Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Kurtz | 3254 | 53.69% | 1 | 1.89% |
Shunqian Zheng | 668 | 11.02% | 4 | 7.55% |
Jeffy Chen | 543 | 8.96% | 7 | 13.21% |
Benjamin Gaignard | 485 | 8.00% | 3 | 5.66% |
Tomasz Figa | 432 | 7.13% | 5 | 9.43% |
Joerg Roedel | 166 | 2.74% | 5 | 9.43% |
Steven Price | 152 | 2.51% | 1 | 1.89% |
Marc Zyngier | 141 | 2.33% | 3 | 5.66% |
Heiko Stübner | 94 | 1.55% | 3 | 5.66% |
Lu Baolu | 28 | 0.46% | 1 | 1.89% |
Simon Xue | 27 | 0.45% | 2 | 3.77% |
Ezequiel García | 13 | 0.21% | 1 | 1.89% |
Chao Wang | 11 | 0.18% | 1 | 1.89% |
Robin Murphy | 10 | 0.16% | 4 | 7.55% |
John Keeping | 9 | 0.15% | 2 | 3.77% |
Tomeu Vizoso | 6 | 0.10% | 1 | 1.89% |
Will Deacon | 5 | 0.08% | 1 | 1.89% |
Kees Cook | 3 | 0.05% | 1 | 1.89% |
tom | 3 | 0.05% | 1 | 1.89% |
Michael Riesch | 3 | 0.05% | 1 | 1.89% |
Rafael J. Wysocki | 2 | 0.03% | 1 | 1.89% |
Alex Bee | 2 | 0.03% | 1 | 1.89% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.89% |
Arnd Bergmann | 1 | 0.02% | 1 | 1.89% |
Paul Gortmaker | 1 | 0.02% | 1 | 1.89% |
Total | 6061 | 53 |
// SPDX-License-Identifier: GPL-2.0-only /* * IOMMU API for Rockchip * * Module Authors: Simon Xue <xxm@rock-chips.com> * Daniel Kurtz <djkurtz@chromium.org> */ #include <linux/clk.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iommu.h> #include <linux/iopoll.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/spinlock.h> /** MMU register offsets */ #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ #define RK_MMU_STATUS 0x04 #define RK_MMU_COMMAND 0x08 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ #define RK_MMU_AUTO_GATING 0x24 #define DTE_ADDR_DUMMY 0xCAFEBABE #define RK_MMU_POLL_PERIOD_US 100 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 #define RK_MMU_POLL_TIMEOUT_US 1000 /* RK_MMU_STATUS fields */ #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) #define RK_MMU_STATUS_IDLE BIT(3) #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) /* RK_MMU_COMMAND command values */ #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ /* RK_MMU_INT_* register fields */ #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) #define NUM_DT_ENTRIES 1024 #define NUM_PT_ENTRIES 1024 #define SPAGE_ORDER 12 #define SPAGE_SIZE (1 << SPAGE_ORDER) /* * Support mapping any size that fits in one page table: * 4 KiB to 4 MiB */ #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 struct rk_iommu_domain { struct list_head iommus; u32 *dt; /* page directory table */ dma_addr_t dt_dma; spinlock_t iommus_lock; /* lock for iommus list */ spinlock_t dt_lock; /* lock for modifying page directory table */ struct iommu_domain domain; }; /* list of clocks required by IOMMU */ static const char * const rk_iommu_clocks[] = { "aclk", "iface", }; struct rk_iommu_ops { phys_addr_t (*pt_address)(u32 dte); u32 (*mk_dtentries)(dma_addr_t pt_dma); u32 (*mk_ptentries)(phys_addr_t page, int prot); phys_addr_t (*dte_addr_phys)(u32 addr); u32 (*dma_addr_dte)(dma_addr_t dt_dma); u64 dma_bit_mask; }; struct rk_iommu { struct device *dev; void __iomem **bases; int num_mmu; int num_irq; struct clk_bulk_data *clocks; int num_clocks; bool reset_disabled; struct iommu_device iommu; struct list_head node; /* entry in rk_iommu_domain.iommus */ struct iommu_domain *domain; /* domain to which iommu is attached */ struct iommu_group *group; }; struct rk_iommudata { struct device_link *link; /* runtime PM link from IOMMU to master */ struct rk_iommu *iommu; }; static struct device *dma_dev; static const struct rk_iommu_ops *rk_ops; static struct iommu_domain rk_identity_domain; static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, unsigned int count) { size_t size = count * sizeof(u32); /* count of u32 entry */ dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); } static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) { return container_of(dom, struct rk_iommu_domain, domain); } /* * The Rockchip rk3288 iommu uses a 2-level page table. * The first level is the "Directory Table" (DT). * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing * to a "Page Table". * The second level is the 1024 Page Tables (PT). * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to * a 4 KB page of physical memory. * * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). * Each iommu device has a MMU_DTE_ADDR register that contains the physical * address of the start of the DT page. * * The structure of the page table is as follows: * * DT * MMU_DTE_ADDR -> +-----+ * | | * +-----+ PT * | DTE | -> +-----+ * +-----+ | | Memory * | | +-----+ Page * | | | PTE | -> +-----+ * +-----+ +-----+ | | * | | | | * | | | | * +-----+ | | * | | * | | * +-----+ */ /* * Each DTE has a PT address and a valid bit: * +---------------------+-----------+-+ * | PT address | Reserved |V| * +---------------------+-----------+-+ * 31:12 - PT address (PTs always starts on a 4 KB boundary) * 11: 1 - Reserved * 0 - 1 if PT @ PT address is valid */ #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 #define RK_DTE_PT_VALID BIT(0) static inline phys_addr_t rk_dte_pt_address(u32 dte) { return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; } /* * In v2: * 31:12 - PT address bit 31:0 * 11: 8 - PT address bit 35:32 * 7: 4 - PT address bit 39:36 * 3: 1 - Reserved * 0 - 1 if PT @ PT address is valid */ #define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4) #define DTE_HI_MASK1 GENMASK(11, 8) #define DTE_HI_MASK2 GENMASK(7, 4) #define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */ #define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */ #define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32) #define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36) static inline phys_addr_t rk_dte_pt_address_v2(u32 dte) { u64 dte_v2 = dte; dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) | ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) | (dte_v2 & RK_DTE_PT_ADDRESS_MASK); return (phys_addr_t)dte_v2; } static inline bool rk_dte_is_pt_valid(u32 dte) { return dte & RK_DTE_PT_VALID; } static inline u32 rk_mk_dte(dma_addr_t pt_dma) { return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; } static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma) { pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) | ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) | (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2; return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID; } /* * Each PTE has a Page address, some flags and a valid bit: * +---------------------+---+-------+-+ * | Page address |Rsv| Flags |V| * +---------------------+---+-------+-+ * 31:12 - Page address (Pages always start on a 4 KB boundary) * 11: 9 - Reserved * 8: 1 - Flags * 8 - Read allocate - allocate cache space on read misses * 7 - Read cache - enable cache & prefetch of data * 6 - Write buffer - enable delaying writes on their way to memory * 5 - Write allocate - allocate cache space on write misses * 4 - Write cache - different writes can be merged together * 3 - Override cache attributes * if 1, bits 4-8 control cache attributes * if 0, the system bus defaults are used * 2 - Writable * 1 - Readable * 0 - 1 if Page @ Page address is valid */ #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe #define RK_PTE_PAGE_WRITABLE BIT(2) #define RK_PTE_PAGE_READABLE BIT(1) #define RK_PTE_PAGE_VALID BIT(0) static inline bool rk_pte_is_page_valid(u32 pte) { return pte & RK_PTE_PAGE_VALID; } /* TODO: set cache flags per prot IOMMU_CACHE */ static u32 rk_mk_pte(phys_addr_t page, int prot) { u32 flags = 0; flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; page &= RK_PTE_PAGE_ADDRESS_MASK; return page | flags | RK_PTE_PAGE_VALID; } /* * In v2: * 31:12 - Page address bit 31:0 * 11:9 - Page address bit 34:32 * 8:4 - Page address bit 39:35 * 3 - Security * 2 - Writable * 1 - Readable * 0 - 1 if Page @ Page address is valid */ static u32 rk_mk_pte_v2(phys_addr_t page, int prot) { u32 flags = 0; flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; return rk_mk_dte_v2(page) | flags; } static u32 rk_mk_pte_invalid(u32 pte) { return pte & ~RK_PTE_PAGE_VALID; } /* * rk3288 iova (IOMMU Virtual Address) format * 31 22.21 12.11 0 * +-----------+-----------+-------------+ * | DTE index | PTE index | Page offset | * +-----------+-----------+-------------+ * 31:22 - DTE index - index of DTE in DT * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address * 11: 0 - Page offset - offset into page @ PTE.page_address */ #define RK_IOVA_DTE_MASK 0xffc00000 #define RK_IOVA_DTE_SHIFT 22 #define RK_IOVA_PTE_MASK 0x003ff000 #define RK_IOVA_PTE_SHIFT 12 #define RK_IOVA_PAGE_MASK 0x00000fff #define RK_IOVA_PAGE_SHIFT 0 static u32 rk_iova_dte_index(dma_addr_t iova) { return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; } static u32 rk_iova_pte_index(dma_addr_t iova) { return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; } static u32 rk_iova_page_offset(dma_addr_t iova) { return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; } static u32 rk_iommu_read(void __iomem *base, u32 offset) { return readl(base + offset); } static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) { writel(value, base + offset); } static void rk_iommu_command(struct rk_iommu *iommu, u32 command) { int i; for (i = 0; i < iommu->num_mmu; i++) writel(command, iommu->bases[i] + RK_MMU_COMMAND); } static void rk_iommu_base_command(void __iomem *base, u32 command) { writel(command, base + RK_MMU_COMMAND); } static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, size_t size) { int i; dma_addr_t iova_end = iova_start + size; /* * TODO(djkurtz): Figure out when it is more efficient to shootdown the * entire iotlb rather than iterate over individual iovas. */ for (i = 0; i < iommu->num_mmu; i++) { dma_addr_t iova; for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); } } static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) { bool active = true; int i; for (i = 0; i < iommu->num_mmu; i++) active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & RK_MMU_STATUS_STALL_ACTIVE); return active; } static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) { bool enable = true; int i; for (i = 0; i < iommu->num_mmu; i++) enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & RK_MMU_STATUS_PAGING_ENABLED); return enable; } static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) { bool done = true; int i; for (i = 0; i < iommu->num_mmu; i++) done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; return done; } static int rk_iommu_enable_stall(struct rk_iommu *iommu) { int ret, i; bool val; if (rk_iommu_is_stall_active(iommu)) return 0; /* Stall can only be enabled if paging is enabled */ if (!rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_disable_stall(struct rk_iommu *iommu) { int ret, i; bool val; if (!rk_iommu_is_stall_active(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, !val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_enable_paging(struct rk_iommu *iommu) { int ret, i; bool val; if (rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_disable_paging(struct rk_iommu *iommu) { int ret, i; bool val; if (!rk_iommu_is_paging_enabled(iommu)) return 0; rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, !val, RK_MMU_POLL_PERIOD_US, RK_MMU_POLL_TIMEOUT_US); if (ret) for (i = 0; i < iommu->num_mmu; i++) dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); return ret; } static int rk_iommu_force_reset(struct rk_iommu *iommu) { int ret, i; u32 dte_addr; bool val; if (iommu->reset_disabled) return 0; /* * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY * and verifying that upper 5 nybbles are read back. */ for (i = 0; i < iommu->num_mmu; i++) { dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY); rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr); if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) { dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); return -EFAULT; } } rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, val, RK_MMU_FORCE_RESET_TIMEOUT_US, RK_MMU_POLL_TIMEOUT_US); if (ret) { dev_err(iommu->dev, "FORCE_RESET command timed out\n"); return ret; } return 0; } static inline phys_addr_t rk_dte_addr_phys(u32 addr) { return (phys_addr_t)addr; } static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma) { return dt_dma; } #define DT_HI_MASK GENMASK_ULL(39, 32) #define DTE_BASE_HI_MASK GENMASK(11, 4) #define DT_SHIFT 28 static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr) { u64 addr64 = addr; return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) | ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT); } static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma) { return (dt_dma & RK_DTE_PT_ADDRESS_MASK) | ((dt_dma & DT_HI_MASK) >> DT_SHIFT); } static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) { void __iomem *base = iommu->bases[index]; u32 dte_index, pte_index, page_offset; u32 mmu_dte_addr; phys_addr_t mmu_dte_addr_phys, dte_addr_phys; u32 *dte_addr; u32 dte; phys_addr_t pte_addr_phys = 0; u32 *pte_addr = NULL; u32 pte = 0; phys_addr_t page_addr_phys = 0; u32 page_flags = 0; dte_index = rk_iova_dte_index(iova); pte_index = rk_iova_pte_index(iova); page_offset = rk_iova_page_offset(iova); mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr); dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); dte_addr = phys_to_virt(dte_addr_phys); dte = *dte_addr; if (!rk_dte_is_pt_valid(dte)) goto print_it; pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4); pte_addr = phys_to_virt(pte_addr_phys); pte = *pte_addr; if (!rk_pte_is_page_valid(pte)) goto print_it; page_addr_phys = rk_ops->pt_address(pte) + page_offset; page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; print_it: dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", &iova, dte_index, pte_index, page_offset); dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", &mmu_dte_addr_phys, &dte_addr_phys, dte, rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); } static irqreturn_t rk_iommu_irq(int irq, void *dev_id) { struct rk_iommu *iommu = dev_id; u32 status; u32 int_status; dma_addr_t iova; irqreturn_t ret = IRQ_NONE; int i, err; err = pm_runtime_get_if_in_use(iommu->dev); if (!err || WARN_ON_ONCE(err < 0)) return ret; if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) goto out; for (i = 0; i < iommu->num_mmu; i++) { int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); if (int_status == 0) continue; ret = IRQ_HANDLED; iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); if (int_status & RK_MMU_IRQ_PAGE_FAULT) { int flags; status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; dev_err(iommu->dev, "Page fault at %pad of type %s\n", &iova, (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); log_iova(iommu, i, iova); /* * Report page fault to any installed handlers. * Ignore the return code, though, since we always zap cache * and clear the page fault anyway. */ if (iommu->domain != &rk_identity_domain) report_iommu_fault(iommu->domain, iommu->dev, iova, flags); else dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); } if (int_status & RK_MMU_IRQ_BUS_ERROR) dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); if (int_status & ~RK_MMU_IRQ_MASK) dev_err(iommu->dev, "unexpected int_status: %#08x\n", int_status); rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); } clk_bulk_disable(iommu->num_clocks, iommu->clocks); out: pm_runtime_put(iommu->dev); return ret; } static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; phys_addr_t pt_phys, phys = 0; u32 dte, pte; u32 *page_table; spin_lock_irqsave(&rk_domain->dt_lock, flags); dte = rk_domain->dt[rk_iova_dte_index(iova)]; if (!rk_dte_is_pt_valid(dte)) goto out; pt_phys = rk_ops->pt_address(dte); page_table = (u32 *)phys_to_virt(pt_phys); pte = page_table[rk_iova_pte_index(iova)]; if (!rk_pte_is_page_valid(pte)) goto out; phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova); out: spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return phys; } static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, dma_addr_t iova, size_t size) { struct list_head *pos; unsigned long flags; /* shootdown these iova from all iommus using this domain */ spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_for_each(pos, &rk_domain->iommus) { struct rk_iommu *iommu; int ret; iommu = list_entry(pos, struct rk_iommu, node); /* Only zap TLBs of IOMMUs that are powered on. */ ret = pm_runtime_get_if_in_use(iommu->dev); if (WARN_ON_ONCE(ret < 0)) continue; if (ret) { WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); rk_iommu_zap_lines(iommu, iova, size); clk_bulk_disable(iommu->num_clocks, iommu->clocks); pm_runtime_put(iommu->dev); } } spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); } static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, dma_addr_t iova, size_t size) { rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); if (size > SPAGE_SIZE) rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, SPAGE_SIZE); } static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, dma_addr_t iova) { u32 *page_table, *dte_addr; u32 dte_index, dte; phys_addr_t pt_phys; dma_addr_t pt_dma; assert_spin_locked(&rk_domain->dt_lock); dte_index = rk_iova_dte_index(iova); dte_addr = &rk_domain->dt[dte_index]; dte = *dte_addr; if (rk_dte_is_pt_valid(dte)) goto done; page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); if (!page_table) return ERR_PTR(-ENOMEM); pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, pt_dma)) { dev_err(dma_dev, "DMA mapping error while allocating page table\n"); free_page((unsigned long)page_table); return ERR_PTR(-ENOMEM); } dte = rk_ops->mk_dtentries(pt_dma); *dte_addr = dte; rk_table_flush(rk_domain, rk_domain->dt_dma + dte_index * sizeof(u32), 1); done: pt_phys = rk_ops->pt_address(dte); return (u32 *)phys_to_virt(pt_phys); } static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, dma_addr_t pte_dma, size_t size) { unsigned int pte_count; unsigned int pte_total = size / SPAGE_SIZE; assert_spin_locked(&rk_domain->dt_lock); for (pte_count = 0; pte_count < pte_total; pte_count++) { u32 pte = pte_addr[pte_count]; if (!rk_pte_is_page_valid(pte)) break; pte_addr[pte_count] = rk_mk_pte_invalid(pte); } rk_table_flush(rk_domain, pte_dma, pte_count); return pte_count * SPAGE_SIZE; } static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, dma_addr_t pte_dma, dma_addr_t iova, phys_addr_t paddr, size_t size, int prot) { unsigned int pte_count; unsigned int pte_total = size / SPAGE_SIZE; phys_addr_t page_phys; assert_spin_locked(&rk_domain->dt_lock); for (pte_count = 0; pte_count < pte_total; pte_count++) { u32 pte = pte_addr[pte_count]; if (rk_pte_is_page_valid(pte)) goto unwind; pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot); paddr += SPAGE_SIZE; } rk_table_flush(rk_domain, pte_dma, pte_total); /* * Zap the first and last iova to evict from iotlb any previously * mapped cachelines holding stale values for its dte and pte. * We only zap the first and last iova, since only they could have * dte or pte shared with an existing mapping. */ rk_iommu_zap_iova_first_last(rk_domain, iova, size); return 0; unwind: /* Unmap the range of iovas that we just mapped */ rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, pte_count * SPAGE_SIZE); iova += pte_count * SPAGE_SIZE; page_phys = rk_ops->pt_address(pte_addr[pte_count]); pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", &iova, &page_phys, &paddr, prot); return -EADDRINUSE; } static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, phys_addr_t paddr, size_t size, int prot, gfp_t gfp) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; dma_addr_t pte_dma, iova = (dma_addr_t)_iova; u32 *page_table, *pte_addr; u32 dte_index, pte_index; int ret; spin_lock_irqsave(&rk_domain->dt_lock, flags); /* * pgsize_bitmap specifies iova sizes that fit in one page table * (1024 4-KiB pages = 4 MiB). * So, size will always be 4096 <= size <= 4194304. * Since iommu_map() guarantees that both iova and size will be * aligned, we will always only be mapping from a single dte here. */ page_table = rk_dte_get_page_table(rk_domain, iova); if (IS_ERR(page_table)) { spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return PTR_ERR(page_table); } dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; pte_index = rk_iova_pte_index(iova); pte_addr = &page_table[pte_index]; pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32); ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, paddr, size, prot); spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return ret; } static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, size_t size, struct iommu_iotlb_gather *gather) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; dma_addr_t pte_dma, iova = (dma_addr_t)_iova; phys_addr_t pt_phys; u32 dte; u32 *pte_addr; size_t unmap_size; spin_lock_irqsave(&rk_domain->dt_lock, flags); /* * pgsize_bitmap specifies iova sizes that fit in one page table * (1024 4-KiB pages = 4 MiB). * So, size will always be 4096 <= size <= 4194304. * Since iommu_unmap() guarantees that both iova and size will be * aligned, we will always only be unmapping from a single dte here. */ dte = rk_domain->dt[rk_iova_dte_index(iova)]; /* Just return 0 if iova is unmapped */ if (!rk_dte_is_pt_valid(dte)) { spin_unlock_irqrestore(&rk_domain->dt_lock, flags); return 0; } pt_phys = rk_ops->pt_address(dte); pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); spin_unlock_irqrestore(&rk_domain->dt_lock, flags); /* Shootdown iotlb entries for iova range that was just unmapped */ rk_iommu_zap_iova(rk_domain, iova, unmap_size); return unmap_size; } static struct rk_iommu *rk_iommu_from_dev(struct device *dev) { struct rk_iommudata *data = dev_iommu_priv_get(dev); return data ? data->iommu : NULL; } /* Must be called with iommu powered on and attached */ static void rk_iommu_disable(struct rk_iommu *iommu) { int i; /* Ignore error while disabling, just keep going */ WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); rk_iommu_enable_stall(iommu); rk_iommu_disable_paging(iommu); for (i = 0; i < iommu->num_mmu; i++) { rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); } rk_iommu_disable_stall(iommu); clk_bulk_disable(iommu->num_clocks, iommu->clocks); } /* Must be called with iommu powered on and attached */ static int rk_iommu_enable(struct rk_iommu *iommu) { struct iommu_domain *domain = iommu->domain; struct rk_iommu_domain *rk_domain = to_rk_domain(domain); int ret, i; ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); if (ret) return ret; ret = rk_iommu_enable_stall(iommu); if (ret) goto out_disable_clocks; ret = rk_iommu_force_reset(iommu); if (ret) goto out_disable_stall; for (i = 0; i < iommu->num_mmu; i++) { rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, rk_ops->dma_addr_dte(rk_domain->dt_dma)); rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); } ret = rk_iommu_enable_paging(iommu); out_disable_stall: rk_iommu_disable_stall(iommu); out_disable_clocks: clk_bulk_disable(iommu->num_clocks, iommu->clocks); return ret; } static int rk_iommu_identity_attach(struct iommu_domain *identity_domain, struct device *dev) { struct rk_iommu *iommu; struct rk_iommu_domain *rk_domain; unsigned long flags; int ret; /* Allow 'virtual devices' (eg drm) to detach from domain */ iommu = rk_iommu_from_dev(dev); if (!iommu) return -ENODEV; rk_domain = to_rk_domain(iommu->domain); dev_dbg(dev, "Detaching from iommu domain\n"); if (iommu->domain == identity_domain) return 0; iommu->domain = identity_domain; spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_del_init(&iommu->node); spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); ret = pm_runtime_get_if_in_use(iommu->dev); WARN_ON_ONCE(ret < 0); if (ret > 0) { rk_iommu_disable(iommu); pm_runtime_put(iommu->dev); } return 0; } static void rk_iommu_identity_free(struct iommu_domain *domain) { } static struct iommu_domain_ops rk_identity_ops = { .attach_dev = rk_iommu_identity_attach, .free = rk_iommu_identity_free, }; static struct iommu_domain rk_identity_domain = { .type = IOMMU_DOMAIN_IDENTITY, .ops = &rk_identity_ops, }; #ifdef CONFIG_ARM static void rk_iommu_set_platform_dma(struct device *dev) { WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev)); } #endif static int rk_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct rk_iommu *iommu; struct rk_iommu_domain *rk_domain = to_rk_domain(domain); unsigned long flags; int ret; /* * Allow 'virtual devices' (e.g., drm) to attach to domain. * Such a device does not belong to an iommu group. */ iommu = rk_iommu_from_dev(dev); if (!iommu) return 0; dev_dbg(dev, "Attaching to iommu domain\n"); /* iommu already attached */ if (iommu->domain == domain) return 0; ret = rk_iommu_identity_attach(&rk_identity_domain, dev); if (ret) return ret; iommu->domain = domain; spin_lock_irqsave(&rk_domain->iommus_lock, flags); list_add_tail(&iommu->node, &rk_domain->iommus); spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); ret = pm_runtime_get_if_in_use(iommu->dev); if (!ret || WARN_ON_ONCE(ret < 0)) return 0; ret = rk_iommu_enable(iommu); if (ret) WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev)); pm_runtime_put(iommu->dev); return ret; } static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) { struct rk_iommu_domain *rk_domain; if (type == IOMMU_DOMAIN_IDENTITY) return &rk_identity_domain; if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) return NULL; if (!dma_dev) return NULL; rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL); if (!rk_domain) return NULL; /* * rk32xx iommus use a 2 level pagetable. * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. * Allocate one 4 KiB page for each table. */ rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32); if (!rk_domain->dt) goto err_free_domain; rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, SPAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { dev_err(dma_dev, "DMA map error for DT\n"); goto err_free_dt; } spin_lock_init(&rk_domain->iommus_lock); spin_lock_init(&rk_domain->dt_lock); INIT_LIST_HEAD(&rk_domain->iommus); rk_domain->domain.geometry.aperture_start = 0; rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); rk_domain->domain.geometry.force_aperture = true; return &rk_domain->domain; err_free_dt: free_page((unsigned long)rk_domain->dt); err_free_domain: kfree(rk_domain); return NULL; } static void rk_iommu_domain_free(struct iommu_domain *domain) { struct rk_iommu_domain *rk_domain = to_rk_domain(domain); int i; WARN_ON(!list_empty(&rk_domain->iommus)); for (i = 0; i < NUM_DT_ENTRIES; i++) { u32 dte = rk_domain->dt[i]; if (rk_dte_is_pt_valid(dte)) { phys_addr_t pt_phys = rk_ops->pt_address(dte); u32 *page_table = phys_to_virt(pt_phys); dma_unmap_single(dma_dev, pt_phys, SPAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)page_table); } } dma_unmap_single(dma_dev, rk_domain->dt_dma, SPAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)rk_domain->dt); kfree(rk_domain); } static struct iommu_device *rk_iommu_probe_device(struct device *dev) { struct rk_iommudata *data; struct rk_iommu *iommu; data = dev_iommu_priv_get(dev); if (!data) return ERR_PTR(-ENODEV); iommu = rk_iommu_from_dev(dev); data->link = device_link_add(dev, iommu->dev, DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); return &iommu->iommu; } static void rk_iommu_release_device(struct device *dev) { struct rk_iommudata *data = dev_iommu_priv_get(dev); device_link_del(data->link); } static struct iommu_group *rk_iommu_device_group(struct device *dev) { struct rk_iommu *iommu; iommu = rk_iommu_from_dev(dev); return iommu_group_ref_get(iommu->group); } static int rk_iommu_of_xlate(struct device *dev, struct of_phandle_args *args) { struct platform_device *iommu_dev; struct rk_iommudata *data; data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; iommu_dev = of_find_device_by_node(args->np); data->iommu = platform_get_drvdata(iommu_dev); data->iommu->domain = &rk_identity_domain; dev_iommu_priv_set(dev, data); platform_device_put(iommu_dev); return 0; } static const struct iommu_ops rk_iommu_ops = { .domain_alloc = rk_iommu_domain_alloc, .probe_device = rk_iommu_probe_device, .release_device = rk_iommu_release_device, .device_group = rk_iommu_device_group, #ifdef CONFIG_ARM .set_platform_dma_ops = rk_iommu_set_platform_dma, #endif .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, .of_xlate = rk_iommu_of_xlate, .default_domain_ops = &(const struct iommu_domain_ops) { .attach_dev = rk_iommu_attach_device, .map = rk_iommu_map, .unmap = rk_iommu_unmap, .iova_to_phys = rk_iommu_iova_to_phys, .free = rk_iommu_domain_free, } }; static int rk_iommu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rk_iommu *iommu; struct resource *res; const struct rk_iommu_ops *ops; int num_res = pdev->num_resources; int err, i; iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); if (!iommu) return -ENOMEM; platform_set_drvdata(pdev, iommu); iommu->dev = dev; iommu->num_mmu = 0; ops = of_device_get_match_data(dev); if (!rk_ops) rk_ops = ops; /* * That should not happen unless different versions of the * hardware block are embedded the same SoC */ if (WARN_ON(rk_ops != ops)) return -EINVAL; iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), GFP_KERNEL); if (!iommu->bases) return -ENOMEM; for (i = 0; i < num_res; i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (!res) continue; iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(iommu->bases[i])) continue; iommu->num_mmu++; } if (iommu->num_mmu == 0) return PTR_ERR(iommu->bases[0]); iommu->num_irq = platform_irq_count(pdev); if (iommu->num_irq < 0) return iommu->num_irq; iommu->reset_disabled = device_property_read_bool(dev, "rockchip,disable-mmu-reset"); iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, sizeof(*iommu->clocks), GFP_KERNEL); if (!iommu->clocks) return -ENOMEM; for (i = 0; i < iommu->num_clocks; ++i) iommu->clocks[i].id = rk_iommu_clocks[i]; /* * iommu clocks should be present for all new devices and devicetrees * but there are older devicetrees without clocks out in the wild. * So clocks as optional for the time being. */ err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); if (err == -ENOENT) iommu->num_clocks = 0; else if (err) return err; err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); if (err) return err; iommu->group = iommu_group_alloc(); if (IS_ERR(iommu->group)) { err = PTR_ERR(iommu->group); goto err_unprepare_clocks; } err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); if (err) goto err_put_group; err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev); if (err) goto err_remove_sysfs; /* * Use the first registered IOMMU device for domain to use with DMA * API, since a domain might not physically correspond to a single * IOMMU device.. */ if (!dma_dev) dma_dev = &pdev->dev; pm_runtime_enable(dev); for (i = 0; i < iommu->num_irq; i++) { int irq = platform_get_irq(pdev, i); if (irq < 0) { err = irq; goto err_pm_disable; } err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, IRQF_SHARED, dev_name(dev), iommu); if (err) goto err_pm_disable; } dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask); return 0; err_pm_disable: pm_runtime_disable(dev); err_remove_sysfs: iommu_device_sysfs_remove(&iommu->iommu); err_put_group: iommu_group_put(iommu->group); err_unprepare_clocks: clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); return err; } static void rk_iommu_shutdown(struct platform_device *pdev) { struct rk_iommu *iommu = platform_get_drvdata(pdev); int i; for (i = 0; i < iommu->num_irq; i++) { int irq = platform_get_irq(pdev, i); devm_free_irq(iommu->dev, irq, iommu); } pm_runtime_force_suspend(&pdev->dev); } static int __maybe_unused rk_iommu_suspend(struct device *dev) { struct rk_iommu *iommu = dev_get_drvdata(dev); if (iommu->domain == &rk_identity_domain) return 0; rk_iommu_disable(iommu); return 0; } static int __maybe_unused rk_iommu_resume(struct device *dev) { struct rk_iommu *iommu = dev_get_drvdata(dev); if (iommu->domain == &rk_identity_domain) return 0; return rk_iommu_enable(iommu); } static const struct dev_pm_ops rk_iommu_pm_ops = { SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct rk_iommu_ops iommu_data_ops_v1 = { .pt_address = &rk_dte_pt_address, .mk_dtentries = &rk_mk_dte, .mk_ptentries = &rk_mk_pte, .dte_addr_phys = &rk_dte_addr_phys, .dma_addr_dte = &rk_dma_addr_dte, .dma_bit_mask = DMA_BIT_MASK(32), }; static struct rk_iommu_ops iommu_data_ops_v2 = { .pt_address = &rk_dte_pt_address_v2, .mk_dtentries = &rk_mk_dte_v2, .mk_ptentries = &rk_mk_pte_v2, .dte_addr_phys = &rk_dte_addr_phys_v2, .dma_addr_dte = &rk_dma_addr_dte_v2, .dma_bit_mask = DMA_BIT_MASK(40), }; static const struct of_device_id rk_iommu_dt_ids[] = { { .compatible = "rockchip,iommu", .data = &iommu_data_ops_v1, }, { .compatible = "rockchip,rk3568-iommu", .data = &iommu_data_ops_v2, }, { /* sentinel */ } }; static struct platform_driver rk_iommu_driver = { .probe = rk_iommu_probe, .shutdown = rk_iommu_shutdown, .driver = { .name = "rk_iommu", .of_match_table = rk_iommu_dt_ids, .pm = &rk_iommu_pm_ops, .suppress_bind_attrs = true, }, }; builtin_platform_driver(rk_iommu_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1