Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matt Ranostay | 3214 | 97.81% | 15 | 51.72% |
Uwe Kleine-König | 28 | 0.85% | 4 | 13.79% |
Jonathan Cameron | 25 | 0.76% | 5 | 17.24% |
Sandhya Bankar | 11 | 0.33% | 1 | 3.45% |
Grégor Boirie | 3 | 0.09% | 1 | 3.45% |
Alexandru Ardelean | 3 | 0.09% | 1 | 3.45% |
Lars-Peter Clausen | 1 | 0.03% | 1 | 3.45% |
Colin Ian King | 1 | 0.03% | 1 | 3.45% |
Total | 3286 | 29 |
// SPDX-License-Identifier: GPL-2.0+ /* * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors * * Copyright (C) 2015-2019 Konsulko Group * Author: Matt Ranostay <matt.ranostay@konsulko.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/irq.h> #include <linux/irq_work.h> #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/pm_runtime.h> #define ATLAS_REGMAP_NAME "atlas_regmap" #define ATLAS_DRV_NAME "atlas" #define ATLAS_REG_DEV_TYPE 0x00 #define ATLAS_REG_DEV_VERSION 0x01 #define ATLAS_REG_INT_CONTROL 0x04 #define ATLAS_REG_INT_CONTROL_EN BIT(3) #define ATLAS_REG_PWR_CONTROL 0x06 #define ATLAS_REG_PH_CALIB_STATUS 0x0d #define ATLAS_REG_PH_CALIB_STATUS_MASK 0x07 #define ATLAS_REG_PH_CALIB_STATUS_LOW BIT(0) #define ATLAS_REG_PH_CALIB_STATUS_MID BIT(1) #define ATLAS_REG_PH_CALIB_STATUS_HIGH BIT(2) #define ATLAS_REG_EC_CALIB_STATUS 0x0f #define ATLAS_REG_EC_CALIB_STATUS_MASK 0x0f #define ATLAS_REG_EC_CALIB_STATUS_DRY BIT(0) #define ATLAS_REG_EC_CALIB_STATUS_SINGLE BIT(1) #define ATLAS_REG_EC_CALIB_STATUS_LOW BIT(2) #define ATLAS_REG_EC_CALIB_STATUS_HIGH BIT(3) #define ATLAS_REG_DO_CALIB_STATUS 0x09 #define ATLAS_REG_DO_CALIB_STATUS_MASK 0x03 #define ATLAS_REG_DO_CALIB_STATUS_PRESSURE BIT(0) #define ATLAS_REG_DO_CALIB_STATUS_DO BIT(1) #define ATLAS_REG_RTD_DATA 0x0e #define ATLAS_REG_PH_TEMP_DATA 0x0e #define ATLAS_REG_PH_DATA 0x16 #define ATLAS_REG_EC_PROBE 0x08 #define ATLAS_REG_EC_TEMP_DATA 0x10 #define ATLAS_REG_EC_DATA 0x18 #define ATLAS_REG_TDS_DATA 0x1c #define ATLAS_REG_PSS_DATA 0x20 #define ATLAS_REG_ORP_CALIB_STATUS 0x0d #define ATLAS_REG_ORP_DATA 0x0e #define ATLAS_REG_DO_TEMP_DATA 0x12 #define ATLAS_REG_DO_DATA 0x22 #define ATLAS_PH_INT_TIME_IN_MS 450 #define ATLAS_EC_INT_TIME_IN_MS 650 #define ATLAS_ORP_INT_TIME_IN_MS 450 #define ATLAS_DO_INT_TIME_IN_MS 450 #define ATLAS_RTD_INT_TIME_IN_MS 450 enum { ATLAS_PH_SM, ATLAS_EC_SM, ATLAS_ORP_SM, ATLAS_DO_SM, ATLAS_RTD_SM, }; struct atlas_data { struct i2c_client *client; struct iio_trigger *trig; struct atlas_device *chip; struct regmap *regmap; struct irq_work work; unsigned int interrupt_enabled; /* 96-bit data + 32-bit pad + 64-bit timestamp */ __be32 buffer[6] __aligned(8); }; static const struct regmap_config atlas_regmap_config = { .name = ATLAS_REGMAP_NAME, .reg_bits = 8, .val_bits = 8, }; static int atlas_buffer_num_channels(const struct iio_chan_spec *spec) { int idx = 0; for (; spec->type != IIO_TIMESTAMP; spec++) idx++; return idx; }; static const struct iio_chan_spec atlas_ph_channels[] = { { .type = IIO_PH, .address = ATLAS_REG_PH_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), { .type = IIO_TEMP, .address = ATLAS_REG_PH_TEMP_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .output = 1, .scan_index = -1 }, }; #define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \ {\ .type = IIO_CONCENTRATION, \ .indexed = 1, \ .channel = _idx, \ .address = _addr, \ .info_mask_separate = \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = _idx + 1, \ .scan_type = { \ .sign = 'u', \ .realbits = 32, \ .storagebits = 32, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec atlas_ec_channels[] = { { .type = IIO_ELECTRICALCONDUCTIVITY, .address = ATLAS_REG_EC_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_BE, }, }, ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA), ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA), IIO_CHAN_SOFT_TIMESTAMP(3), { .type = IIO_TEMP, .address = ATLAS_REG_EC_TEMP_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .output = 1, .scan_index = -1 }, }; static const struct iio_chan_spec atlas_orp_channels[] = { { .type = IIO_VOLTAGE, .address = ATLAS_REG_ORP_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 0, .scan_type = { .sign = 's', .realbits = 32, .storagebits = 32, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), }; static const struct iio_chan_spec atlas_do_channels[] = { { .type = IIO_CONCENTRATION, .address = ATLAS_REG_DO_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), { .type = IIO_TEMP, .address = ATLAS_REG_DO_TEMP_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .output = 1, .scan_index = -1 }, }; static const struct iio_chan_spec atlas_rtd_channels[] = { { .type = IIO_TEMP, .address = ATLAS_REG_RTD_DATA, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .scan_index = 0, .scan_type = { .sign = 's', .realbits = 32, .storagebits = 32, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), }; static int atlas_check_ph_calibration(struct atlas_data *data) { struct device *dev = &data->client->dev; int ret; unsigned int val; ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val); if (ret) return ret; if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) { dev_warn(dev, "device has not been calibrated\n"); return 0; } if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW)) dev_warn(dev, "device missing low point calibration\n"); if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID)) dev_warn(dev, "device missing mid point calibration\n"); if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH)) dev_warn(dev, "device missing high point calibration\n"); return 0; } static int atlas_check_ec_calibration(struct atlas_data *data) { struct device *dev = &data->client->dev; int ret; unsigned int val; __be16 rval; ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2); if (ret) return ret; val = be16_to_cpu(rval); dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100); ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val); if (ret) return ret; if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) { dev_warn(dev, "device has not been calibrated\n"); return 0; } if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY)) dev_warn(dev, "device missing dry point calibration\n"); if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) { dev_warn(dev, "device using single point calibration\n"); } else { if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW)) dev_warn(dev, "device missing low point calibration\n"); if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH)) dev_warn(dev, "device missing high point calibration\n"); } return 0; } static int atlas_check_orp_calibration(struct atlas_data *data) { struct device *dev = &data->client->dev; int ret; unsigned int val; ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val); if (ret) return ret; if (!val) dev_warn(dev, "device has not been calibrated\n"); return 0; } static int atlas_check_do_calibration(struct atlas_data *data) { struct device *dev = &data->client->dev; int ret; unsigned int val; ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val); if (ret) return ret; if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) { dev_warn(dev, "device has not been calibrated\n"); return 0; } if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE)) dev_warn(dev, "device missing atmospheric pressure calibration\n"); if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO)) dev_warn(dev, "device missing dissolved oxygen calibration\n"); return 0; } struct atlas_device { const struct iio_chan_spec *channels; int num_channels; int data_reg; int (*calibration)(struct atlas_data *data); int delay; }; static struct atlas_device atlas_devices[] = { [ATLAS_PH_SM] = { .channels = atlas_ph_channels, .num_channels = 3, .data_reg = ATLAS_REG_PH_DATA, .calibration = &atlas_check_ph_calibration, .delay = ATLAS_PH_INT_TIME_IN_MS, }, [ATLAS_EC_SM] = { .channels = atlas_ec_channels, .num_channels = 5, .data_reg = ATLAS_REG_EC_DATA, .calibration = &atlas_check_ec_calibration, .delay = ATLAS_EC_INT_TIME_IN_MS, }, [ATLAS_ORP_SM] = { .channels = atlas_orp_channels, .num_channels = 2, .data_reg = ATLAS_REG_ORP_DATA, .calibration = &atlas_check_orp_calibration, .delay = ATLAS_ORP_INT_TIME_IN_MS, }, [ATLAS_DO_SM] = { .channels = atlas_do_channels, .num_channels = 3, .data_reg = ATLAS_REG_DO_DATA, .calibration = &atlas_check_do_calibration, .delay = ATLAS_DO_INT_TIME_IN_MS, }, [ATLAS_RTD_SM] = { .channels = atlas_rtd_channels, .num_channels = 2, .data_reg = ATLAS_REG_RTD_DATA, .delay = ATLAS_RTD_INT_TIME_IN_MS, }, }; static int atlas_set_powermode(struct atlas_data *data, int on) { return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on); } static int atlas_set_interrupt(struct atlas_data *data, bool state) { if (!data->interrupt_enabled) return 0; return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL, ATLAS_REG_INT_CONTROL_EN, state ? ATLAS_REG_INT_CONTROL_EN : 0); } static int atlas_buffer_postenable(struct iio_dev *indio_dev) { struct atlas_data *data = iio_priv(indio_dev); int ret; ret = pm_runtime_resume_and_get(&data->client->dev); if (ret) return ret; return atlas_set_interrupt(data, true); } static int atlas_buffer_predisable(struct iio_dev *indio_dev) { struct atlas_data *data = iio_priv(indio_dev); int ret; ret = atlas_set_interrupt(data, false); if (ret) return ret; pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); if (ret) return ret; return 0; } static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = { .postenable = atlas_buffer_postenable, .predisable = atlas_buffer_predisable, }; static void atlas_work_handler(struct irq_work *work) { struct atlas_data *data = container_of(work, struct atlas_data, work); iio_trigger_poll(data->trig); } static irqreturn_t atlas_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct atlas_data *data = iio_priv(indio_dev); int channels = atlas_buffer_num_channels(data->chip->channels); int ret; ret = regmap_bulk_read(data->regmap, data->chip->data_reg, &data->buffer, sizeof(__be32) * channels); if (!ret) iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t atlas_interrupt_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct atlas_data *data = iio_priv(indio_dev); irq_work_queue(&data->work); return IRQ_HANDLED; } static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val) { struct device *dev = &data->client->dev; int suspended = pm_runtime_suspended(dev); int ret; ret = pm_runtime_resume_and_get(dev); if (ret) return ret; if (suspended) msleep(data->chip->delay); ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val)); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int atlas_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct atlas_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_PROCESSED: case IIO_CHAN_INFO_RAW: { int ret; __be32 reg; switch (chan->type) { case IIO_TEMP: ret = regmap_bulk_read(data->regmap, chan->address, ®, sizeof(reg)); break; case IIO_PH: case IIO_CONCENTRATION: case IIO_ELECTRICALCONDUCTIVITY: case IIO_VOLTAGE: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = atlas_read_measurement(data, chan->address, ®); iio_device_release_direct_mode(indio_dev); break; default: ret = -EINVAL; } if (!ret) { *val = be32_to_cpu(reg); ret = IIO_VAL_INT; } return ret; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: *val = 10; return IIO_VAL_INT; case IIO_PH: *val = 1; /* 0.001 */ *val2 = 1000; break; case IIO_ELECTRICALCONDUCTIVITY: *val = 1; /* 0.00001 */ *val2 = 100000; break; case IIO_CONCENTRATION: *val = 0; /* 0.000000001 */ *val2 = 1000; return IIO_VAL_INT_PLUS_NANO; case IIO_VOLTAGE: *val = 1; /* 0.1 */ *val2 = 10; break; default: return -EINVAL; } return IIO_VAL_FRACTIONAL; } return -EINVAL; } static int atlas_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct atlas_data *data = iio_priv(indio_dev); __be32 reg = cpu_to_be32(val / 10); if (val2 != 0 || val < 0 || val > 20000) return -EINVAL; if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP) return -EINVAL; return regmap_bulk_write(data->regmap, chan->address, ®, sizeof(reg)); } static const struct iio_info atlas_info = { .read_raw = atlas_read_raw, .write_raw = atlas_write_raw, }; static const struct i2c_device_id atlas_id[] = { { "atlas-ph-sm", ATLAS_PH_SM }, { "atlas-ec-sm", ATLAS_EC_SM }, { "atlas-orp-sm", ATLAS_ORP_SM }, { "atlas-do-sm", ATLAS_DO_SM }, { "atlas-rtd-sm", ATLAS_RTD_SM }, {} }; MODULE_DEVICE_TABLE(i2c, atlas_id); static const struct of_device_id atlas_dt_ids[] = { { .compatible = "atlas,ph-sm", .data = (void *)ATLAS_PH_SM, }, { .compatible = "atlas,ec-sm", .data = (void *)ATLAS_EC_SM, }, { .compatible = "atlas,orp-sm", .data = (void *)ATLAS_ORP_SM, }, { .compatible = "atlas,do-sm", .data = (void *)ATLAS_DO_SM, }, { .compatible = "atlas,rtd-sm", .data = (void *)ATLAS_RTD_SM, }, { } }; MODULE_DEVICE_TABLE(of, atlas_dt_ids); static int atlas_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct atlas_data *data; struct atlas_device *chip; struct iio_trigger *trig; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; if (!dev_fwnode(&client->dev)) chip = &atlas_devices[id->driver_data]; else chip = &atlas_devices[(unsigned long)device_get_match_data(&client->dev)]; indio_dev->info = &atlas_info; indio_dev->name = ATLAS_DRV_NAME; indio_dev->channels = chip->channels; indio_dev->num_channels = chip->num_channels; indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE; trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trig) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; data->trig = trig; data->chip = chip; iio_trigger_set_drvdata(trig, indio_dev); i2c_set_clientdata(client, indio_dev); data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "regmap initialization failed\n"); return PTR_ERR(data->regmap); } ret = pm_runtime_set_active(&client->dev); if (ret) return ret; ret = chip->calibration(data); if (ret) return ret; ret = iio_trigger_register(trig); if (ret) { dev_err(&client->dev, "failed to register trigger\n"); return ret; } ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, &atlas_trigger_handler, &atlas_buffer_setup_ops); if (ret) { dev_err(&client->dev, "cannot setup iio trigger\n"); goto unregister_trigger; } init_irq_work(&data->work, atlas_work_handler); if (client->irq > 0) { /* interrupt pin toggles on new conversion */ ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, atlas_interrupt_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "atlas_irq", indio_dev); if (ret) dev_warn(&client->dev, "request irq (%d) failed\n", client->irq); else data->interrupt_enabled = 1; } ret = atlas_set_powermode(data, 1); if (ret) { dev_err(&client->dev, "cannot power device on"); goto unregister_buffer; } pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, 2500); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret) { dev_err(&client->dev, "unable to register device\n"); goto unregister_pm; } return 0; unregister_pm: pm_runtime_disable(&client->dev); atlas_set_powermode(data, 0); unregister_buffer: iio_triggered_buffer_cleanup(indio_dev); unregister_trigger: iio_trigger_unregister(data->trig); return ret; } static void atlas_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct atlas_data *data = iio_priv(indio_dev); int ret; iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); iio_trigger_unregister(data->trig); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); ret = atlas_set_powermode(data, 0); if (ret) dev_err(&client->dev, "Failed to power down device (%pe)\n", ERR_PTR(ret)); } static int atlas_runtime_suspend(struct device *dev) { struct atlas_data *data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return atlas_set_powermode(data, 0); } static int atlas_runtime_resume(struct device *dev) { struct atlas_data *data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return atlas_set_powermode(data, 1); } static const struct dev_pm_ops atlas_pm_ops = { RUNTIME_PM_OPS(atlas_runtime_suspend, atlas_runtime_resume, NULL) }; static struct i2c_driver atlas_driver = { .driver = { .name = ATLAS_DRV_NAME, .of_match_table = atlas_dt_ids, .pm = pm_ptr(&atlas_pm_ops), }, .probe = atlas_probe, .remove = atlas_remove, .id_table = atlas_id, }; module_i2c_driver(atlas_driver); MODULE_AUTHOR("Matt Ranostay <matt.ranostay@konsulko.com>"); MODULE_DESCRIPTION("Atlas Scientific SM sensors"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1