Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joerg Roedel | 3464 | 90.21% | 39 | 54.17% |
Jesse Barnes | 81 | 2.11% | 1 | 1.39% |
Vasant Hegde | 58 | 1.51% | 2 | 2.78% |
Suravee Suthikulpanit | 56 | 1.46% | 2 | 2.78% |
Baoquan He | 53 | 1.38% | 1 | 1.39% |
Peter Zijlstra | 18 | 0.47% | 1 | 1.39% |
Jay Cornwall | 10 | 0.26% | 2 | 2.78% |
Jason Gunthorpe | 9 | 0.23% | 1 | 1.39% |
Tero Kristo via iommu | 9 | 0.23% | 1 | 1.39% |
Denis Arefev | 9 | 0.23% | 1 | 1.39% |
Oded Gabbay | 8 | 0.21% | 2 | 2.78% |
Fenghua Yu | 8 | 0.21% | 1 | 1.39% |
Dan Carpenter | 8 | 0.21% | 2 | 2.78% |
Alexey Skidanov | 8 | 0.21% | 1 | 1.39% |
Tom Lendacky | 7 | 0.18% | 2 | 2.78% |
Yang Yingliang | 5 | 0.13% | 1 | 1.39% |
Bhaktipriya Shridhar | 5 | 0.13% | 1 | 1.39% |
Zheng Yongjun | 4 | 0.10% | 1 | 1.39% |
Dave Hansen | 4 | 0.10% | 1 | 1.39% |
Ingo Molnar | 3 | 0.08% | 1 | 1.39% |
Pan Bian | 2 | 0.05% | 1 | 1.39% |
Sinan Kaya | 2 | 0.05% | 1 | 1.39% |
Peter Xu | 2 | 0.05% | 1 | 1.39% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.39% |
Michel Lespinasse | 2 | 0.05% | 1 | 1.39% |
Julia Lawall | 1 | 0.03% | 1 | 1.39% |
Souptick Joarder | 1 | 0.03% | 1 | 1.39% |
Linus Torvalds | 1 | 0.03% | 1 | 1.39% |
Total | 3840 | 72 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010-2012 Advanced Micro Devices, Inc. * Author: Joerg Roedel <jroedel@suse.de> */ #define pr_fmt(fmt) "AMD-Vi: " fmt #include <linux/refcount.h> #include <linux/mmu_notifier.h> #include <linux/amd-iommu.h> #include <linux/mm_types.h> #include <linux/profile.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/gfp.h> #include <linux/cc_platform.h> #include "amd_iommu.h" MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Joerg Roedel <jroedel@suse.de>"); #define PRI_QUEUE_SIZE 512 struct pri_queue { atomic_t inflight; bool finish; int status; }; struct pasid_state { struct list_head list; /* For global state-list */ refcount_t count; /* Reference count */ unsigned mmu_notifier_count; /* Counting nested mmu_notifier calls */ struct mm_struct *mm; /* mm_struct for the faults */ struct mmu_notifier mn; /* mmu_notifier handle */ struct pri_queue pri[PRI_QUEUE_SIZE]; /* PRI tag states */ struct device_state *device_state; /* Link to our device_state */ u32 pasid; /* PASID index */ bool invalid; /* Used during setup and teardown of the pasid */ spinlock_t lock; /* Protect pri_queues and mmu_notifer_count */ wait_queue_head_t wq; /* To wait for count == 0 */ }; struct device_state { struct list_head list; u32 sbdf; atomic_t count; struct pci_dev *pdev; struct pasid_state **states; struct iommu_domain *domain; int pasid_levels; int max_pasids; amd_iommu_invalid_ppr_cb inv_ppr_cb; amd_iommu_invalidate_ctx inv_ctx_cb; spinlock_t lock; wait_queue_head_t wq; }; struct fault { struct work_struct work; struct device_state *dev_state; struct pasid_state *state; struct mm_struct *mm; u64 address; u32 pasid; u16 tag; u16 finish; u16 flags; }; static LIST_HEAD(state_list); static DEFINE_SPINLOCK(state_lock); static struct workqueue_struct *iommu_wq; static void free_pasid_states(struct device_state *dev_state); static struct device_state *__get_device_state(u32 sbdf) { struct device_state *dev_state; list_for_each_entry(dev_state, &state_list, list) { if (dev_state->sbdf == sbdf) return dev_state; } return NULL; } static struct device_state *get_device_state(u32 sbdf) { struct device_state *dev_state; unsigned long flags; spin_lock_irqsave(&state_lock, flags); dev_state = __get_device_state(sbdf); if (dev_state != NULL) atomic_inc(&dev_state->count); spin_unlock_irqrestore(&state_lock, flags); return dev_state; } static void free_device_state(struct device_state *dev_state) { struct iommu_group *group; /* Get rid of any remaining pasid states */ free_pasid_states(dev_state); /* * Wait until the last reference is dropped before freeing * the device state. */ wait_event(dev_state->wq, !atomic_read(&dev_state->count)); /* * First detach device from domain - No more PRI requests will arrive * from that device after it is unbound from the IOMMUv2 domain. */ group = iommu_group_get(&dev_state->pdev->dev); if (WARN_ON(!group)) return; iommu_detach_group(dev_state->domain, group); iommu_group_put(group); /* Everything is down now, free the IOMMUv2 domain */ iommu_domain_free(dev_state->domain); /* Finally get rid of the device-state */ kfree(dev_state); } static void put_device_state(struct device_state *dev_state) { if (atomic_dec_and_test(&dev_state->count)) wake_up(&dev_state->wq); } /* Must be called under dev_state->lock */ static struct pasid_state **__get_pasid_state_ptr(struct device_state *dev_state, u32 pasid, bool alloc) { struct pasid_state **root, **ptr; int level, index; level = dev_state->pasid_levels; root = dev_state->states; while (true) { index = (pasid >> (9 * level)) & 0x1ff; ptr = &root[index]; if (level == 0) break; if (*ptr == NULL) { if (!alloc) return NULL; *ptr = (void *)get_zeroed_page(GFP_ATOMIC); if (*ptr == NULL) return NULL; } root = (struct pasid_state **)*ptr; level -= 1; } return ptr; } static int set_pasid_state(struct device_state *dev_state, struct pasid_state *pasid_state, u32 pasid) { struct pasid_state **ptr; unsigned long flags; int ret; spin_lock_irqsave(&dev_state->lock, flags); ptr = __get_pasid_state_ptr(dev_state, pasid, true); ret = -ENOMEM; if (ptr == NULL) goto out_unlock; ret = -ENOMEM; if (*ptr != NULL) goto out_unlock; *ptr = pasid_state; ret = 0; out_unlock: spin_unlock_irqrestore(&dev_state->lock, flags); return ret; } static void clear_pasid_state(struct device_state *dev_state, u32 pasid) { struct pasid_state **ptr; unsigned long flags; spin_lock_irqsave(&dev_state->lock, flags); ptr = __get_pasid_state_ptr(dev_state, pasid, true); if (ptr == NULL) goto out_unlock; *ptr = NULL; out_unlock: spin_unlock_irqrestore(&dev_state->lock, flags); } static struct pasid_state *get_pasid_state(struct device_state *dev_state, u32 pasid) { struct pasid_state **ptr, *ret = NULL; unsigned long flags; spin_lock_irqsave(&dev_state->lock, flags); ptr = __get_pasid_state_ptr(dev_state, pasid, false); if (ptr == NULL) goto out_unlock; ret = *ptr; if (ret) refcount_inc(&ret->count); out_unlock: spin_unlock_irqrestore(&dev_state->lock, flags); return ret; } static void free_pasid_state(struct pasid_state *pasid_state) { kfree(pasid_state); } static void put_pasid_state(struct pasid_state *pasid_state) { if (refcount_dec_and_test(&pasid_state->count)) wake_up(&pasid_state->wq); } static void put_pasid_state_wait(struct pasid_state *pasid_state) { refcount_dec(&pasid_state->count); wait_event(pasid_state->wq, !refcount_read(&pasid_state->count)); free_pasid_state(pasid_state); } static void unbind_pasid(struct pasid_state *pasid_state) { struct iommu_domain *domain; domain = pasid_state->device_state->domain; /* * Mark pasid_state as invalid, no more faults will we added to the * work queue after this is visible everywhere. */ pasid_state->invalid = true; /* Make sure this is visible */ smp_wmb(); /* After this the device/pasid can't access the mm anymore */ amd_iommu_domain_clear_gcr3(domain, pasid_state->pasid); /* Make sure no more pending faults are in the queue */ flush_workqueue(iommu_wq); } static void free_pasid_states_level1(struct pasid_state **tbl) { int i; for (i = 0; i < 512; ++i) { if (tbl[i] == NULL) continue; free_page((unsigned long)tbl[i]); } } static void free_pasid_states_level2(struct pasid_state **tbl) { struct pasid_state **ptr; int i; for (i = 0; i < 512; ++i) { if (tbl[i] == NULL) continue; ptr = (struct pasid_state **)tbl[i]; free_pasid_states_level1(ptr); } } static void free_pasid_states(struct device_state *dev_state) { struct pasid_state *pasid_state; int i; for (i = 0; i < dev_state->max_pasids; ++i) { pasid_state = get_pasid_state(dev_state, i); if (pasid_state == NULL) continue; put_pasid_state(pasid_state); /* * This will call the mn_release function and * unbind the PASID */ mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm); put_pasid_state_wait(pasid_state); /* Reference taken in amd_iommu_bind_pasid */ /* Drop reference taken in amd_iommu_bind_pasid */ put_device_state(dev_state); } if (dev_state->pasid_levels == 2) free_pasid_states_level2(dev_state->states); else if (dev_state->pasid_levels == 1) free_pasid_states_level1(dev_state->states); else BUG_ON(dev_state->pasid_levels != 0); free_page((unsigned long)dev_state->states); } static struct pasid_state *mn_to_state(struct mmu_notifier *mn) { return container_of(mn, struct pasid_state, mn); } static void mn_invalidate_range(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end) { struct pasid_state *pasid_state; struct device_state *dev_state; pasid_state = mn_to_state(mn); dev_state = pasid_state->device_state; if ((start ^ (end - 1)) < PAGE_SIZE) amd_iommu_flush_page(dev_state->domain, pasid_state->pasid, start); else amd_iommu_flush_tlb(dev_state->domain, pasid_state->pasid); } static void mn_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct pasid_state *pasid_state; struct device_state *dev_state; bool run_inv_ctx_cb; might_sleep(); pasid_state = mn_to_state(mn); dev_state = pasid_state->device_state; run_inv_ctx_cb = !pasid_state->invalid; if (run_inv_ctx_cb && dev_state->inv_ctx_cb) dev_state->inv_ctx_cb(dev_state->pdev, pasid_state->pasid); unbind_pasid(pasid_state); } static const struct mmu_notifier_ops iommu_mn = { .release = mn_release, .invalidate_range = mn_invalidate_range, }; static void set_pri_tag_status(struct pasid_state *pasid_state, u16 tag, int status) { unsigned long flags; spin_lock_irqsave(&pasid_state->lock, flags); pasid_state->pri[tag].status = status; spin_unlock_irqrestore(&pasid_state->lock, flags); } static void finish_pri_tag(struct device_state *dev_state, struct pasid_state *pasid_state, u16 tag) { unsigned long flags; spin_lock_irqsave(&pasid_state->lock, flags); if (atomic_dec_and_test(&pasid_state->pri[tag].inflight) && pasid_state->pri[tag].finish) { amd_iommu_complete_ppr(dev_state->pdev, pasid_state->pasid, pasid_state->pri[tag].status, tag); pasid_state->pri[tag].finish = false; pasid_state->pri[tag].status = PPR_SUCCESS; } spin_unlock_irqrestore(&pasid_state->lock, flags); } static void handle_fault_error(struct fault *fault) { int status; if (!fault->dev_state->inv_ppr_cb) { set_pri_tag_status(fault->state, fault->tag, PPR_INVALID); return; } status = fault->dev_state->inv_ppr_cb(fault->dev_state->pdev, fault->pasid, fault->address, fault->flags); switch (status) { case AMD_IOMMU_INV_PRI_RSP_SUCCESS: set_pri_tag_status(fault->state, fault->tag, PPR_SUCCESS); break; case AMD_IOMMU_INV_PRI_RSP_INVALID: set_pri_tag_status(fault->state, fault->tag, PPR_INVALID); break; case AMD_IOMMU_INV_PRI_RSP_FAIL: set_pri_tag_status(fault->state, fault->tag, PPR_FAILURE); break; default: BUG(); } } static bool access_error(struct vm_area_struct *vma, struct fault *fault) { unsigned long requested = 0; if (fault->flags & PPR_FAULT_EXEC) requested |= VM_EXEC; if (fault->flags & PPR_FAULT_READ) requested |= VM_READ; if (fault->flags & PPR_FAULT_WRITE) requested |= VM_WRITE; return (requested & ~vma->vm_flags) != 0; } static void do_fault(struct work_struct *work) { struct fault *fault = container_of(work, struct fault, work); struct vm_area_struct *vma; vm_fault_t ret = VM_FAULT_ERROR; unsigned int flags = 0; struct mm_struct *mm; u64 address; mm = fault->state->mm; address = fault->address; if (fault->flags & PPR_FAULT_USER) flags |= FAULT_FLAG_USER; if (fault->flags & PPR_FAULT_WRITE) flags |= FAULT_FLAG_WRITE; flags |= FAULT_FLAG_REMOTE; mmap_read_lock(mm); vma = vma_lookup(mm, address); if (!vma) /* failed to get a vma in the right range */ goto out; /* Check if we have the right permissions on the vma */ if (access_error(vma, fault)) goto out; ret = handle_mm_fault(vma, address, flags, NULL); out: mmap_read_unlock(mm); if (ret & VM_FAULT_ERROR) /* failed to service fault */ handle_fault_error(fault); finish_pri_tag(fault->dev_state, fault->state, fault->tag); put_pasid_state(fault->state); kfree(fault); } static int ppr_notifier(struct notifier_block *nb, unsigned long e, void *data) { struct amd_iommu_fault *iommu_fault; struct pasid_state *pasid_state; struct device_state *dev_state; struct pci_dev *pdev = NULL; unsigned long flags; struct fault *fault; bool finish; u16 tag, devid, seg_id; int ret; iommu_fault = data; tag = iommu_fault->tag & 0x1ff; finish = (iommu_fault->tag >> 9) & 1; seg_id = PCI_SBDF_TO_SEGID(iommu_fault->sbdf); devid = PCI_SBDF_TO_DEVID(iommu_fault->sbdf); pdev = pci_get_domain_bus_and_slot(seg_id, PCI_BUS_NUM(devid), devid & 0xff); if (!pdev) return -ENODEV; ret = NOTIFY_DONE; /* In kdump kernel pci dev is not initialized yet -> send INVALID */ if (amd_iommu_is_attach_deferred(&pdev->dev)) { amd_iommu_complete_ppr(pdev, iommu_fault->pasid, PPR_INVALID, tag); goto out; } dev_state = get_device_state(iommu_fault->sbdf); if (dev_state == NULL) goto out; pasid_state = get_pasid_state(dev_state, iommu_fault->pasid); if (pasid_state == NULL || pasid_state->invalid) { /* We know the device but not the PASID -> send INVALID */ amd_iommu_complete_ppr(dev_state->pdev, iommu_fault->pasid, PPR_INVALID, tag); goto out_drop_state; } spin_lock_irqsave(&pasid_state->lock, flags); atomic_inc(&pasid_state->pri[tag].inflight); if (finish) pasid_state->pri[tag].finish = true; spin_unlock_irqrestore(&pasid_state->lock, flags); fault = kzalloc(sizeof(*fault), GFP_ATOMIC); if (fault == NULL) { /* We are OOM - send success and let the device re-fault */ finish_pri_tag(dev_state, pasid_state, tag); goto out_drop_state; } fault->dev_state = dev_state; fault->address = iommu_fault->address; fault->state = pasid_state; fault->tag = tag; fault->finish = finish; fault->pasid = iommu_fault->pasid; fault->flags = iommu_fault->flags; INIT_WORK(&fault->work, do_fault); queue_work(iommu_wq, &fault->work); ret = NOTIFY_OK; out_drop_state: if (ret != NOTIFY_OK && pasid_state) put_pasid_state(pasid_state); put_device_state(dev_state); out: pci_dev_put(pdev); return ret; } static struct notifier_block ppr_nb = { .notifier_call = ppr_notifier, }; int amd_iommu_bind_pasid(struct pci_dev *pdev, u32 pasid, struct task_struct *task) { struct pasid_state *pasid_state; struct device_state *dev_state; struct mm_struct *mm; u32 sbdf; int ret; might_sleep(); if (!amd_iommu_v2_supported()) return -ENODEV; sbdf = get_pci_sbdf_id(pdev); dev_state = get_device_state(sbdf); if (dev_state == NULL) return -EINVAL; ret = -EINVAL; if (pasid >= dev_state->max_pasids) goto out; ret = -ENOMEM; pasid_state = kzalloc(sizeof(*pasid_state), GFP_KERNEL); if (pasid_state == NULL) goto out; refcount_set(&pasid_state->count, 1); init_waitqueue_head(&pasid_state->wq); spin_lock_init(&pasid_state->lock); mm = get_task_mm(task); pasid_state->mm = mm; pasid_state->device_state = dev_state; pasid_state->pasid = pasid; pasid_state->invalid = true; /* Mark as valid only if we are done with setting up the pasid */ pasid_state->mn.ops = &iommu_mn; if (pasid_state->mm == NULL) goto out_free; ret = mmu_notifier_register(&pasid_state->mn, mm); if (ret) goto out_free; ret = set_pasid_state(dev_state, pasid_state, pasid); if (ret) goto out_unregister; ret = amd_iommu_domain_set_gcr3(dev_state->domain, pasid, __pa(pasid_state->mm->pgd)); if (ret) goto out_clear_state; /* Now we are ready to handle faults */ pasid_state->invalid = false; /* * Drop the reference to the mm_struct here. We rely on the * mmu_notifier release call-back to inform us when the mm * is going away. */ mmput(mm); return 0; out_clear_state: clear_pasid_state(dev_state, pasid); out_unregister: mmu_notifier_unregister(&pasid_state->mn, mm); mmput(mm); out_free: free_pasid_state(pasid_state); out: put_device_state(dev_state); return ret; } EXPORT_SYMBOL(amd_iommu_bind_pasid); void amd_iommu_unbind_pasid(struct pci_dev *pdev, u32 pasid) { struct pasid_state *pasid_state; struct device_state *dev_state; u32 sbdf; might_sleep(); if (!amd_iommu_v2_supported()) return; sbdf = get_pci_sbdf_id(pdev); dev_state = get_device_state(sbdf); if (dev_state == NULL) return; if (pasid >= dev_state->max_pasids) goto out; pasid_state = get_pasid_state(dev_state, pasid); if (pasid_state == NULL) goto out; /* * Drop reference taken here. We are safe because we still hold * the reference taken in the amd_iommu_bind_pasid function. */ put_pasid_state(pasid_state); /* Clear the pasid state so that the pasid can be re-used */ clear_pasid_state(dev_state, pasid_state->pasid); /* * Call mmu_notifier_unregister to drop our reference * to pasid_state->mm */ mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm); put_pasid_state_wait(pasid_state); /* Reference taken in amd_iommu_bind_pasid */ out: /* Drop reference taken in this function */ put_device_state(dev_state); /* Drop reference taken in amd_iommu_bind_pasid */ put_device_state(dev_state); } EXPORT_SYMBOL(amd_iommu_unbind_pasid); int amd_iommu_init_device(struct pci_dev *pdev, int pasids) { struct device_state *dev_state; struct iommu_group *group; unsigned long flags; int ret, tmp; u32 sbdf; might_sleep(); /* * When memory encryption is active the device is likely not in a * direct-mapped domain. Forbid using IOMMUv2 functionality for now. */ if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) return -ENODEV; if (!amd_iommu_v2_supported()) return -ENODEV; if (pasids <= 0 || pasids > (PASID_MASK + 1)) return -EINVAL; sbdf = get_pci_sbdf_id(pdev); dev_state = kzalloc(sizeof(*dev_state), GFP_KERNEL); if (dev_state == NULL) return -ENOMEM; spin_lock_init(&dev_state->lock); init_waitqueue_head(&dev_state->wq); dev_state->pdev = pdev; dev_state->sbdf = sbdf; tmp = pasids; for (dev_state->pasid_levels = 0; (tmp - 1) & ~0x1ff; tmp >>= 9) dev_state->pasid_levels += 1; atomic_set(&dev_state->count, 1); dev_state->max_pasids = pasids; ret = -ENOMEM; dev_state->states = (void *)get_zeroed_page(GFP_KERNEL); if (dev_state->states == NULL) goto out_free_dev_state; dev_state->domain = iommu_domain_alloc(&pci_bus_type); if (dev_state->domain == NULL) goto out_free_states; /* See iommu_is_default_domain() */ dev_state->domain->type = IOMMU_DOMAIN_IDENTITY; amd_iommu_domain_direct_map(dev_state->domain); ret = amd_iommu_domain_enable_v2(dev_state->domain, pasids); if (ret) goto out_free_domain; group = iommu_group_get(&pdev->dev); if (!group) { ret = -EINVAL; goto out_free_domain; } ret = iommu_attach_group(dev_state->domain, group); if (ret != 0) goto out_drop_group; iommu_group_put(group); spin_lock_irqsave(&state_lock, flags); if (__get_device_state(sbdf) != NULL) { spin_unlock_irqrestore(&state_lock, flags); ret = -EBUSY; goto out_free_domain; } list_add_tail(&dev_state->list, &state_list); spin_unlock_irqrestore(&state_lock, flags); return 0; out_drop_group: iommu_group_put(group); out_free_domain: iommu_domain_free(dev_state->domain); out_free_states: free_page((unsigned long)dev_state->states); out_free_dev_state: kfree(dev_state); return ret; } EXPORT_SYMBOL(amd_iommu_init_device); void amd_iommu_free_device(struct pci_dev *pdev) { struct device_state *dev_state; unsigned long flags; u32 sbdf; if (!amd_iommu_v2_supported()) return; sbdf = get_pci_sbdf_id(pdev); spin_lock_irqsave(&state_lock, flags); dev_state = __get_device_state(sbdf); if (dev_state == NULL) { spin_unlock_irqrestore(&state_lock, flags); return; } list_del(&dev_state->list); spin_unlock_irqrestore(&state_lock, flags); put_device_state(dev_state); free_device_state(dev_state); } EXPORT_SYMBOL(amd_iommu_free_device); int amd_iommu_set_invalid_ppr_cb(struct pci_dev *pdev, amd_iommu_invalid_ppr_cb cb) { struct device_state *dev_state; unsigned long flags; u32 sbdf; int ret; if (!amd_iommu_v2_supported()) return -ENODEV; sbdf = get_pci_sbdf_id(pdev); spin_lock_irqsave(&state_lock, flags); ret = -EINVAL; dev_state = __get_device_state(sbdf); if (dev_state == NULL) goto out_unlock; dev_state->inv_ppr_cb = cb; ret = 0; out_unlock: spin_unlock_irqrestore(&state_lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_set_invalid_ppr_cb); int amd_iommu_set_invalidate_ctx_cb(struct pci_dev *pdev, amd_iommu_invalidate_ctx cb) { struct device_state *dev_state; unsigned long flags; u32 sbdf; int ret; if (!amd_iommu_v2_supported()) return -ENODEV; sbdf = get_pci_sbdf_id(pdev); spin_lock_irqsave(&state_lock, flags); ret = -EINVAL; dev_state = __get_device_state(sbdf); if (dev_state == NULL) goto out_unlock; dev_state->inv_ctx_cb = cb; ret = 0; out_unlock: spin_unlock_irqrestore(&state_lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_set_invalidate_ctx_cb); static int __init amd_iommu_v2_init(void) { int ret; if (!amd_iommu_v2_supported()) { pr_info("AMD IOMMUv2 functionality not available on this system - This is not a bug.\n"); /* * Load anyway to provide the symbols to other modules * which may use AMD IOMMUv2 optionally. */ return 0; } ret = -ENOMEM; iommu_wq = alloc_workqueue("amd_iommu_v2", WQ_MEM_RECLAIM, 0); if (iommu_wq == NULL) goto out; amd_iommu_register_ppr_notifier(&ppr_nb); pr_info("AMD IOMMUv2 loaded and initialized\n"); return 0; out: return ret; } static void __exit amd_iommu_v2_exit(void) { struct device_state *dev_state, *next; unsigned long flags; LIST_HEAD(freelist); if (!amd_iommu_v2_supported()) return; amd_iommu_unregister_ppr_notifier(&ppr_nb); flush_workqueue(iommu_wq); /* * The loop below might call flush_workqueue(), so call * destroy_workqueue() after it */ spin_lock_irqsave(&state_lock, flags); list_for_each_entry_safe(dev_state, next, &state_list, list) { WARN_ON_ONCE(1); put_device_state(dev_state); list_del(&dev_state->list); list_add_tail(&dev_state->list, &freelist); } spin_unlock_irqrestore(&state_lock, flags); /* * Since free_device_state waits on the count to be zero, * we need to free dev_state outside the spinlock. */ list_for_each_entry_safe(dev_state, next, &freelist, list) { list_del(&dev_state->list); free_device_state(dev_state); } destroy_workqueue(iommu_wq); } module_init(amd_iommu_v2_init); module_exit(amd_iommu_v2_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1