; t_calc->div_high = min_high_div + (extra_div - extra_low_div); } /* * calculate sda data hold count by the rules, data_upd_st:3 * is a appropriate value to reduce calculated times. */ for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg * (t_calc->div_low) + 1) * 1000000, clk_rate_khz); min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg) * (t_calc->div_low) + 1) * 1000000, clk_rate_khz); if ((max_hold_data_ns < spec->max_data_hold_ns) && (min_setup_data_ns > spec->min_data_setup_ns)) break; } /* calculate setup start config */ min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns - 1000000, 8 * 1000000 * (t_calc->div_high)); /* calculate setup stop config */ min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns - 1000000, 8 * 1000000 * (t_calc->div_high)); t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | REG_CON_STA_CFG(--stp_sta_cfg) | REG_CON_STO_CFG(--stp_sto_cfg); t_calc->div_low--; t_calc->div_high--; /* Maximum divider supported by hw is 0xffff */ if (t_calc->div_low > 0xffff) { t_calc->div_low = 0xffff; ret = -EINVAL; } if (t_calc->div_high > 0xffff) { t_calc->div_high = 0xffff; ret = -EINVAL; } return ret; } static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) { struct i2c_timings *t = &i2c->t; struct rk3x_i2c_calced_timings calc; u64 t_low_ns, t_high_ns; unsigned long flags; u32 val; int ret; ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); clk_enable(i2c->pclk); spin_lock_irqsave(&i2c->lock, flags); val = i2c_readl(i2c, REG_CON); val &= ~REG_CON_TUNING_MASK; val |= calc.tuning; i2c_writel(i2c, val, REG_CON); i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), REG_CLKDIV); spin_unlock_irqrestore(&i2c->lock, flags); clk_disable(i2c->pclk); t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, clk_rate); dev_dbg(i2c->dev, "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", clk_rate / 1000, 1000000000 / t->bus_freq_hz, t_low_ns, t_high_ns); } /** * rk3x_i2c_clk_notifier_cb - Clock rate change callback * @nb: Pointer to notifier block * @event: Notification reason * @data: Pointer to notification data object * * The callback checks whether a valid bus frequency can be generated after the * change. If so, the change is acknowledged, otherwise the change is aborted. * New dividers are written to the HW in the pre- or post change notification * depending on the scaling direction. * * Code adapted from i2c-cadence.c. * * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK * to acknowledge the change, NOTIFY_DONE if the notification is * considered irrelevant. */ static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); struct rk3x_i2c_calced_timings calc; switch (event) { case PRE_RATE_CHANGE: /* * Try the calculation (but don't store the result) ahead of * time to see if we need to block the clock change. Timings * shouldn't actually take effect until rk3x_i2c_adapt_div(). */ if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, &calc) != 0) return NOTIFY_STOP; /* scale up */ if (ndata->new_rate > ndata->old_rate) rk3x_i2c_adapt_div(i2c, ndata->new_rate); return NOTIFY_OK; case POST_RATE_CHANGE: /* scale down */ if (ndata->new_rate < ndata->old_rate) rk3x_i2c_adapt_div(i2c, ndata->new_rate); return NOTIFY_OK; case ABORT_RATE_CHANGE: /* scale up */ if (ndata->new_rate > ndata->old_rate) rk3x_i2c_adapt_div(i2c, ndata->old_rate); return NOTIFY_OK; default: return NOTIFY_DONE; } } /** * rk3x_i2c_setup - Setup I2C registers for an I2C operation specified by msgs, num. * @i2c: target controller data * @msgs: I2C msgs to process * @num: Number of msgs * * Must be called with i2c->lock held. * * Return: Number of I2C msgs processed or negative in case of error */ static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) { u32 addr = (msgs[0].addr & 0x7f) << 1; int ret = 0; /* * The I2C adapter can issue a small (len < 4) write packet before * reading. This speeds up SMBus-style register reads. * The MRXADDR/MRXRADDR hold the slave address and the slave register * address in this case. */ if (num >= 2 && msgs[0].len < 4 && !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { u32 reg_addr = 0; int i; dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", addr >> 1); /* Fill MRXRADDR with the register address(es) */ for (i = 0; i < msgs[0].len; ++i) { reg_addr |= msgs[0].buf[i] << (i * 8); reg_addr |= REG_MRXADDR_VALID(i); } /* msgs[0] is handled by hw. */ i2c->msg = &msgs[1]; i2c->mode = REG_CON_MOD_REGISTER_TX; i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); i2c_writel(i2c, reg_addr, REG_MRXRADDR); ret = 2; } else { /* * We'll have to do it the boring way and process the msgs * one-by-one. */ if (msgs[0].flags & I2C_M_RD) { addr |= 1; /* set read bit */ /* * We have to transmit the slave addr first. Use * MOD_REGISTER_TX for that purpose. */ i2c->mode = REG_CON_MOD_REGISTER_TX; i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); i2c_writel(i2c, 0, REG_MRXRADDR); } else { i2c->mode = REG_CON_MOD_TX; } i2c->msg = &msgs[0]; ret = 1; } i2c->addr = msgs[0].addr; i2c->busy = true; i2c->state = STATE_START; i2c->processed = 0; i2c->error = 0; rk3x_i2c_clean_ipd(i2c); return ret; } static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c) { ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT); while (READ_ONCE(i2c->busy) && ktime_compare(ktime_get(), timeout) < 0) { udelay(5); rk3x_i2c_irq(0, i2c); } return !i2c->busy; } static int rk3x_i2c_xfer_common(struct i2c_adapter *adap, struct i2c_msg *msgs, int num, bool polling) { struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; unsigned long timeout, flags; u32 val; int ret = 0; int i; spin_lock_irqsave(&i2c->lock, flags); clk_enable(i2c->clk); clk_enable(i2c->pclk); i2c->is_last_msg = false; /* * Process msgs. We can handle more than one message at once (see * rk3x_i2c_setup()). */ for (i = 0; i < num; i += ret) { ret = rk3x_i2c_setup(i2c, msgs + i, num - i); if (ret < 0) { dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); break; } if (i + ret >= num) i2c->is_last_msg = true; spin_unlock_irqrestore(&i2c->lock, flags); rk3x_i2c_start(i2c); if (!polling) { timeout = wait_event_timeout(i2c->wait, !i2c->busy, msecs_to_jiffies(WAIT_TIMEOUT)); } else { timeout = rk3x_i2c_wait_xfer_poll(i2c); } spin_lock_irqsave(&i2c->lock, flags); if (timeout == 0) { dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", i2c_readl(i2c, REG_IPD), i2c->state); /* Force a STOP condition without interrupt */ i2c_writel(i2c, 0, REG_IEN); val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; val |= REG_CON_EN | REG_CON_STOP; i2c_writel(i2c, val, REG_CON); i2c->state = STATE_IDLE; ret = -ETIMEDOUT; break; } if (i2c->error) { ret = i2c->error; break; } } clk_disable(i2c->pclk); clk_disable(i2c->clk); spin_unlock_irqrestore(&i2c->lock, flags); return ret < 0 ? ret : num; } static int rk3x_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { return rk3x_i2c_xfer_common(adap, msgs, num, false); } static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { return rk3x_i2c_xfer_common(adap, msgs, num, true); } static __maybe_unused int rk3x_i2c_resume(struct device *dev) { struct rk3x_i2c *i2c = dev_get_drvdata(dev); rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk)); return 0; } static u32 rk3x_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; } static const struct i2c_algorithm rk3x_i2c_algorithm = { .master_xfer = rk3x_i2c_xfer, .master_xfer_atomic = rk3x_i2c_xfer_polling, .functionality = rk3x_i2c_func, }; static const struct rk3x_i2c_soc_data rv1108_soc_data = { .grf_offset = -1, .calc_timings = rk3x_i2c_v1_calc_timings, }; static const struct rk3x_i2c_soc_data rv1126_soc_data = { .grf_offset = 0x118, .calc_timings = rk3x_i2c_v1_calc_timings, }; static const struct rk3x_i2c_soc_data rk3066_soc_data = { .grf_offset = 0x154, .calc_timings = rk3x_i2c_v0_calc_timings, }; static const struct rk3x_i2c_soc_data rk3188_soc_data = { .grf_offset = 0x0a4, .calc_timings = rk3x_i2c_v0_calc_timings, }; static const struct rk3x_i2c_soc_data rk3228_soc_data = { .grf_offset = -1, .calc_timings = rk3x_i2c_v0_calc_timings, }; static const struct rk3x_i2c_soc_data rk3288_soc_data = { .grf_offset = -1, .calc_timings = rk3x_i2c_v0_calc_timings, }; static const struct rk3x_i2c_soc_data rk3399_soc_data = { .grf_offset = -1, .calc_timings = rk3x_i2c_v1_calc_timings, }; static const struct of_device_id rk3x_i2c_match[] = { { .compatible = "rockchip,rv1108-i2c", .data = &rv1108_soc_data }, { .compatible = "rockchip,rv1126-i2c", .data = &rv1126_soc_data }, { .compatible = "rockchip,rk3066-i2c", .data = &rk3066_soc_data }, { .compatible = "rockchip,rk3188-i2c", .data = &rk3188_soc_data }, { .compatible = "rockchip,rk3228-i2c", .data = &rk3228_soc_data }, { .compatible = "rockchip,rk3288-i2c", .data = &rk3288_soc_data }, { .compatible = "rockchip,rk3399-i2c", .data = &rk3399_soc_data }, {}, }; MODULE_DEVICE_TABLE(of, rk3x_i2c_match); static int rk3x_i2c_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct of_device_id *match; struct rk3x_i2c *i2c; int ret = 0; int bus_nr; u32 value; int irq; unsigned long clk_rate; i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; match = of_match_node(rk3x_i2c_match, np); i2c->soc_data = match->data; /* use common interface to get I2C timing properties */ i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); strscpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); i2c->adap.owner = THIS_MODULE; i2c->adap.algo = &rk3x_i2c_algorithm; i2c->adap.retries = 3; i2c->adap.dev.of_node = np; i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; i2c->dev = &pdev->dev; spin_lock_init(&i2c->lock); init_waitqueue_head(&i2c->wait); i2c->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(i2c->regs)) return PTR_ERR(i2c->regs); /* Try to set the I2C adapter number from dt */ bus_nr = of_alias_get_id(np, "i2c"); /* * Switch to new interface if the SoC also offers the old one. * The control bit is located in the GRF register space. */ if (i2c->soc_data->grf_offset >= 0) { struct regmap *grf; grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(grf)) { dev_err(&pdev->dev, "rk3x-i2c needs 'rockchip,grf' property\n"); return PTR_ERR(grf); } if (bus_nr < 0) { dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); return -EINVAL; } /* 27+i: write mask, 11+i: value */ value = BIT(27 + bus_nr) | BIT(11 + bus_nr); ret = regmap_write(grf, i2c->soc_data->grf_offset, value); if (ret != 0) { dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); return ret; } } /* IRQ setup */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, 0, dev_name(&pdev->dev), i2c); if (ret < 0) { dev_err(&pdev->dev, "cannot request IRQ\n"); return ret; } platform_set_drvdata(pdev, i2c); if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { /* Only one clock to use for bus clock and peripheral clock */ i2c->clk = devm_clk_get(&pdev->dev, NULL); i2c->pclk = i2c->clk; } else { i2c->clk = devm_clk_get(&pdev->dev, "i2c"); i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); } if (IS_ERR(i2c->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk), "Can't get bus clk\n"); if (IS_ERR(i2c->pclk)) return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk), "Can't get periph clk\n"); ret = clk_prepare(i2c->clk); if (ret < 0) { dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); return ret; } ret = clk_prepare(i2c->pclk); if (ret < 0) { dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); goto err_clk; } i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); if (ret != 0) { dev_err(&pdev->dev, "Unable to register clock notifier\n"); goto err_pclk; } ret = clk_enable(i2c->clk); if (ret < 0) { dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret); goto err_clk_notifier; } clk_rate = clk_get_rate(i2c->clk); rk3x_i2c_adapt_div(i2c, clk_rate); clk_disable(i2c->clk); ret = i2c_add_adapter(&i2c->adap); if (ret < 0) goto err_clk_notifier; return 0; err_clk_notifier: clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); err_pclk: clk_unprepare(i2c->pclk); err_clk: clk_unprepare(i2c->clk); return ret; } static void rk3x_i2c_remove(struct platform_device *pdev) { struct rk3x_i2c *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adap); clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); clk_unprepare(i2c->pclk); clk_unprepare(i2c->clk); } static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume); static struct platform_driver rk3x_i2c_driver = { .probe = rk3x_i2c_probe, .remove_new = rk3x_i2c_remove, .driver = { .name = "rk3x-i2c", .of_match_table = rk3x_i2c_match, .pm = &rk3x_i2c_pm_ops, }, }; module_platform_driver(rk3x_i2c_driver); MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1