Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Liu | 5548 | 73.07% | 1 | 2.56% |
Michał Mirosław | 666 | 8.77% | 5 | 12.82% |
Johnny Chuang | 603 | 7.94% | 7 | 17.95% |
Dmitry Torokhov | 450 | 5.93% | 4 | 10.26% |
Hans de Goede | 156 | 2.05% | 1 | 2.56% |
James Chen | 55 | 0.72% | 3 | 7.69% |
Charlie Mooney | 38 | 0.50% | 1 | 2.56% |
Takashi Iwai | 27 | 0.36% | 1 | 2.56% |
Doug Anderson | 13 | 0.17% | 2 | 5.13% |
Dmitry Osipenko | 8 | 0.11% | 1 | 2.56% |
Guenter Roeck | 5 | 0.07% | 1 | 2.56% |
Raul E Rangel | 5 | 0.07% | 1 | 2.56% |
Stephen Boyd | 4 | 0.05% | 1 | 2.56% |
Jonathan Cameron | 4 | 0.05% | 1 | 2.56% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.56% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 2.56% |
Andi Shyti | 1 | 0.01% | 1 | 2.56% |
Joe Perches | 1 | 0.01% | 1 | 2.56% |
Stephen Rothwell | 1 | 0.01% | 1 | 2.56% |
Uwe Kleine-König | 1 | 0.01% | 1 | 2.56% |
caihuoqing | 1 | 0.01% | 1 | 2.56% |
Arvind Yadav | 1 | 0.01% | 1 | 2.56% |
Josh Poimboeuf | 1 | 0.01% | 1 | 2.56% |
Total | 7593 | 39 |
// SPDX-License-Identifier: GPL-2.0-only /* * Elan Microelectronics touch panels with I2C interface * * Copyright (C) 2014 Elan Microelectronics Corporation. * Scott Liu <scott.liu@emc.com.tw> * * This code is partly based on hid-multitouch.c: * * Copyright (c) 2010-2012 Stephane Chatty <chatty@enac.fr> * Copyright (c) 2010-2012 Benjamin Tissoires <benjamin.tissoires@gmail.com> * Copyright (c) 2010-2012 Ecole Nationale de l'Aviation Civile, France * * This code is partly based on i2c-hid.c: * * Copyright (c) 2012 Benjamin Tissoires <benjamin.tissoires@gmail.com> * Copyright (c) 2012 Ecole Nationale de l'Aviation Civile, France * Copyright (c) 2012 Red Hat, Inc */ #include <linux/bits.h> #include <linux/module.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/platform_device.h> #include <linux/async.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/uaccess.h> #include <linux/buffer_head.h> #include <linux/slab.h> #include <linux/firmware.h> #include <linux/input/mt.h> #include <linux/input/touchscreen.h> #include <linux/acpi.h> #include <linux/of.h> #include <linux/pm_wakeirq.h> #include <linux/gpio/consumer.h> #include <linux/regulator/consumer.h> #include <linux/uuid.h> #include <asm/unaligned.h> /* Device, Driver information */ #define DEVICE_NAME "elants_i2c" /* Convert from rows or columns into resolution */ #define ELAN_TS_RESOLUTION(n, m) (((n) - 1) * (m)) /* FW header data */ #define HEADER_SIZE 4 #define FW_HDR_TYPE 0 #define FW_HDR_COUNT 1 #define FW_HDR_LENGTH 2 /* Buffer mode Queue Header information */ #define QUEUE_HEADER_SINGLE 0x62 #define QUEUE_HEADER_NORMAL 0X63 #define QUEUE_HEADER_WAIT 0x64 #define QUEUE_HEADER_NORMAL2 0x66 /* Command header definition */ #define CMD_HEADER_WRITE 0x54 #define CMD_HEADER_READ 0x53 #define CMD_HEADER_6B_READ 0x5B #define CMD_HEADER_ROM_READ 0x96 #define CMD_HEADER_RESP 0x52 #define CMD_HEADER_6B_RESP 0x9B #define CMD_HEADER_ROM_RESP 0x95 #define CMD_HEADER_HELLO 0x55 #define CMD_HEADER_REK 0x66 /* FW position data */ #define PACKET_SIZE_OLD 40 #define PACKET_SIZE 55 #define MAX_CONTACT_NUM 10 #define FW_POS_HEADER 0 #define FW_POS_STATE 1 #define FW_POS_TOTAL 2 #define FW_POS_XY 3 #define FW_POS_TOOL_TYPE 33 #define FW_POS_CHECKSUM 34 #define FW_POS_WIDTH 35 #define FW_POS_PRESSURE 45 #define HEADER_REPORT_10_FINGER 0x62 /* Header (4 bytes) plus 3 full 10-finger packets */ #define MAX_PACKET_SIZE 169 #define BOOT_TIME_DELAY_MS 50 /* FW read command, 0x53 0x?? 0x0, 0x01 */ #define E_ELAN_INFO_FW_VER 0x00 #define E_ELAN_INFO_BC_VER 0x10 #define E_ELAN_INFO_X_RES 0x60 #define E_ELAN_INFO_Y_RES 0x63 #define E_ELAN_INFO_REK 0xD0 #define E_ELAN_INFO_TEST_VER 0xE0 #define E_ELAN_INFO_FW_ID 0xF0 #define E_INFO_OSR 0xD6 #define E_INFO_PHY_SCAN 0xD7 #define E_INFO_PHY_DRIVER 0xD8 /* FW write command, 0x54 0x?? 0x0, 0x01 */ #define E_POWER_STATE_SLEEP 0x50 #define E_POWER_STATE_RESUME 0x58 #define MAX_RETRIES 3 #define MAX_FW_UPDATE_RETRIES 30 #define ELAN_FW_PAGESIZE 132 /* calibration timeout definition */ #define ELAN_CALI_TIMEOUT_MSEC 12000 #define ELAN_POWERON_DELAY_USEC 5000 #define ELAN_RESET_DELAY_MSEC 20 /* FW boot code version */ #define BC_VER_H_BYTE_FOR_EKTH3900x1_I2C 0x72 #define BC_VER_H_BYTE_FOR_EKTH3900x2_I2C 0x82 #define BC_VER_H_BYTE_FOR_EKTH3900x3_I2C 0x92 #define BC_VER_H_BYTE_FOR_EKTH5312x1_I2C 0x6D #define BC_VER_H_BYTE_FOR_EKTH5312x2_I2C 0x6E #define BC_VER_H_BYTE_FOR_EKTH5312cx1_I2C 0x77 #define BC_VER_H_BYTE_FOR_EKTH5312cx2_I2C 0x78 #define BC_VER_H_BYTE_FOR_EKTH5312x1_I2C_USB 0x67 #define BC_VER_H_BYTE_FOR_EKTH5312x2_I2C_USB 0x68 #define BC_VER_H_BYTE_FOR_EKTH5312cx1_I2C_USB 0x74 #define BC_VER_H_BYTE_FOR_EKTH5312cx2_I2C_USB 0x75 enum elants_chip_id { EKTH3500, EKTF3624, }; enum elants_state { ELAN_STATE_NORMAL, ELAN_WAIT_QUEUE_HEADER, ELAN_WAIT_RECALIBRATION, }; enum elants_iap_mode { ELAN_IAP_OPERATIONAL, ELAN_IAP_RECOVERY, }; /* struct elants_data - represents state of Elan touchscreen device */ struct elants_data { struct i2c_client *client; struct input_dev *input; struct regulator *vcc33; struct regulator *vccio; struct gpio_desc *reset_gpio; u16 fw_version; u8 test_version; u8 solution_version; u8 bc_version; u8 iap_version; u16 hw_version; u8 major_res; unsigned int x_res; /* resolution in units/mm */ unsigned int y_res; unsigned int x_max; unsigned int y_max; unsigned int phy_x; unsigned int phy_y; struct touchscreen_properties prop; enum elants_state state; enum elants_chip_id chip_id; enum elants_iap_mode iap_mode; /* Guards against concurrent access to the device via sysfs */ struct mutex sysfs_mutex; u8 cmd_resp[HEADER_SIZE]; struct completion cmd_done; bool keep_power_in_suspend; /* Must be last to be used for DMA operations */ u8 buf[MAX_PACKET_SIZE] ____cacheline_aligned; }; static int elants_i2c_send(struct i2c_client *client, const void *data, size_t size) { int ret; ret = i2c_master_send(client, data, size); if (ret == size) return 0; if (ret >= 0) ret = -EIO; dev_err(&client->dev, "%s failed (%*ph): %d\n", __func__, (int)size, data, ret); return ret; } static int elants_i2c_read(struct i2c_client *client, void *data, size_t size) { int ret; ret = i2c_master_recv(client, data, size); if (ret == size) return 0; if (ret >= 0) ret = -EIO; dev_err(&client->dev, "%s failed: %d\n", __func__, ret); return ret; } static int elants_i2c_execute_command(struct i2c_client *client, const u8 *cmd, size_t cmd_size, u8 *resp, size_t resp_size, int retries, const char *cmd_name) { struct i2c_msg msgs[2]; int ret; u8 expected_response; switch (cmd[0]) { case CMD_HEADER_READ: expected_response = CMD_HEADER_RESP; break; case CMD_HEADER_6B_READ: expected_response = CMD_HEADER_6B_RESP; break; case CMD_HEADER_ROM_READ: expected_response = CMD_HEADER_ROM_RESP; break; default: dev_err(&client->dev, "(%s): invalid command: %*ph\n", cmd_name, (int)cmd_size, cmd); return -EINVAL; } for (;;) { msgs[0].addr = client->addr; msgs[0].flags = client->flags & I2C_M_TEN; msgs[0].len = cmd_size; msgs[0].buf = (u8 *)cmd; msgs[1].addr = client->addr; msgs[1].flags = (client->flags & I2C_M_TEN) | I2C_M_RD; msgs[1].flags |= I2C_M_RD; msgs[1].len = resp_size; msgs[1].buf = resp; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret < 0) { if (--retries > 0) { dev_dbg(&client->dev, "(%s) I2C transfer failed: %pe (retrying)\n", cmd_name, ERR_PTR(ret)); continue; } dev_err(&client->dev, "(%s) I2C transfer failed: %pe\n", cmd_name, ERR_PTR(ret)); return ret; } if (ret != ARRAY_SIZE(msgs) || resp[FW_HDR_TYPE] != expected_response) { if (--retries > 0) { dev_dbg(&client->dev, "(%s) unexpected response: %*ph (retrying)\n", cmd_name, ret, resp); continue; } dev_err(&client->dev, "(%s) unexpected response: %*ph\n", cmd_name, ret, resp); return -EIO; } return 0; } } static int elants_i2c_calibrate(struct elants_data *ts) { struct i2c_client *client = ts->client; int ret, error; static const u8 w_flashkey[] = { CMD_HEADER_WRITE, 0xC0, 0xE1, 0x5A }; static const u8 rek[] = { CMD_HEADER_WRITE, 0x29, 0x00, 0x01 }; static const u8 rek_resp[] = { CMD_HEADER_REK, 0x66, 0x66, 0x66 }; disable_irq(client->irq); ts->state = ELAN_WAIT_RECALIBRATION; reinit_completion(&ts->cmd_done); elants_i2c_send(client, w_flashkey, sizeof(w_flashkey)); elants_i2c_send(client, rek, sizeof(rek)); enable_irq(client->irq); ret = wait_for_completion_interruptible_timeout(&ts->cmd_done, msecs_to_jiffies(ELAN_CALI_TIMEOUT_MSEC)); ts->state = ELAN_STATE_NORMAL; if (ret <= 0) { error = ret < 0 ? ret : -ETIMEDOUT; dev_err(&client->dev, "error while waiting for calibration to complete: %d\n", error); return error; } if (memcmp(rek_resp, ts->cmd_resp, sizeof(rek_resp))) { dev_err(&client->dev, "unexpected calibration response: %*ph\n", (int)sizeof(ts->cmd_resp), ts->cmd_resp); return -EINVAL; } return 0; } static int elants_i2c_sw_reset(struct i2c_client *client) { const u8 soft_rst_cmd[] = { 0x77, 0x77, 0x77, 0x77 }; int error; error = elants_i2c_send(client, soft_rst_cmd, sizeof(soft_rst_cmd)); if (error) { dev_err(&client->dev, "software reset failed: %d\n", error); return error; } /* * We should wait at least 10 msec (but no more than 40) before * sending fastboot or IAP command to the device. */ msleep(30); return 0; } static u16 elants_i2c_parse_version(u8 *buf) { return get_unaligned_be32(buf) >> 4; } static int elants_i2c_query_hw_version(struct elants_data *ts) { struct i2c_client *client = ts->client; int retry_cnt = MAX_RETRIES; const u8 cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_FW_ID, 0x00, 0x01 }; u8 resp[HEADER_SIZE]; int error; while (retry_cnt--) { error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), 1, "read fw id"); if (error) return error; ts->hw_version = elants_i2c_parse_version(resp); if (ts->hw_version != 0xffff) return 0; } dev_err(&client->dev, "Invalid fw id: %#04x\n", ts->hw_version); return -EINVAL; } static int elants_i2c_query_fw_version(struct elants_data *ts) { struct i2c_client *client = ts->client; int retry_cnt = MAX_RETRIES; const u8 cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_FW_VER, 0x00, 0x01 }; u8 resp[HEADER_SIZE]; int error; while (retry_cnt--) { error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), 1, "read fw version"); if (error) return error; ts->fw_version = elants_i2c_parse_version(resp); if (ts->fw_version != 0x0000 && ts->fw_version != 0xffff) return 0; dev_dbg(&client->dev, "(read fw version) resp %*phC\n", (int)sizeof(resp), resp); } dev_err(&client->dev, "Invalid fw ver: %#04x\n", ts->fw_version); return -EINVAL; } static int elants_i2c_query_test_version(struct elants_data *ts) { struct i2c_client *client = ts->client; int error; u16 version; const u8 cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_TEST_VER, 0x00, 0x01 }; u8 resp[HEADER_SIZE]; error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), MAX_RETRIES, "read test version"); if (error) { dev_err(&client->dev, "Failed to read test version\n"); return error; } version = elants_i2c_parse_version(resp); ts->test_version = version >> 8; ts->solution_version = version & 0xff; return 0; } static int elants_i2c_query_bc_version(struct elants_data *ts) { struct i2c_client *client = ts->client; const u8 cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_BC_VER, 0x00, 0x01 }; u8 resp[HEADER_SIZE]; u16 version; int error; error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), 1, "read BC version"); if (error) return error; version = elants_i2c_parse_version(resp); ts->bc_version = version >> 8; ts->iap_version = version & 0xff; return 0; } static int elants_i2c_query_ts_info_ektf(struct elants_data *ts) { struct i2c_client *client = ts->client; int error; u8 resp[4]; u16 phy_x, phy_y; const u8 get_xres_cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_X_RES, 0x00, 0x00 }; const u8 get_yres_cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_Y_RES, 0x00, 0x00 }; /* Get X/Y size in mm */ error = elants_i2c_execute_command(client, get_xres_cmd, sizeof(get_xres_cmd), resp, sizeof(resp), 1, "get X size"); if (error) return error; phy_x = resp[2] | ((resp[3] & 0xF0) << 4); error = elants_i2c_execute_command(client, get_yres_cmd, sizeof(get_yres_cmd), resp, sizeof(resp), 1, "get Y size"); if (error) return error; phy_y = resp[2] | ((resp[3] & 0xF0) << 4); dev_dbg(&client->dev, "phy_x=%d, phy_y=%d\n", phy_x, phy_y); ts->phy_x = phy_x; ts->phy_y = phy_y; /* eKTF doesn't report max size, set it to default values */ ts->x_max = 2240 - 1; ts->y_max = 1408 - 1; return 0; } static int elants_i2c_query_ts_info_ekth(struct elants_data *ts) { struct i2c_client *client = ts->client; int error; u8 resp[17]; u16 phy_x, phy_y, rows, cols, osr; const u8 get_resolution_cmd[] = { CMD_HEADER_6B_READ, 0x00, 0x00, 0x00, 0x00, 0x00 }; const u8 get_osr_cmd[] = { CMD_HEADER_READ, E_INFO_OSR, 0x00, 0x01 }; const u8 get_physical_scan_cmd[] = { CMD_HEADER_READ, E_INFO_PHY_SCAN, 0x00, 0x01 }; const u8 get_physical_drive_cmd[] = { CMD_HEADER_READ, E_INFO_PHY_DRIVER, 0x00, 0x01 }; /* Get trace number */ error = elants_i2c_execute_command(client, get_resolution_cmd, sizeof(get_resolution_cmd), resp, sizeof(resp), 1, "get resolution"); if (error) return error; rows = resp[2] + resp[6] + resp[10]; cols = resp[3] + resp[7] + resp[11]; /* Get report resolution value of ABS_MT_TOUCH_MAJOR */ ts->major_res = resp[16]; /* Process mm_to_pixel information */ error = elants_i2c_execute_command(client, get_osr_cmd, sizeof(get_osr_cmd), resp, sizeof(resp), 1, "get osr"); if (error) return error; osr = resp[3]; error = elants_i2c_execute_command(client, get_physical_scan_cmd, sizeof(get_physical_scan_cmd), resp, sizeof(resp), 1, "get physical scan"); if (error) return error; phy_x = get_unaligned_be16(&resp[2]); error = elants_i2c_execute_command(client, get_physical_drive_cmd, sizeof(get_physical_drive_cmd), resp, sizeof(resp), 1, "get physical drive"); if (error) return error; phy_y = get_unaligned_be16(&resp[2]); dev_dbg(&client->dev, "phy_x=%d, phy_y=%d\n", phy_x, phy_y); if (rows == 0 || cols == 0 || osr == 0) { dev_warn(&client->dev, "invalid trace number data: %d, %d, %d\n", rows, cols, osr); } else { /* translate trace number to TS resolution */ ts->x_max = ELAN_TS_RESOLUTION(rows, osr); ts->x_res = DIV_ROUND_CLOSEST(ts->x_max, phy_x); ts->y_max = ELAN_TS_RESOLUTION(cols, osr); ts->y_res = DIV_ROUND_CLOSEST(ts->y_max, phy_y); ts->phy_x = phy_x; ts->phy_y = phy_y; } return 0; } static int elants_i2c_fastboot(struct i2c_client *client) { const u8 boot_cmd[] = { 0x4D, 0x61, 0x69, 0x6E }; int error; error = elants_i2c_send(client, boot_cmd, sizeof(boot_cmd)); if (error) { dev_err(&client->dev, "boot failed: %d\n", error); return error; } dev_dbg(&client->dev, "boot success -- 0x%x\n", client->addr); return 0; } static int elants_i2c_initialize(struct elants_data *ts) { struct i2c_client *client = ts->client; int error, error2, retry_cnt; const u8 hello_packet[] = { 0x55, 0x55, 0x55, 0x55 }; const u8 recov_packet[] = { 0x55, 0x55, 0x80, 0x80 }; u8 buf[HEADER_SIZE]; for (retry_cnt = 0; retry_cnt < MAX_RETRIES; retry_cnt++) { error = elants_i2c_sw_reset(client); if (error) { /* Continue initializing if it's the last try */ if (retry_cnt < MAX_RETRIES - 1) continue; } error = elants_i2c_fastboot(client); if (error) { /* Continue initializing if it's the last try */ if (retry_cnt < MAX_RETRIES - 1) continue; } /* Wait for Hello packet */ msleep(BOOT_TIME_DELAY_MS); error = elants_i2c_read(client, buf, sizeof(buf)); if (error) { dev_err(&client->dev, "failed to read 'hello' packet: %d\n", error); } else if (!memcmp(buf, hello_packet, sizeof(hello_packet))) { ts->iap_mode = ELAN_IAP_OPERATIONAL; break; } else if (!memcmp(buf, recov_packet, sizeof(recov_packet))) { /* * Setting error code will mark device * in recovery mode below. */ error = -EIO; break; } else { error = -EINVAL; dev_err(&client->dev, "invalid 'hello' packet: %*ph\n", (int)sizeof(buf), buf); } } /* hw version is available even if device in recovery state */ error2 = elants_i2c_query_hw_version(ts); if (!error2) error2 = elants_i2c_query_bc_version(ts); if (!error) error = error2; if (!error) error = elants_i2c_query_fw_version(ts); if (!error) error = elants_i2c_query_test_version(ts); switch (ts->chip_id) { case EKTH3500: if (!error) error = elants_i2c_query_ts_info_ekth(ts); break; case EKTF3624: if (!error) error = elants_i2c_query_ts_info_ektf(ts); break; default: BUG(); } if (error) ts->iap_mode = ELAN_IAP_RECOVERY; return 0; } /* * Firmware update interface. */ static int elants_i2c_fw_write_page(struct i2c_client *client, const void *page) { const u8 ack_ok[] = { 0xaa, 0xaa }; u8 buf[2]; int retry; int error; for (retry = 0; retry < MAX_FW_UPDATE_RETRIES; retry++) { error = elants_i2c_send(client, page, ELAN_FW_PAGESIZE); if (error) { dev_err(&client->dev, "IAP Write Page failed: %d\n", error); continue; } error = elants_i2c_read(client, buf, 2); if (error) { dev_err(&client->dev, "IAP Ack read failed: %d\n", error); return error; } if (!memcmp(buf, ack_ok, sizeof(ack_ok))) return 0; error = -EIO; dev_err(&client->dev, "IAP Get Ack Error [%02x:%02x]\n", buf[0], buf[1]); } return error; } static int elants_i2c_validate_remark_id(struct elants_data *ts, const struct firmware *fw) { struct i2c_client *client = ts->client; int error; const u8 cmd[] = { CMD_HEADER_ROM_READ, 0x80, 0x1F, 0x00, 0x00, 0x21 }; u8 resp[6] = { 0 }; u16 ts_remark_id = 0; u16 fw_remark_id = 0; /* Compare TS Remark ID and FW Remark ID */ error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), 1, "read Remark ID"); if (error) return error; ts_remark_id = get_unaligned_be16(&resp[3]); fw_remark_id = get_unaligned_le16(&fw->data[fw->size - 4]); if (fw_remark_id != ts_remark_id) { dev_err(&client->dev, "Remark ID Mismatched: ts_remark_id=0x%04x, fw_remark_id=0x%04x.\n", ts_remark_id, fw_remark_id); return -EINVAL; } return 0; } static bool elants_i2c_should_check_remark_id(struct elants_data *ts) { struct i2c_client *client = ts->client; const u8 bootcode_version = ts->iap_version; bool check; /* I2C eKTH3900 and eKTH5312 are NOT support Remark ID */ if ((bootcode_version == BC_VER_H_BYTE_FOR_EKTH3900x1_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH3900x2_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH3900x3_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312x1_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312x2_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312cx1_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312cx2_I2C) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312x1_I2C_USB) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312x2_I2C_USB) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312cx1_I2C_USB) || (bootcode_version == BC_VER_H_BYTE_FOR_EKTH5312cx2_I2C_USB)) { dev_dbg(&client->dev, "eKTH3900/eKTH5312(0x%02x) are not support remark id\n", bootcode_version); check = false; } else if (bootcode_version >= 0x60) { check = true; } else { check = false; } return check; } static int elants_i2c_do_update_firmware(struct i2c_client *client, const struct firmware *fw, bool force) { struct elants_data *ts = i2c_get_clientdata(client); const u8 enter_iap[] = { 0x45, 0x49, 0x41, 0x50 }; const u8 enter_iap2[] = { 0x54, 0x00, 0x12, 0x34 }; const u8 iap_ack[] = { 0x55, 0xaa, 0x33, 0xcc }; const u8 close_idle[] = { 0x54, 0x2c, 0x01, 0x01 }; u8 buf[HEADER_SIZE]; u16 send_id; int page, n_fw_pages; int error; bool check_remark_id = elants_i2c_should_check_remark_id(ts); /* Recovery mode detection! */ if (force) { dev_dbg(&client->dev, "Recovery mode procedure\n"); if (check_remark_id) { error = elants_i2c_validate_remark_id(ts, fw); if (error) return error; } error = elants_i2c_send(client, enter_iap2, sizeof(enter_iap2)); if (error) { dev_err(&client->dev, "failed to enter IAP mode: %d\n", error); return error; } } else { /* Start IAP Procedure */ dev_dbg(&client->dev, "Normal IAP procedure\n"); /* Close idle mode */ error = elants_i2c_send(client, close_idle, sizeof(close_idle)); if (error) dev_err(&client->dev, "Failed close idle: %d\n", error); msleep(60); elants_i2c_sw_reset(client); msleep(20); if (check_remark_id) { error = elants_i2c_validate_remark_id(ts, fw); if (error) return error; } error = elants_i2c_send(client, enter_iap, sizeof(enter_iap)); if (error) { dev_err(&client->dev, "failed to enter IAP mode: %d\n", error); return error; } } msleep(20); /* check IAP state */ error = elants_i2c_read(client, buf, 4); if (error) { dev_err(&client->dev, "failed to read IAP acknowledgement: %d\n", error); return error; } if (memcmp(buf, iap_ack, sizeof(iap_ack))) { dev_err(&client->dev, "failed to enter IAP: %*ph (expected %*ph)\n", (int)sizeof(buf), buf, (int)sizeof(iap_ack), iap_ack); return -EIO; } dev_info(&client->dev, "successfully entered IAP mode"); send_id = client->addr; error = elants_i2c_send(client, &send_id, 1); if (error) { dev_err(&client->dev, "sending dummy byte failed: %d\n", error); return error; } /* Clear the last page of Master */ error = elants_i2c_send(client, fw->data, ELAN_FW_PAGESIZE); if (error) { dev_err(&client->dev, "clearing of the last page failed: %d\n", error); return error; } error = elants_i2c_read(client, buf, 2); if (error) { dev_err(&client->dev, "failed to read ACK for clearing the last page: %d\n", error); return error; } n_fw_pages = fw->size / ELAN_FW_PAGESIZE; dev_dbg(&client->dev, "IAP Pages = %d\n", n_fw_pages); for (page = 0; page < n_fw_pages; page++) { error = elants_i2c_fw_write_page(client, fw->data + page * ELAN_FW_PAGESIZE); if (error) { dev_err(&client->dev, "failed to write FW page %d: %d\n", page, error); return error; } } /* Old iap needs to wait 200ms for WDT and rest is for hello packets */ msleep(300); dev_info(&client->dev, "firmware update completed\n"); return 0; } static int elants_i2c_fw_update(struct elants_data *ts) { struct i2c_client *client = ts->client; const struct firmware *fw; char *fw_name; int error; fw_name = kasprintf(GFP_KERNEL, "elants_i2c_%04x.bin", ts->hw_version); if (!fw_name) return -ENOMEM; dev_info(&client->dev, "requesting fw name = %s\n", fw_name); error = request_firmware(&fw, fw_name, &client->dev); kfree(fw_name); if (error) { dev_err(&client->dev, "failed to request firmware: %d\n", error); return error; } if (fw->size % ELAN_FW_PAGESIZE) { dev_err(&client->dev, "invalid firmware length: %zu\n", fw->size); error = -EINVAL; goto out; } disable_irq(client->irq); error = elants_i2c_do_update_firmware(client, fw, ts->iap_mode == ELAN_IAP_RECOVERY); if (error) { dev_err(&client->dev, "firmware update failed: %d\n", error); ts->iap_mode = ELAN_IAP_RECOVERY; goto out_enable_irq; } error = elants_i2c_initialize(ts); if (error) { dev_err(&client->dev, "failed to initialize device after firmware update: %d\n", error); ts->iap_mode = ELAN_IAP_RECOVERY; goto out_enable_irq; } ts->iap_mode = ELAN_IAP_OPERATIONAL; out_enable_irq: ts->state = ELAN_STATE_NORMAL; enable_irq(client->irq); msleep(100); if (!error) elants_i2c_calibrate(ts); out: release_firmware(fw); return error; } /* * Event reporting. */ static void elants_i2c_mt_event(struct elants_data *ts, u8 *buf, size_t packet_size) { struct input_dev *input = ts->input; unsigned int n_fingers; unsigned int tool_type; u16 finger_state; int i; n_fingers = buf[FW_POS_STATE + 1] & 0x0f; finger_state = ((buf[FW_POS_STATE + 1] & 0x30) << 4) | buf[FW_POS_STATE]; dev_dbg(&ts->client->dev, "n_fingers: %u, state: %04x\n", n_fingers, finger_state); /* Note: all fingers have the same tool type */ tool_type = buf[FW_POS_TOOL_TYPE] & BIT(0) ? MT_TOOL_FINGER : MT_TOOL_PALM; for (i = 0; i < MAX_CONTACT_NUM && n_fingers; i++) { if (finger_state & 1) { unsigned int x, y, p, w; u8 *pos; pos = &buf[FW_POS_XY + i * 3]; x = (((u16)pos[0] & 0xf0) << 4) | pos[1]; y = (((u16)pos[0] & 0x0f) << 8) | pos[2]; /* * eKTF3624 may have use "old" touch-report format, * depending on a device and TS firmware version. * For example, ASUS Transformer devices use the "old" * format, while ASUS Nexus 7 uses the "new" formant. */ if (packet_size == PACKET_SIZE_OLD && ts->chip_id == EKTF3624) { w = buf[FW_POS_WIDTH + i / 2]; w >>= 4 * (~i & 1); w |= w << 4; w |= !w; p = w; } else { p = buf[FW_POS_PRESSURE + i]; w = buf[FW_POS_WIDTH + i]; } dev_dbg(&ts->client->dev, "i=%d x=%d y=%d p=%d w=%d\n", i, x, y, p, w); input_mt_slot(input, i); input_mt_report_slot_state(input, tool_type, true); touchscreen_report_pos(input, &ts->prop, x, y, true); input_event(input, EV_ABS, ABS_MT_PRESSURE, p); input_event(input, EV_ABS, ABS_MT_TOUCH_MAJOR, w); n_fingers--; } finger_state >>= 1; } input_mt_sync_frame(input); input_sync(input); } static u8 elants_i2c_calculate_checksum(u8 *buf) { u8 checksum = 0; u8 i; for (i = 0; i < FW_POS_CHECKSUM; i++) checksum += buf[i]; return checksum; } static void elants_i2c_event(struct elants_data *ts, u8 *buf, size_t packet_size) { u8 checksum = elants_i2c_calculate_checksum(buf); if (unlikely(buf[FW_POS_CHECKSUM] != checksum)) dev_warn(&ts->client->dev, "%s: invalid checksum for packet %02x: %02x vs. %02x\n", __func__, buf[FW_POS_HEADER], checksum, buf[FW_POS_CHECKSUM]); else if (unlikely(buf[FW_POS_HEADER] != HEADER_REPORT_10_FINGER)) dev_warn(&ts->client->dev, "%s: unknown packet type: %02x\n", __func__, buf[FW_POS_HEADER]); else elants_i2c_mt_event(ts, buf, packet_size); } static irqreturn_t elants_i2c_irq(int irq, void *_dev) { const u8 wait_packet[] = { 0x64, 0x64, 0x64, 0x64 }; struct elants_data *ts = _dev; struct i2c_client *client = ts->client; int report_count, report_len; int i; int len; len = i2c_master_recv_dmasafe(client, ts->buf, sizeof(ts->buf)); if (len < 0) { dev_err(&client->dev, "%s: failed to read data: %d\n", __func__, len); goto out; } dev_dbg(&client->dev, "%s: packet %*ph\n", __func__, HEADER_SIZE, ts->buf); switch (ts->state) { case ELAN_WAIT_RECALIBRATION: if (ts->buf[FW_HDR_TYPE] == CMD_HEADER_REK) { memcpy(ts->cmd_resp, ts->buf, sizeof(ts->cmd_resp)); complete(&ts->cmd_done); ts->state = ELAN_STATE_NORMAL; } break; case ELAN_WAIT_QUEUE_HEADER: if (ts->buf[FW_HDR_TYPE] != QUEUE_HEADER_NORMAL) break; ts->state = ELAN_STATE_NORMAL; fallthrough; case ELAN_STATE_NORMAL: switch (ts->buf[FW_HDR_TYPE]) { case CMD_HEADER_HELLO: case CMD_HEADER_RESP: break; case QUEUE_HEADER_WAIT: if (memcmp(ts->buf, wait_packet, sizeof(wait_packet))) { dev_err(&client->dev, "invalid wait packet %*ph\n", HEADER_SIZE, ts->buf); } else { ts->state = ELAN_WAIT_QUEUE_HEADER; udelay(30); } break; case QUEUE_HEADER_SINGLE: elants_i2c_event(ts, &ts->buf[HEADER_SIZE], ts->buf[FW_HDR_LENGTH]); break; case QUEUE_HEADER_NORMAL2: /* CMD_HEADER_REK */ /* * Depending on firmware version, eKTF3624 touchscreens * may utilize one of these opcodes for the touch events: * 0x63 (NORMAL) and 0x66 (NORMAL2). The 0x63 is used by * older firmware version and differs from 0x66 such that * touch pressure value needs to be adjusted. The 0x66 * opcode of newer firmware is equal to 0x63 of eKTH3500. */ if (ts->chip_id != EKTF3624) break; fallthrough; case QUEUE_HEADER_NORMAL: report_count = ts->buf[FW_HDR_COUNT]; if (report_count == 0 || report_count > 3) { dev_err(&client->dev, "bad report count: %*ph\n", HEADER_SIZE, ts->buf); break; } report_len = ts->buf[FW_HDR_LENGTH] / report_count; if (report_len == PACKET_SIZE_OLD && ts->chip_id == EKTF3624) { dev_dbg_once(&client->dev, "using old report format\n"); } else if (report_len != PACKET_SIZE) { dev_err(&client->dev, "mismatching report length: %*ph\n", HEADER_SIZE, ts->buf); break; } for (i = 0; i < report_count; i++) { u8 *buf = ts->buf + HEADER_SIZE + i * report_len; elants_i2c_event(ts, buf, report_len); } break; default: dev_err(&client->dev, "unknown packet %*ph\n", HEADER_SIZE, ts->buf); break; } break; } out: return IRQ_HANDLED; } /* * sysfs interface */ static ssize_t calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); int error; error = mutex_lock_interruptible(&ts->sysfs_mutex); if (error) return error; error = elants_i2c_calibrate(ts); mutex_unlock(&ts->sysfs_mutex); return error ?: count; } static ssize_t write_update_fw(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); int error; error = mutex_lock_interruptible(&ts->sysfs_mutex); if (error) return error; error = elants_i2c_fw_update(ts); dev_dbg(dev, "firmware update result: %d\n", error); mutex_unlock(&ts->sysfs_mutex); return error ?: count; } static ssize_t show_iap_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); return sprintf(buf, "%s\n", ts->iap_mode == ELAN_IAP_OPERATIONAL ? "Normal" : "Recovery"); } static ssize_t show_calibration_count(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); const u8 cmd[] = { CMD_HEADER_READ, E_ELAN_INFO_REK, 0x00, 0x01 }; u8 resp[HEADER_SIZE]; u16 rek_count; int error; error = elants_i2c_execute_command(client, cmd, sizeof(cmd), resp, sizeof(resp), 1, "read ReK status"); if (error) return sprintf(buf, "%d\n", error); rek_count = get_unaligned_be16(&resp[2]); return sprintf(buf, "0x%04x\n", rek_count); } static DEVICE_ATTR_WO(calibrate); static DEVICE_ATTR(iap_mode, S_IRUGO, show_iap_mode, NULL); static DEVICE_ATTR(calibration_count, S_IRUGO, show_calibration_count, NULL); static DEVICE_ATTR(update_fw, S_IWUSR, NULL, write_update_fw); struct elants_version_attribute { struct device_attribute dattr; size_t field_offset; size_t field_size; }; #define __ELANTS_FIELD_SIZE(_field) \ sizeof(((struct elants_data *)NULL)->_field) #define __ELANTS_VERIFY_SIZE(_field) \ (BUILD_BUG_ON_ZERO(__ELANTS_FIELD_SIZE(_field) > 2) + \ __ELANTS_FIELD_SIZE(_field)) #define ELANTS_VERSION_ATTR(_field) \ struct elants_version_attribute elants_ver_attr_##_field = { \ .dattr = __ATTR(_field, S_IRUGO, \ elants_version_attribute_show, NULL), \ .field_offset = offsetof(struct elants_data, _field), \ .field_size = __ELANTS_VERIFY_SIZE(_field), \ } static ssize_t elants_version_attribute_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); struct elants_version_attribute *attr = container_of(dattr, struct elants_version_attribute, dattr); u8 *field = (u8 *)((char *)ts + attr->field_offset); unsigned int fmt_size; unsigned int val; if (attr->field_size == 1) { val = *field; fmt_size = 2; /* 2 HEX digits */ } else { val = *(u16 *)field; fmt_size = 4; /* 4 HEX digits */ } return sprintf(buf, "%0*x\n", fmt_size, val); } static ELANTS_VERSION_ATTR(fw_version); static ELANTS_VERSION_ATTR(hw_version); static ELANTS_VERSION_ATTR(test_version); static ELANTS_VERSION_ATTR(solution_version); static ELANTS_VERSION_ATTR(bc_version); static ELANTS_VERSION_ATTR(iap_version); static struct attribute *elants_attributes[] = { &dev_attr_calibrate.attr, &dev_attr_update_fw.attr, &dev_attr_iap_mode.attr, &dev_attr_calibration_count.attr, &elants_ver_attr_fw_version.dattr.attr, &elants_ver_attr_hw_version.dattr.attr, &elants_ver_attr_test_version.dattr.attr, &elants_ver_attr_solution_version.dattr.attr, &elants_ver_attr_bc_version.dattr.attr, &elants_ver_attr_iap_version.dattr.attr, NULL }; static const struct attribute_group elants_attribute_group = { .attrs = elants_attributes, }; static int elants_i2c_power_on(struct elants_data *ts) { int error; /* * If we do not have reset gpio assume platform firmware * controls regulators and does power them on for us. */ if (IS_ERR_OR_NULL(ts->reset_gpio)) return 0; error = regulator_enable(ts->vcc33); if (error) { dev_err(&ts->client->dev, "failed to enable vcc33 regulator: %d\n", error); return error; } error = regulator_enable(ts->vccio); if (error) { dev_err(&ts->client->dev, "failed to enable vccio regulator: %d\n", error); regulator_disable(ts->vcc33); return error; } /* * We need to wait a bit after powering on controller before * we are allowed to release reset GPIO. */ usleep_range(ELAN_POWERON_DELAY_USEC, ELAN_POWERON_DELAY_USEC + 100); gpiod_set_value_cansleep(ts->reset_gpio, 0); msleep(ELAN_RESET_DELAY_MSEC); return 0; } static void elants_i2c_power_off(void *_data) { struct elants_data *ts = _data; if (!IS_ERR_OR_NULL(ts->reset_gpio)) { /* * Activate reset gpio to prevent leakage through the * pin once we shut off power to the controller. */ gpiod_set_value_cansleep(ts->reset_gpio, 1); regulator_disable(ts->vccio); regulator_disable(ts->vcc33); } } #ifdef CONFIG_ACPI static const struct acpi_device_id i2c_hid_ids[] = { {"ACPI0C50", 0 }, {"PNP0C50", 0 }, { }, }; static const guid_t i2c_hid_guid = GUID_INIT(0x3CDFF6F7, 0x4267, 0x4555, 0xAD, 0x05, 0xB3, 0x0A, 0x3D, 0x89, 0x38, 0xDE); static bool elants_acpi_is_hid_device(struct device *dev) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object *obj; if (acpi_match_device_ids(ACPI_COMPANION(dev), i2c_hid_ids)) return false; obj = acpi_evaluate_dsm_typed(handle, &i2c_hid_guid, 1, 1, NULL, ACPI_TYPE_INTEGER); if (obj) { ACPI_FREE(obj); return true; } return false; } #else static bool elants_acpi_is_hid_device(struct device *dev) { return false; } #endif static int elants_i2c_probe(struct i2c_client *client) { union i2c_smbus_data dummy; struct elants_data *ts; unsigned long irqflags; int error; /* Don't bind to i2c-hid compatible devices, these are handled by the i2c-hid drv. */ if (elants_acpi_is_hid_device(&client->dev)) { dev_warn(&client->dev, "This device appears to be an I2C-HID device, not binding\n"); return -ENODEV; } if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C check functionality error\n"); return -ENXIO; } ts = devm_kzalloc(&client->dev, sizeof(struct elants_data), GFP_KERNEL); if (!ts) return -ENOMEM; mutex_init(&ts->sysfs_mutex); init_completion(&ts->cmd_done); ts->client = client; ts->chip_id = (enum elants_chip_id)(uintptr_t)device_get_match_data(&client->dev); i2c_set_clientdata(client, ts); ts->vcc33 = devm_regulator_get(&client->dev, "vcc33"); if (IS_ERR(ts->vcc33)) { error = PTR_ERR(ts->vcc33); if (error != -EPROBE_DEFER) dev_err(&client->dev, "Failed to get 'vcc33' regulator: %d\n", error); return error; } ts->vccio = devm_regulator_get(&client->dev, "vccio"); if (IS_ERR(ts->vccio)) { error = PTR_ERR(ts->vccio); if (error != -EPROBE_DEFER) dev_err(&client->dev, "Failed to get 'vccio' regulator: %d\n", error); return error; } ts->reset_gpio = devm_gpiod_get(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(ts->reset_gpio)) { error = PTR_ERR(ts->reset_gpio); if (error == -EPROBE_DEFER) return error; if (error != -ENOENT && error != -ENOSYS) { dev_err(&client->dev, "failed to get reset gpio: %d\n", error); return error; } ts->keep_power_in_suspend = true; } error = elants_i2c_power_on(ts); if (error) return error; error = devm_add_action_or_reset(&client->dev, elants_i2c_power_off, ts); if (error) { dev_err(&client->dev, "failed to install power off action: %d\n", error); return error; } /* Make sure there is something at this address */ if (i2c_smbus_xfer(client->adapter, client->addr, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE, &dummy) < 0) { dev_err(&client->dev, "nothing at this address\n"); return -ENXIO; } error = elants_i2c_initialize(ts); if (error) { dev_err(&client->dev, "failed to initialize: %d\n", error); return error; } ts->input = devm_input_allocate_device(&client->dev); if (!ts->input) { dev_err(&client->dev, "Failed to allocate input device\n"); return -ENOMEM; } ts->input->name = "Elan Touchscreen"; ts->input->id.bustype = BUS_I2C; /* Multitouch input params setup */ input_set_abs_params(ts->input, ABS_MT_POSITION_X, 0, ts->x_max, 0, 0); input_set_abs_params(ts->input, ABS_MT_POSITION_Y, 0, ts->y_max, 0, 0); input_set_abs_params(ts->input, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(ts->input, ABS_MT_PRESSURE, 0, 255, 0, 0); input_set_abs_params(ts->input, ABS_MT_TOOL_TYPE, 0, MT_TOOL_PALM, 0, 0); touchscreen_parse_properties(ts->input, true, &ts->prop); if (ts->chip_id == EKTF3624 && ts->phy_x && ts->phy_y) { /* calculate resolution from size */ ts->x_res = DIV_ROUND_CLOSEST(ts->prop.max_x, ts->phy_x); ts->y_res = DIV_ROUND_CLOSEST(ts->prop.max_y, ts->phy_y); } input_abs_set_res(ts->input, ABS_MT_POSITION_X, ts->x_res); input_abs_set_res(ts->input, ABS_MT_POSITION_Y, ts->y_res); input_abs_set_res(ts->input, ABS_MT_TOUCH_MAJOR, ts->major_res); error = input_mt_init_slots(ts->input, MAX_CONTACT_NUM, INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED); if (error) { dev_err(&client->dev, "failed to initialize MT slots: %d\n", error); return error; } error = input_register_device(ts->input); if (error) { dev_err(&client->dev, "unable to register input device: %d\n", error); return error; } /* * Platform code (ACPI, DTS) should normally set up interrupt * for us, but in case it did not let's fall back to using falling * edge to be compatible with older Chromebooks. */ irqflags = irq_get_trigger_type(client->irq); if (!irqflags) irqflags = IRQF_TRIGGER_FALLING; error = devm_request_threaded_irq(&client->dev, client->irq, NULL, elants_i2c_irq, irqflags | IRQF_ONESHOT, client->name, ts); if (error) { dev_err(&client->dev, "Failed to register interrupt\n"); return error; } error = devm_device_add_group(&client->dev, &elants_attribute_group); if (error) { dev_err(&client->dev, "failed to create sysfs attributes: %d\n", error); return error; } return 0; } static int elants_i2c_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); const u8 set_sleep_cmd[] = { CMD_HEADER_WRITE, E_POWER_STATE_SLEEP, 0x00, 0x01 }; int retry_cnt; int error; /* Command not support in IAP recovery mode */ if (ts->iap_mode != ELAN_IAP_OPERATIONAL) return -EBUSY; disable_irq(client->irq); if (device_may_wakeup(dev)) { /* * The device will automatically enter idle mode * that has reduced power consumption. */ return 0; } else if (ts->keep_power_in_suspend) { for (retry_cnt = 0; retry_cnt < MAX_RETRIES; retry_cnt++) { error = elants_i2c_send(client, set_sleep_cmd, sizeof(set_sleep_cmd)); if (!error) break; dev_err(&client->dev, "suspend command failed: %d\n", error); } } else { elants_i2c_power_off(ts); } return 0; } static int elants_i2c_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct elants_data *ts = i2c_get_clientdata(client); const u8 set_active_cmd[] = { CMD_HEADER_WRITE, E_POWER_STATE_RESUME, 0x00, 0x01 }; int retry_cnt; int error; if (device_may_wakeup(dev)) { elants_i2c_sw_reset(client); } else if (ts->keep_power_in_suspend) { for (retry_cnt = 0; retry_cnt < MAX_RETRIES; retry_cnt++) { error = elants_i2c_send(client, set_active_cmd, sizeof(set_active_cmd)); if (!error) break; dev_err(&client->dev, "resume command failed: %d\n", error); } } else { elants_i2c_power_on(ts); elants_i2c_initialize(ts); } ts->state = ELAN_STATE_NORMAL; enable_irq(client->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(elants_i2c_pm_ops, elants_i2c_suspend, elants_i2c_resume); static const struct i2c_device_id elants_i2c_id[] = { { DEVICE_NAME, EKTH3500 }, { "ekth3500", EKTH3500 }, { "ektf3624", EKTF3624 }, { } }; MODULE_DEVICE_TABLE(i2c, elants_i2c_id); #ifdef CONFIG_ACPI static const struct acpi_device_id elants_acpi_id[] = { { "ELAN0001", EKTH3500 }, { } }; MODULE_DEVICE_TABLE(acpi, elants_acpi_id); #endif #ifdef CONFIG_OF static const struct of_device_id elants_of_match[] = { { .compatible = "elan,ekth3500", .data = (void *)EKTH3500 }, { .compatible = "elan,ektf3624", .data = (void *)EKTF3624 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, elants_of_match); #endif static struct i2c_driver elants_i2c_driver = { .probe = elants_i2c_probe, .id_table = elants_i2c_id, .driver = { .name = DEVICE_NAME, .pm = pm_sleep_ptr(&elants_i2c_pm_ops), .acpi_match_table = ACPI_PTR(elants_acpi_id), .of_match_table = of_match_ptr(elants_of_match), .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_i2c_driver(elants_i2c_driver); MODULE_AUTHOR("Scott Liu <scott.liu@emc.com.tw>"); MODULE_DESCRIPTION("Elan I2c Touchscreen driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1