Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nuno Sá | 5938 | 99.65% | 7 | 70.00% |
Alexandru Ardelean | 15 | 0.25% | 1 | 10.00% |
Jonathan Cameron | 5 | 0.08% | 1 | 10.00% |
Uwe Kleine-König | 1 | 0.02% | 1 | 10.00% |
Total | 5959 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * ADIS16475 IMU driver * * Copyright 2019 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/imu/adis.h> #include <linux/iio/trigger_consumer.h> #include <linux/irq.h> #include <linux/lcm.h> #include <linux/math.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/property.h> #include <linux/spi/spi.h> #define ADIS16475_REG_DIAG_STAT 0x02 #define ADIS16475_REG_X_GYRO_L 0x04 #define ADIS16475_REG_Y_GYRO_L 0x08 #define ADIS16475_REG_Z_GYRO_L 0x0C #define ADIS16475_REG_X_ACCEL_L 0x10 #define ADIS16475_REG_Y_ACCEL_L 0x14 #define ADIS16475_REG_Z_ACCEL_L 0x18 #define ADIS16475_REG_TEMP_OUT 0x1c #define ADIS16475_REG_X_GYRO_BIAS_L 0x40 #define ADIS16475_REG_Y_GYRO_BIAS_L 0x44 #define ADIS16475_REG_Z_GYRO_BIAS_L 0x48 #define ADIS16475_REG_X_ACCEL_BIAS_L 0x4c #define ADIS16475_REG_Y_ACCEL_BIAS_L 0x50 #define ADIS16475_REG_Z_ACCEL_BIAS_L 0x54 #define ADIS16475_REG_FILT_CTRL 0x5c #define ADIS16475_FILT_CTRL_MASK GENMASK(2, 0) #define ADIS16475_FILT_CTRL(x) FIELD_PREP(ADIS16475_FILT_CTRL_MASK, x) #define ADIS16475_REG_MSG_CTRL 0x60 #define ADIS16475_MSG_CTRL_DR_POL_MASK BIT(0) #define ADIS16475_MSG_CTRL_DR_POL(x) \ FIELD_PREP(ADIS16475_MSG_CTRL_DR_POL_MASK, x) #define ADIS16475_SYNC_MODE_MASK GENMASK(4, 2) #define ADIS16475_SYNC_MODE(x) FIELD_PREP(ADIS16475_SYNC_MODE_MASK, x) #define ADIS16475_REG_UP_SCALE 0x62 #define ADIS16475_REG_DEC_RATE 0x64 #define ADIS16475_REG_GLOB_CMD 0x68 #define ADIS16475_REG_FIRM_REV 0x6c #define ADIS16475_REG_FIRM_DM 0x6e #define ADIS16475_REG_FIRM_Y 0x70 #define ADIS16475_REG_PROD_ID 0x72 #define ADIS16475_REG_SERIAL_NUM 0x74 #define ADIS16475_REG_FLASH_CNT 0x7c #define ADIS16500_BURST32_MASK BIT(9) #define ADIS16500_BURST32(x) FIELD_PREP(ADIS16500_BURST32_MASK, x) /* number of data elements in burst mode */ #define ADIS16475_BURST32_MAX_DATA 32 #define ADIS16475_BURST_MAX_DATA 20 #define ADIS16475_MAX_SCAN_DATA 20 /* spi max speed in brust mode */ #define ADIS16475_BURST_MAX_SPEED 1000000 #define ADIS16475_LSB_DEC_MASK BIT(0) #define ADIS16475_LSB_FIR_MASK BIT(1) enum { ADIS16475_SYNC_DIRECT = 1, ADIS16475_SYNC_SCALED, ADIS16475_SYNC_OUTPUT, ADIS16475_SYNC_PULSE = 5, }; struct adis16475_sync { u16 sync_mode; u16 min_rate; u16 max_rate; }; struct adis16475_chip_info { const struct iio_chan_spec *channels; const struct adis16475_sync *sync; const struct adis_data adis_data; const char *name; u32 num_channels; u32 gyro_max_val; u32 gyro_max_scale; u32 accel_max_val; u32 accel_max_scale; u32 temp_scale; u32 int_clk; u16 max_dec; u8 num_sync; bool has_burst32; }; struct adis16475 { const struct adis16475_chip_info *info; struct adis adis; u32 clk_freq; bool burst32; unsigned long lsb_flag; u16 sync_mode; /* Alignment needed for the timestamp */ __be16 data[ADIS16475_MAX_SCAN_DATA] __aligned(8); }; enum { ADIS16475_SCAN_GYRO_X, ADIS16475_SCAN_GYRO_Y, ADIS16475_SCAN_GYRO_Z, ADIS16475_SCAN_ACCEL_X, ADIS16475_SCAN_ACCEL_Y, ADIS16475_SCAN_ACCEL_Z, ADIS16475_SCAN_TEMP, ADIS16475_SCAN_DIAG_S_FLAGS, ADIS16475_SCAN_CRC_FAILURE, }; static bool low_rate_allow; module_param(low_rate_allow, bool, 0444); MODULE_PARM_DESC(low_rate_allow, "Allow IMU rates below the minimum advisable when external clk is used in SCALED mode (default: N)"); #ifdef CONFIG_DEBUG_FS static ssize_t adis16475_show_firmware_revision(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct adis16475 *st = file->private_data; char buf[7]; size_t len; u16 rev; int ret; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_REV, &rev); if (ret) return ret; len = scnprintf(buf, sizeof(buf), "%x.%x\n", rev >> 8, rev & 0xff); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } static const struct file_operations adis16475_firmware_revision_fops = { .open = simple_open, .read = adis16475_show_firmware_revision, .llseek = default_llseek, .owner = THIS_MODULE, }; static ssize_t adis16475_show_firmware_date(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct adis16475 *st = file->private_data; u16 md, year; char buf[12]; size_t len; int ret; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_Y, &year); if (ret) return ret; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_DM, &md); if (ret) return ret; len = snprintf(buf, sizeof(buf), "%.2x-%.2x-%.4x\n", md >> 8, md & 0xff, year); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } static const struct file_operations adis16475_firmware_date_fops = { .open = simple_open, .read = adis16475_show_firmware_date, .llseek = default_llseek, .owner = THIS_MODULE, }; static int adis16475_show_serial_number(void *arg, u64 *val) { struct adis16475 *st = arg; u16 serial; int ret; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_SERIAL_NUM, &serial); if (ret) return ret; *val = serial; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16475_serial_number_fops, adis16475_show_serial_number, NULL, "0x%.4llx\n"); static int adis16475_show_product_id(void *arg, u64 *val) { struct adis16475 *st = arg; u16 prod_id; int ret; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_PROD_ID, &prod_id); if (ret) return ret; *val = prod_id; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16475_product_id_fops, adis16475_show_product_id, NULL, "%llu\n"); static int adis16475_show_flash_count(void *arg, u64 *val) { struct adis16475 *st = arg; u32 flash_count; int ret; ret = adis_read_reg_32(&st->adis, ADIS16475_REG_FLASH_CNT, &flash_count); if (ret) return ret; *val = flash_count; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16475_flash_count_fops, adis16475_show_flash_count, NULL, "%lld\n"); static void adis16475_debugfs_init(struct iio_dev *indio_dev) { struct adis16475 *st = iio_priv(indio_dev); struct dentry *d = iio_get_debugfs_dentry(indio_dev); debugfs_create_file_unsafe("serial_number", 0400, d, st, &adis16475_serial_number_fops); debugfs_create_file_unsafe("product_id", 0400, d, st, &adis16475_product_id_fops); debugfs_create_file_unsafe("flash_count", 0400, d, st, &adis16475_flash_count_fops); debugfs_create_file("firmware_revision", 0400, d, st, &adis16475_firmware_revision_fops); debugfs_create_file("firmware_date", 0400, d, st, &adis16475_firmware_date_fops); } #else static void adis16475_debugfs_init(struct iio_dev *indio_dev) { } #endif static int adis16475_get_freq(struct adis16475 *st, u32 *freq) { int ret; u16 dec; u32 sample_rate = st->clk_freq; adis_dev_lock(&st->adis); if (st->sync_mode == ADIS16475_SYNC_SCALED) { u16 sync_scale; ret = __adis_read_reg_16(&st->adis, ADIS16475_REG_UP_SCALE, &sync_scale); if (ret) goto error; sample_rate = st->clk_freq * sync_scale; } ret = __adis_read_reg_16(&st->adis, ADIS16475_REG_DEC_RATE, &dec); if (ret) goto error; adis_dev_unlock(&st->adis); *freq = DIV_ROUND_CLOSEST(sample_rate, dec + 1); return 0; error: adis_dev_unlock(&st->adis); return ret; } static int adis16475_set_freq(struct adis16475 *st, const u32 freq) { u16 dec; int ret; u32 sample_rate = st->clk_freq; if (!freq) return -EINVAL; adis_dev_lock(&st->adis); /* * When using sync scaled mode, the input clock needs to be scaled so that we have * an IMU sample rate between (optimally) 1900 and 2100. After this, we can use the * decimation filter to lower the sampling rate in order to get what the user wants. * Optimally, the user sample rate is a multiple of both the IMU sample rate and * the input clock. Hence, calculating the sync_scale dynamically gives us better * chances of achieving a perfect/integer value for DEC_RATE. The math here is: * 1. lcm of the input clock and the desired output rate. * 2. get the highest multiple of the previous result lower than the adis max rate. * 3. The last result becomes the IMU sample rate. Use that to calculate SYNC_SCALE * and DEC_RATE (to get the user output rate) */ if (st->sync_mode == ADIS16475_SYNC_SCALED) { unsigned long scaled_rate = lcm(st->clk_freq, freq); int sync_scale; /* * If lcm is bigger than the IMU maximum sampling rate there's no perfect * solution. In this case, we get the highest multiple of the input clock * lower than the IMU max sample rate. */ if (scaled_rate > 2100000) scaled_rate = 2100000 / st->clk_freq * st->clk_freq; else scaled_rate = 2100000 / scaled_rate * scaled_rate; /* * This is not an hard requirement but it's not advised to run the IMU * with a sample rate lower than 1900Hz due to possible undersampling * issues. However, there are users that might really want to take the risk. * Hence, we provide a module parameter for them. If set, we allow sample * rates lower than 1.9KHz. By default, we won't allow this and we just roundup * the rate to the next multiple of the input clock bigger than 1.9KHz. This * is done like this as in some cases (when DEC_RATE is 0) might give * us the closest value to the one desired by the user... */ if (scaled_rate < 1900000 && !low_rate_allow) scaled_rate = roundup(1900000, st->clk_freq); sync_scale = scaled_rate / st->clk_freq; ret = __adis_write_reg_16(&st->adis, ADIS16475_REG_UP_SCALE, sync_scale); if (ret) goto error; sample_rate = scaled_rate; } dec = DIV_ROUND_CLOSEST(sample_rate, freq); if (dec) dec--; if (dec > st->info->max_dec) dec = st->info->max_dec; ret = __adis_write_reg_16(&st->adis, ADIS16475_REG_DEC_RATE, dec); if (ret) goto error; adis_dev_unlock(&st->adis); /* * If decimation is used, then gyro and accel data will have meaningful * bits on the LSB registers. This info is used on the trigger handler. */ assign_bit(ADIS16475_LSB_DEC_MASK, &st->lsb_flag, dec); return 0; error: adis_dev_unlock(&st->adis); return ret; } /* The values are approximated. */ static const u32 adis16475_3db_freqs[] = { [0] = 720, /* Filter disabled, full BW (~720Hz) */ [1] = 360, [2] = 164, [3] = 80, [4] = 40, [5] = 20, [6] = 10, }; static int adis16475_get_filter(struct adis16475 *st, u32 *filter) { u16 filter_sz; int ret; const int mask = ADIS16475_FILT_CTRL_MASK; ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FILT_CTRL, &filter_sz); if (ret) return ret; *filter = adis16475_3db_freqs[filter_sz & mask]; return 0; } static int adis16475_set_filter(struct adis16475 *st, const u32 filter) { int i = ARRAY_SIZE(adis16475_3db_freqs); int ret; while (--i) { if (adis16475_3db_freqs[i] >= filter) break; } ret = adis_write_reg_16(&st->adis, ADIS16475_REG_FILT_CTRL, ADIS16475_FILT_CTRL(i)); if (ret) return ret; /* * If FIR is used, then gyro and accel data will have meaningful * bits on the LSB registers. This info is used on the trigger handler. */ assign_bit(ADIS16475_LSB_FIR_MASK, &st->lsb_flag, i); return 0; } static const u32 adis16475_calib_regs[] = { [ADIS16475_SCAN_GYRO_X] = ADIS16475_REG_X_GYRO_BIAS_L, [ADIS16475_SCAN_GYRO_Y] = ADIS16475_REG_Y_GYRO_BIAS_L, [ADIS16475_SCAN_GYRO_Z] = ADIS16475_REG_Z_GYRO_BIAS_L, [ADIS16475_SCAN_ACCEL_X] = ADIS16475_REG_X_ACCEL_BIAS_L, [ADIS16475_SCAN_ACCEL_Y] = ADIS16475_REG_Y_ACCEL_BIAS_L, [ADIS16475_SCAN_ACCEL_Z] = ADIS16475_REG_Z_ACCEL_BIAS_L, }; static int adis16475_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long info) { struct adis16475 *st = iio_priv(indio_dev); int ret; u32 tmp; switch (info) { case IIO_CHAN_INFO_RAW: return adis_single_conversion(indio_dev, chan, 0, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: *val = st->info->gyro_max_val; *val2 = st->info->gyro_max_scale; return IIO_VAL_FRACTIONAL; case IIO_ACCEL: *val = st->info->accel_max_val; *val2 = st->info->accel_max_scale; return IIO_VAL_FRACTIONAL; case IIO_TEMP: *val = st->info->temp_scale; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: ret = adis_read_reg_32(&st->adis, adis16475_calib_regs[chan->scan_index], val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = adis16475_get_filter(st, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = adis16475_get_freq(st, &tmp); if (ret) return ret; *val = tmp / 1000; *val2 = (tmp % 1000) * 1000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int adis16475_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long info) { struct adis16475 *st = iio_priv(indio_dev); u32 tmp; switch (info) { case IIO_CHAN_INFO_SAMP_FREQ: tmp = val * 1000 + val2 / 1000; return adis16475_set_freq(st, tmp); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return adis16475_set_filter(st, val); case IIO_CHAN_INFO_CALIBBIAS: return adis_write_reg_32(&st->adis, adis16475_calib_regs[chan->scan_index], val); default: return -EINVAL; } } #define ADIS16475_MOD_CHAN(_type, _mod, _address, _si, _r_bits, _s_bits) \ { \ .type = (_type), \ .modified = 1, \ .channel2 = (_mod), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .address = (_address), \ .scan_index = (_si), \ .scan_type = { \ .sign = 's', \ .realbits = (_r_bits), \ .storagebits = (_s_bits), \ .endianness = IIO_BE, \ }, \ } #define ADIS16475_GYRO_CHANNEL(_mod) \ ADIS16475_MOD_CHAN(IIO_ANGL_VEL, IIO_MOD_ ## _mod, \ ADIS16475_REG_ ## _mod ## _GYRO_L, \ ADIS16475_SCAN_GYRO_ ## _mod, 32, 32) #define ADIS16475_ACCEL_CHANNEL(_mod) \ ADIS16475_MOD_CHAN(IIO_ACCEL, IIO_MOD_ ## _mod, \ ADIS16475_REG_ ## _mod ## _ACCEL_L, \ ADIS16475_SCAN_ACCEL_ ## _mod, 32, 32) #define ADIS16475_TEMP_CHANNEL() { \ .type = IIO_TEMP, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .address = ADIS16475_REG_TEMP_OUT, \ .scan_index = ADIS16475_SCAN_TEMP, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec adis16475_channels[] = { ADIS16475_GYRO_CHANNEL(X), ADIS16475_GYRO_CHANNEL(Y), ADIS16475_GYRO_CHANNEL(Z), ADIS16475_ACCEL_CHANNEL(X), ADIS16475_ACCEL_CHANNEL(Y), ADIS16475_ACCEL_CHANNEL(Z), ADIS16475_TEMP_CHANNEL(), IIO_CHAN_SOFT_TIMESTAMP(7) }; enum adis16475_variant { ADIS16470, ADIS16475_1, ADIS16475_2, ADIS16475_3, ADIS16477_1, ADIS16477_2, ADIS16477_3, ADIS16465_1, ADIS16465_2, ADIS16465_3, ADIS16467_1, ADIS16467_2, ADIS16467_3, ADIS16500, ADIS16505_1, ADIS16505_2, ADIS16505_3, ADIS16507_1, ADIS16507_2, ADIS16507_3, }; enum { ADIS16475_DIAG_STAT_DATA_PATH = 1, ADIS16475_DIAG_STAT_FLASH_MEM, ADIS16475_DIAG_STAT_SPI, ADIS16475_DIAG_STAT_STANDBY, ADIS16475_DIAG_STAT_SENSOR, ADIS16475_DIAG_STAT_MEMORY, ADIS16475_DIAG_STAT_CLK, }; static const char * const adis16475_status_error_msgs[] = { [ADIS16475_DIAG_STAT_DATA_PATH] = "Data Path Overrun", [ADIS16475_DIAG_STAT_FLASH_MEM] = "Flash memory update failure", [ADIS16475_DIAG_STAT_SPI] = "SPI communication error", [ADIS16475_DIAG_STAT_STANDBY] = "Standby mode", [ADIS16475_DIAG_STAT_SENSOR] = "Sensor failure", [ADIS16475_DIAG_STAT_MEMORY] = "Memory failure", [ADIS16475_DIAG_STAT_CLK] = "Clock error", }; #define ADIS16475_DATA(_prod_id, _timeouts) \ { \ .msc_ctrl_reg = ADIS16475_REG_MSG_CTRL, \ .glob_cmd_reg = ADIS16475_REG_GLOB_CMD, \ .diag_stat_reg = ADIS16475_REG_DIAG_STAT, \ .prod_id_reg = ADIS16475_REG_PROD_ID, \ .prod_id = (_prod_id), \ .self_test_mask = BIT(2), \ .self_test_reg = ADIS16475_REG_GLOB_CMD, \ .cs_change_delay = 16, \ .read_delay = 5, \ .write_delay = 5, \ .status_error_msgs = adis16475_status_error_msgs, \ .status_error_mask = BIT(ADIS16475_DIAG_STAT_DATA_PATH) | \ BIT(ADIS16475_DIAG_STAT_FLASH_MEM) | \ BIT(ADIS16475_DIAG_STAT_SPI) | \ BIT(ADIS16475_DIAG_STAT_STANDBY) | \ BIT(ADIS16475_DIAG_STAT_SENSOR) | \ BIT(ADIS16475_DIAG_STAT_MEMORY) | \ BIT(ADIS16475_DIAG_STAT_CLK), \ .unmasked_drdy = true, \ .timeouts = (_timeouts), \ .burst_reg_cmd = ADIS16475_REG_GLOB_CMD, \ .burst_len = ADIS16475_BURST_MAX_DATA, \ .burst_max_len = ADIS16475_BURST32_MAX_DATA, \ .burst_max_speed_hz = ADIS16475_BURST_MAX_SPEED \ } static const struct adis16475_sync adis16475_sync_mode[] = { { ADIS16475_SYNC_OUTPUT }, { ADIS16475_SYNC_DIRECT, 1900, 2100 }, { ADIS16475_SYNC_SCALED, 1, 128 }, { ADIS16475_SYNC_PULSE, 1000, 2100 }, }; static const struct adis_timeout adis16475_timeouts = { .reset_ms = 200, .sw_reset_ms = 200, .self_test_ms = 20, }; static const struct adis_timeout adis1650x_timeouts = { .reset_ms = 260, .sw_reset_ms = 260, .self_test_ms = 30, }; static const struct adis16475_chip_info adis16475_chip_info[] = { [ADIS16470] = { .name = "adis16470", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16470, &adis16475_timeouts), }, [ADIS16475_1] = { .name = "adis16475-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16475, &adis16475_timeouts), }, [ADIS16475_2] = { .name = "adis16475-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16475, &adis16475_timeouts), }, [ADIS16475_3] = { .name = "adis16475-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16475, &adis16475_timeouts), }, [ADIS16477_1] = { .name = "adis16477-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16477, &adis16475_timeouts), }, [ADIS16477_2] = { .name = "adis16477-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16477, &adis16475_timeouts), }, [ADIS16477_3] = { .name = "adis16477-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16477, &adis16475_timeouts), }, [ADIS16465_1] = { .name = "adis16465-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16465, &adis16475_timeouts), }, [ADIS16465_2] = { .name = "adis16465-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16465, &adis16475_timeouts), }, [ADIS16465_3] = { .name = "adis16465-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(4000 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16465, &adis16475_timeouts), }, [ADIS16467_1] = { .name = "adis16467-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16467, &adis16475_timeouts), }, [ADIS16467_2] = { .name = "adis16467-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16467, &adis16475_timeouts), }, [ADIS16467_3] = { .name = "adis16467-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 1, .accel_max_scale = IIO_M_S_2_TO_G(800 << 16), .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, .num_sync = ARRAY_SIZE(adis16475_sync_mode), .adis_data = ADIS16475_DATA(16467, &adis16475_timeouts), }, [ADIS16500] = { .name = "adis16500", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 392, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16500, &adis1650x_timeouts), }, [ADIS16505_1] = { .name = "adis16505-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 78, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts), }, [ADIS16505_2] = { .name = "adis16505-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 78, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts), }, [ADIS16505_3] = { .name = "adis16505-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 78, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts), }, [ADIS16507_1] = { .name = "adis16507-1", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16), .accel_max_val = 392, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts), }, [ADIS16507_2] = { .name = "adis16507-2", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16), .accel_max_val = 392, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts), }, [ADIS16507_3] = { .name = "adis16507-3", .num_channels = ARRAY_SIZE(adis16475_channels), .channels = adis16475_channels, .gyro_max_val = 1, .gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16), .accel_max_val = 392, .accel_max_scale = 32000 << 16, .temp_scale = 100, .int_clk = 2000, .max_dec = 1999, .sync = adis16475_sync_mode, /* pulse sync not supported */ .num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1, .has_burst32 = true, .adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts), }, }; static const struct iio_info adis16475_info = { .read_raw = &adis16475_read_raw, .write_raw = &adis16475_write_raw, .update_scan_mode = adis_update_scan_mode, .debugfs_reg_access = adis_debugfs_reg_access, }; static bool adis16475_validate_crc(const u8 *buffer, u16 crc, const bool burst32) { int i; /* extra 6 elements for low gyro and accel */ const u16 sz = burst32 ? ADIS16475_BURST32_MAX_DATA : ADIS16475_BURST_MAX_DATA; for (i = 0; i < sz - 2; i++) crc -= buffer[i]; return crc == 0; } static void adis16475_burst32_check(struct adis16475 *st) { int ret; struct adis *adis = &st->adis; if (!st->info->has_burst32) return; if (st->lsb_flag && !st->burst32) { const u16 en = ADIS16500_BURST32(1); ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL, ADIS16500_BURST32_MASK, en); if (ret) return; st->burst32 = true; /* * In 32-bit mode we need extra 2 bytes for all gyro * and accel channels. */ adis->burst_extra_len = 6 * sizeof(u16); adis->xfer[1].len += 6 * sizeof(u16); dev_dbg(&adis->spi->dev, "Enable burst32 mode, xfer:%d", adis->xfer[1].len); } else if (!st->lsb_flag && st->burst32) { const u16 en = ADIS16500_BURST32(0); ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL, ADIS16500_BURST32_MASK, en); if (ret) return; st->burst32 = false; /* Remove the extra bits */ adis->burst_extra_len = 0; adis->xfer[1].len -= 6 * sizeof(u16); dev_dbg(&adis->spi->dev, "Disable burst32 mode, xfer:%d\n", adis->xfer[1].len); } } static irqreturn_t adis16475_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adis16475 *st = iio_priv(indio_dev); struct adis *adis = &st->adis; int ret, bit, i = 0; __be16 *buffer; u16 crc; bool valid; /* offset until the first element after gyro and accel */ const u8 offset = st->burst32 ? 13 : 7; ret = spi_sync(adis->spi, &adis->msg); if (ret) goto check_burst32; buffer = adis->buffer; crc = be16_to_cpu(buffer[offset + 2]); valid = adis16475_validate_crc(adis->buffer, crc, st->burst32); if (!valid) { dev_err(&adis->spi->dev, "Invalid crc\n"); goto check_burst32; } for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { /* * When burst mode is used, system flags is the first data * channel in the sequence, but the scan index is 7. */ switch (bit) { case ADIS16475_SCAN_TEMP: st->data[i++] = buffer[offset]; break; case ADIS16475_SCAN_GYRO_X ... ADIS16475_SCAN_ACCEL_Z: /* * The first 2 bytes on the received data are the * DIAG_STAT reg, hence the +1 offset here... */ if (st->burst32) { /* upper 16 */ st->data[i++] = buffer[bit * 2 + 2]; /* lower 16 */ st->data[i++] = buffer[bit * 2 + 1]; } else { st->data[i++] = buffer[bit + 1]; /* * Don't bother in doing the manual read if the * device supports burst32. burst32 will be * enabled in the next call to * adis16475_burst32_check()... */ if (st->lsb_flag && !st->info->has_burst32) { u16 val = 0; const u32 reg = ADIS16475_REG_X_GYRO_L + bit * 4; adis_read_reg_16(adis, reg, &val); st->data[i++] = cpu_to_be16(val); } else { /* lower not used */ st->data[i++] = 0; } } break; } } iio_push_to_buffers_with_timestamp(indio_dev, st->data, pf->timestamp); check_burst32: /* * We only check the burst mode at the end of the current capture since * it takes a full data ready cycle for the device to update the burst * array. */ adis16475_burst32_check(st); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int adis16475_config_sync_mode(struct adis16475 *st) { int ret; struct device *dev = &st->adis.spi->dev; const struct adis16475_sync *sync; u32 sync_mode; /* default to internal clk */ st->clk_freq = st->info->int_clk * 1000; ret = device_property_read_u32(dev, "adi,sync-mode", &sync_mode); if (ret) return 0; if (sync_mode >= st->info->num_sync) { dev_err(dev, "Invalid sync mode: %u for %s\n", sync_mode, st->info->name); return -EINVAL; } sync = &st->info->sync[sync_mode]; st->sync_mode = sync->sync_mode; /* All the other modes require external input signal */ if (sync->sync_mode != ADIS16475_SYNC_OUTPUT) { struct clk *clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); st->clk_freq = clk_get_rate(clk); if (st->clk_freq < sync->min_rate || st->clk_freq > sync->max_rate) { dev_err(dev, "Clk rate:%u not in a valid range:[%u %u]\n", st->clk_freq, sync->min_rate, sync->max_rate); return -EINVAL; } if (sync->sync_mode == ADIS16475_SYNC_SCALED) { u16 up_scale; /* * In sync scaled mode, the IMU sample rate is the clk_freq * sync_scale. * Hence, default the IMU sample rate to the highest multiple of the input * clock lower than the IMU max sample rate. The optimal range is * 1900-2100 sps... */ up_scale = 2100 / st->clk_freq; ret = __adis_write_reg_16(&st->adis, ADIS16475_REG_UP_SCALE, up_scale); if (ret) return ret; } st->clk_freq *= 1000; } /* * Keep in mind that the mask for the clk modes in adis1650* * chips is different (1100 instead of 11100). However, we * are not configuring BIT(4) in these chips and the default * value is 0, so we are fine in doing the below operations. * I'm keeping this for simplicity and avoiding extra variables * in chip_info. */ ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL, ADIS16475_SYNC_MODE_MASK, sync->sync_mode); if (ret) return ret; usleep_range(250, 260); return 0; } static int adis16475_config_irq_pin(struct adis16475 *st) { int ret; struct irq_data *desc; u32 irq_type; u16 val = 0; u8 polarity; struct spi_device *spi = st->adis.spi; desc = irq_get_irq_data(spi->irq); if (!desc) { dev_err(&spi->dev, "Could not find IRQ %d\n", spi->irq); return -EINVAL; } /* * It is possible to configure the data ready polarity. Furthermore, we * need to update the adis struct if we want data ready as active low. */ irq_type = irqd_get_trigger_type(desc); if (irq_type == IRQ_TYPE_EDGE_RISING) { polarity = 1; st->adis.irq_flag = IRQF_TRIGGER_RISING; } else if (irq_type == IRQ_TYPE_EDGE_FALLING) { polarity = 0; st->adis.irq_flag = IRQF_TRIGGER_FALLING; } else { dev_err(&spi->dev, "Invalid interrupt type 0x%x specified\n", irq_type); return -EINVAL; } val = ADIS16475_MSG_CTRL_DR_POL(polarity); ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL, ADIS16475_MSG_CTRL_DR_POL_MASK, val); if (ret) return ret; /* * There is a delay writing to any bits written to the MSC_CTRL * register. It should not be bigger than 200us, so 250 should be more * than enough! */ usleep_range(250, 260); return 0; } static const struct of_device_id adis16475_of_match[] = { { .compatible = "adi,adis16470", .data = &adis16475_chip_info[ADIS16470] }, { .compatible = "adi,adis16475-1", .data = &adis16475_chip_info[ADIS16475_1] }, { .compatible = "adi,adis16475-2", .data = &adis16475_chip_info[ADIS16475_2] }, { .compatible = "adi,adis16475-3", .data = &adis16475_chip_info[ADIS16475_3] }, { .compatible = "adi,adis16477-1", .data = &adis16475_chip_info[ADIS16477_1] }, { .compatible = "adi,adis16477-2", .data = &adis16475_chip_info[ADIS16477_2] }, { .compatible = "adi,adis16477-3", .data = &adis16475_chip_info[ADIS16477_3] }, { .compatible = "adi,adis16465-1", .data = &adis16475_chip_info[ADIS16465_1] }, { .compatible = "adi,adis16465-2", .data = &adis16475_chip_info[ADIS16465_2] }, { .compatible = "adi,adis16465-3", .data = &adis16475_chip_info[ADIS16465_3] }, { .compatible = "adi,adis16467-1", .data = &adis16475_chip_info[ADIS16467_1] }, { .compatible = "adi,adis16467-2", .data = &adis16475_chip_info[ADIS16467_2] }, { .compatible = "adi,adis16467-3", .data = &adis16475_chip_info[ADIS16467_3] }, { .compatible = "adi,adis16500", .data = &adis16475_chip_info[ADIS16500] }, { .compatible = "adi,adis16505-1", .data = &adis16475_chip_info[ADIS16505_1] }, { .compatible = "adi,adis16505-2", .data = &adis16475_chip_info[ADIS16505_2] }, { .compatible = "adi,adis16505-3", .data = &adis16475_chip_info[ADIS16505_3] }, { .compatible = "adi,adis16507-1", .data = &adis16475_chip_info[ADIS16507_1] }, { .compatible = "adi,adis16507-2", .data = &adis16475_chip_info[ADIS16507_2] }, { .compatible = "adi,adis16507-3", .data = &adis16475_chip_info[ADIS16507_3] }, { }, }; MODULE_DEVICE_TABLE(of, adis16475_of_match); static int adis16475_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct adis16475 *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->info = device_get_match_data(&spi->dev); if (!st->info) return -EINVAL; ret = adis_init(&st->adis, indio_dev, spi, &st->info->adis_data); if (ret) return ret; indio_dev->name = st->info->name; indio_dev->channels = st->info->channels; indio_dev->num_channels = st->info->num_channels; indio_dev->info = &adis16475_info; indio_dev->modes = INDIO_DIRECT_MODE; ret = __adis_initial_startup(&st->adis); if (ret) return ret; ret = adis16475_config_irq_pin(st); if (ret) return ret; ret = adis16475_config_sync_mode(st); if (ret) return ret; ret = devm_adis_setup_buffer_and_trigger(&st->adis, indio_dev, adis16475_trigger_handler); if (ret) return ret; ret = devm_iio_device_register(&spi->dev, indio_dev); if (ret) return ret; adis16475_debugfs_init(indio_dev); return 0; } static struct spi_driver adis16475_driver = { .driver = { .name = "adis16475", .of_match_table = adis16475_of_match, }, .probe = adis16475_probe, }; module_spi_driver(adis16475_driver); MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>"); MODULE_DESCRIPTION("Analog Devices ADIS16475 IMU driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_ADISLIB);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1