Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 5806 | 58.39% | 55 | 36.18% |
Tomasz Nowicki | 958 | 9.63% | 4 | 2.63% |
Julien Thierry | 610 | 6.13% | 7 | 4.61% |
Shanker Donthineni | 522 | 5.25% | 3 | 1.97% |
Julien Grall | 484 | 4.87% | 3 | 1.97% |
Sudeep Holla | 206 | 2.07% | 5 | 3.29% |
James Morse | 200 | 2.01% | 3 | 1.97% |
Robin Murphy | 186 | 1.87% | 2 | 1.32% |
Lorenzo Pieralisi | 165 | 1.66% | 2 | 1.32% |
Mark Rutland | 157 | 1.58% | 4 | 2.63% |
zhengyan | 81 | 0.81% | 1 | 0.66% |
Srinivas Kandagatla | 72 | 0.72% | 2 | 1.32% |
Doug Anderson | 58 | 0.58% | 1 | 0.66% |
Valentin Schneider | 55 | 0.55% | 3 | 1.97% |
Suzuki K. Poulose | 47 | 0.47% | 5 | 3.29% |
Andre Przywara | 46 | 0.46% | 2 | 1.32% |
Alexandru Elisei | 46 | 0.46% | 2 | 1.32% |
Jean-Philippe Brucker | 21 | 0.21% | 3 | 1.97% |
Robert Richter | 20 | 0.20% | 2 | 1.32% |
Thomas Gleixner | 19 | 0.19% | 4 | 2.63% |
Zeev Zilberman | 19 | 0.19% | 1 | 0.66% |
Davidlohr Bueso A | 17 | 0.17% | 1 | 0.66% |
Miaoqian Lin | 15 | 0.15% | 2 | 1.32% |
Johan Hovold | 15 | 0.15% | 2 | 1.32% |
Christoffer Dall | 12 | 0.12% | 1 | 0.66% |
Richard Cochran | 10 | 0.10% | 1 | 0.66% |
Keith Busch | 10 | 0.10% | 1 | 0.66% |
Chen-Yu Tsai | 9 | 0.09% | 1 | 0.66% |
luanshi | 9 | 0.09% | 1 | 0.66% |
Gustavo A. R. Silva | 8 | 0.08% | 1 | 0.66% |
Daniel R Thompson | 6 | 0.06% | 1 | 0.66% |
Kees Cook | 6 | 0.06% | 1 | 0.66% |
Rob Herring | 6 | 0.06% | 3 | 1.97% |
Joël Porquet | 6 | 0.06% | 1 | 0.66% |
Will Deacon | 5 | 0.05% | 2 | 1.32% |
Christophe Jaillet | 4 | 0.04% | 1 | 0.66% |
Barry Song | 4 | 0.04% | 1 | 0.66% |
Andrew Jones | 3 | 0.03% | 1 | 0.66% |
Jens Wiklander | 3 | 0.03% | 1 | 0.66% |
Rusty Russell | 2 | 0.02% | 1 | 0.66% |
Liviu Dudau | 2 | 0.02% | 1 | 0.66% |
Oscar Carter | 2 | 0.02% | 1 | 0.66% |
Vladimir Murzin | 1 | 0.01% | 1 | 0.66% |
Mark Brown | 1 | 0.01% | 1 | 0.66% |
Antoine Tenart | 1 | 0.01% | 1 | 0.66% |
Mark Salter | 1 | 0.01% | 1 | 0.66% |
Arvind Yadav | 1 | 0.01% | 1 | 0.66% |
Dan Carpenter | 1 | 0.01% | 1 | 0.66% |
Ingo Rohloff | 1 | 0.01% | 1 | 0.66% |
Zenghui Yu | 1 | 0.01% | 1 | 0.66% |
Zhiyuan Dai | 1 | 0.01% | 1 | 0.66% |
Ingo Molnar | 1 | 0.01% | 1 | 0.66% |
Hui Wang | 1 | 0.01% | 1 | 0.66% |
Linus Torvalds | 1 | 0.01% | 1 | 0.66% |
Total | 9944 | 152 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. * Author: Marc Zyngier <marc.zyngier@arm.com> */ #define pr_fmt(fmt) "GICv3: " fmt #include <linux/acpi.h> #include <linux/cpu.h> #include <linux/cpu_pm.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irqdomain.h> #include <linux/kstrtox.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/percpu.h> #include <linux/refcount.h> #include <linux/slab.h> #include <linux/irqchip.h> #include <linux/irqchip/arm-gic-common.h> #include <linux/irqchip/arm-gic-v3.h> #include <linux/irqchip/irq-partition-percpu.h> #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/arm-smccc.h> #include <asm/cputype.h> #include <asm/exception.h> #include <asm/smp_plat.h> #include <asm/virt.h> #include "irq-gic-common.h" #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80) #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) #define FLAGS_WORKAROUND_MTK_GICR_SAVE (1ULL << 2) #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 3) #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) struct redist_region { void __iomem *redist_base; phys_addr_t phys_base; bool single_redist; }; struct gic_chip_data { struct fwnode_handle *fwnode; phys_addr_t dist_phys_base; void __iomem *dist_base; struct redist_region *redist_regions; struct rdists rdists; struct irq_domain *domain; u64 redist_stride; u32 nr_redist_regions; u64 flags; bool has_rss; unsigned int ppi_nr; struct partition_desc **ppi_descs; }; #define T241_CHIPS_MAX 4 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); static struct gic_chip_data gic_data __read_mostly; static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) /* * The behaviours of RPR and PMR registers differ depending on the value of * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the * distributor and redistributors depends on whether security is enabled in the * GIC. * * When security is enabled, non-secure priority values from the (re)distributor * are presented to the GIC CPUIF as follow: * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; * * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure * EL1 are subject to a similar operation thus matching the priorities presented * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, * these values are unchanged by the GIC. * * see GICv3/GICv4 Architecture Specification (IHI0069D): * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt * priorities. * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 * interrupt. */ static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities); EXPORT_SYMBOL(gic_nonsecure_priorities); /* * When the Non-secure world has access to group 0 interrupts (as a * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will * return the Distributor's view of the interrupt priority. * * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority * written by software is moved to the Non-secure range by the Distributor. * * If both are true (which is when gic_nonsecure_priorities gets enabled), * we need to shift down the priority programmed by software to match it * against the value returned by ICC_RPR_EL1. */ #define GICD_INT_RPR_PRI(priority) \ ({ \ u32 __priority = (priority); \ if (static_branch_unlikely(&gic_nonsecure_priorities)) \ __priority = 0x80 | (__priority >> 1); \ \ __priority; \ }) /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */ static refcount_t *ppi_nmi_refs; static struct gic_kvm_info gic_v3_kvm_info __initdata; static DEFINE_PER_CPU(bool, has_rss); #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) /* Our default, arbitrary priority value. Linux only uses one anyway. */ #define DEFAULT_PMR_VALUE 0xf0 enum gic_intid_range { SGI_RANGE, PPI_RANGE, SPI_RANGE, EPPI_RANGE, ESPI_RANGE, LPI_RANGE, __INVALID_RANGE__ }; static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) { switch (hwirq) { case 0 ... 15: return SGI_RANGE; case 16 ... 31: return PPI_RANGE; case 32 ... 1019: return SPI_RANGE; case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): return EPPI_RANGE; case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): return ESPI_RANGE; case 8192 ... GENMASK(23, 0): return LPI_RANGE; default: return __INVALID_RANGE__; } } static enum gic_intid_range get_intid_range(struct irq_data *d) { return __get_intid_range(d->hwirq); } static inline unsigned int gic_irq(struct irq_data *d) { return d->hwirq; } static inline bool gic_irq_in_rdist(struct irq_data *d) { switch (get_intid_range(d)) { case SGI_RANGE: case PPI_RANGE: case EPPI_RANGE: return true; default: return false; } } static inline void __iomem *gic_dist_base_alias(struct irq_data *d) { if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { irq_hw_number_t hwirq = irqd_to_hwirq(d); u32 chip; /* * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} * registers are directed to the chip that owns the SPI. The * the alias region can also be used for writes to the * GICD_In{E} except GICD_ICENABLERn. Each chip has support * for 320 {E}SPIs. Mappings for all 4 chips: * Chip0 = 32-351 * Chip1 = 352-671 * Chip2 = 672-991 * Chip3 = 4096-4415 */ switch (__get_intid_range(hwirq)) { case SPI_RANGE: chip = (hwirq - 32) / 320; break; case ESPI_RANGE: chip = 3; break; default: unreachable(); } return t241_dist_base_alias[chip]; } return gic_data.dist_base; } static inline void __iomem *gic_dist_base(struct irq_data *d) { switch (get_intid_range(d)) { case SGI_RANGE: case PPI_RANGE: case EPPI_RANGE: /* SGI+PPI -> SGI_base for this CPU */ return gic_data_rdist_sgi_base(); case SPI_RANGE: case ESPI_RANGE: /* SPI -> dist_base */ return gic_data.dist_base; default: return NULL; } } static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) { u32 count = 1000000; /* 1s! */ while (readl_relaxed(base + GICD_CTLR) & bit) { count--; if (!count) { pr_err_ratelimited("RWP timeout, gone fishing\n"); return; } cpu_relax(); udelay(1); } } /* Wait for completion of a distributor change */ static void gic_dist_wait_for_rwp(void) { gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); } /* Wait for completion of a redistributor change */ static void gic_redist_wait_for_rwp(void) { gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); } #ifdef CONFIG_ARM64 static u64 __maybe_unused gic_read_iar(void) { if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154)) return gic_read_iar_cavium_thunderx(); else return gic_read_iar_common(); } #endif static void gic_enable_redist(bool enable) { void __iomem *rbase; u32 count = 1000000; /* 1s! */ u32 val; if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) return; rbase = gic_data_rdist_rd_base(); val = readl_relaxed(rbase + GICR_WAKER); if (enable) /* Wake up this CPU redistributor */ val &= ~GICR_WAKER_ProcessorSleep; else val |= GICR_WAKER_ProcessorSleep; writel_relaxed(val, rbase + GICR_WAKER); if (!enable) { /* Check that GICR_WAKER is writeable */ val = readl_relaxed(rbase + GICR_WAKER); if (!(val & GICR_WAKER_ProcessorSleep)) return; /* No PM support in this redistributor */ } while (--count) { val = readl_relaxed(rbase + GICR_WAKER); if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep)) break; cpu_relax(); udelay(1); } if (!count) pr_err_ratelimited("redistributor failed to %s...\n", enable ? "wakeup" : "sleep"); } /* * Routines to disable, enable, EOI and route interrupts */ static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) { switch (get_intid_range(d)) { case SGI_RANGE: case PPI_RANGE: case SPI_RANGE: *index = d->hwirq; return offset; case EPPI_RANGE: /* * Contrary to the ESPI range, the EPPI range is contiguous * to the PPI range in the registers, so let's adjust the * displacement accordingly. Consistency is overrated. */ *index = d->hwirq - EPPI_BASE_INTID + 32; return offset; case ESPI_RANGE: *index = d->hwirq - ESPI_BASE_INTID; switch (offset) { case GICD_ISENABLER: return GICD_ISENABLERnE; case GICD_ICENABLER: return GICD_ICENABLERnE; case GICD_ISPENDR: return GICD_ISPENDRnE; case GICD_ICPENDR: return GICD_ICPENDRnE; case GICD_ISACTIVER: return GICD_ISACTIVERnE; case GICD_ICACTIVER: return GICD_ICACTIVERnE; case GICD_IPRIORITYR: return GICD_IPRIORITYRnE; case GICD_ICFGR: return GICD_ICFGRnE; case GICD_IROUTER: return GICD_IROUTERnE; default: break; } break; default: break; } WARN_ON(1); *index = d->hwirq; return offset; } static int gic_peek_irq(struct irq_data *d, u32 offset) { void __iomem *base; u32 index, mask; offset = convert_offset_index(d, offset, &index); mask = 1 << (index % 32); if (gic_irq_in_rdist(d)) base = gic_data_rdist_sgi_base(); else base = gic_dist_base_alias(d); return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); } static void gic_poke_irq(struct irq_data *d, u32 offset) { void __iomem *base; u32 index, mask; offset = convert_offset_index(d, offset, &index); mask = 1 << (index % 32); if (gic_irq_in_rdist(d)) base = gic_data_rdist_sgi_base(); else base = gic_data.dist_base; writel_relaxed(mask, base + offset + (index / 32) * 4); } static void gic_mask_irq(struct irq_data *d) { gic_poke_irq(d, GICD_ICENABLER); if (gic_irq_in_rdist(d)) gic_redist_wait_for_rwp(); else gic_dist_wait_for_rwp(); } static void gic_eoimode1_mask_irq(struct irq_data *d) { gic_mask_irq(d); /* * When masking a forwarded interrupt, make sure it is * deactivated as well. * * This ensures that an interrupt that is getting * disabled/masked will not get "stuck", because there is * noone to deactivate it (guest is being terminated). */ if (irqd_is_forwarded_to_vcpu(d)) gic_poke_irq(d, GICD_ICACTIVER); } static void gic_unmask_irq(struct irq_data *d) { gic_poke_irq(d, GICD_ISENABLER); } static inline bool gic_supports_nmi(void) { return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && static_branch_likely(&supports_pseudo_nmis); } static int gic_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool val) { u32 reg; if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ return -EINVAL; switch (which) { case IRQCHIP_STATE_PENDING: reg = val ? GICD_ISPENDR : GICD_ICPENDR; break; case IRQCHIP_STATE_ACTIVE: reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; break; case IRQCHIP_STATE_MASKED: if (val) { gic_mask_irq(d); return 0; } reg = GICD_ISENABLER; break; default: return -EINVAL; } gic_poke_irq(d, reg); return 0; } static int gic_irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *val) { if (d->hwirq >= 8192) /* PPI/SPI only */ return -EINVAL; switch (which) { case IRQCHIP_STATE_PENDING: *val = gic_peek_irq(d, GICD_ISPENDR); break; case IRQCHIP_STATE_ACTIVE: *val = gic_peek_irq(d, GICD_ISACTIVER); break; case IRQCHIP_STATE_MASKED: *val = !gic_peek_irq(d, GICD_ISENABLER); break; default: return -EINVAL; } return 0; } static void gic_irq_set_prio(struct irq_data *d, u8 prio) { void __iomem *base = gic_dist_base(d); u32 offset, index; offset = convert_offset_index(d, GICD_IPRIORITYR, &index); writeb_relaxed(prio, base + offset + index); } static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) { switch (__get_intid_range(hwirq)) { case PPI_RANGE: return hwirq - 16; case EPPI_RANGE: return hwirq - EPPI_BASE_INTID + 16; default: unreachable(); } } static u32 gic_get_ppi_index(struct irq_data *d) { return __gic_get_ppi_index(d->hwirq); } static int gic_irq_nmi_setup(struct irq_data *d) { struct irq_desc *desc = irq_to_desc(d->irq); if (!gic_supports_nmi()) return -EINVAL; if (gic_peek_irq(d, GICD_ISENABLER)) { pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); return -EINVAL; } /* * A secondary irq_chip should be in charge of LPI request, * it should not be possible to get there */ if (WARN_ON(gic_irq(d) >= 8192)) return -EINVAL; /* desc lock should already be held */ if (gic_irq_in_rdist(d)) { u32 idx = gic_get_ppi_index(d); /* Setting up PPI as NMI, only switch handler for first NMI */ if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) { refcount_set(&ppi_nmi_refs[idx], 1); desc->handle_irq = handle_percpu_devid_fasteoi_nmi; } } else { desc->handle_irq = handle_fasteoi_nmi; } gic_irq_set_prio(d, GICD_INT_NMI_PRI); return 0; } static void gic_irq_nmi_teardown(struct irq_data *d) { struct irq_desc *desc = irq_to_desc(d->irq); if (WARN_ON(!gic_supports_nmi())) return; if (gic_peek_irq(d, GICD_ISENABLER)) { pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); return; } /* * A secondary irq_chip should be in charge of LPI request, * it should not be possible to get there */ if (WARN_ON(gic_irq(d) >= 8192)) return; /* desc lock should already be held */ if (gic_irq_in_rdist(d)) { u32 idx = gic_get_ppi_index(d); /* Tearing down NMI, only switch handler for last NMI */ if (refcount_dec_and_test(&ppi_nmi_refs[idx])) desc->handle_irq = handle_percpu_devid_irq; } else { desc->handle_irq = handle_fasteoi_irq; } gic_irq_set_prio(d, GICD_INT_DEF_PRI); } static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) { enum gic_intid_range range; if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) return false; range = get_intid_range(d); /* * The workaround is needed if the IRQ is an SPI and * the target cpu is different from the one we are * executing on. */ return (range == SPI_RANGE || range == ESPI_RANGE) && !cpumask_test_cpu(raw_smp_processor_id(), irq_data_get_effective_affinity_mask(d)); } static void gic_eoi_irq(struct irq_data *d) { write_gicreg(gic_irq(d), ICC_EOIR1_EL1); isb(); if (gic_arm64_erratum_2941627_needed(d)) { /* * Make sure the GIC stream deactivate packet * issued by ICC_EOIR1_EL1 has completed before * deactivating through GICD_IACTIVER. */ dsb(sy); gic_poke_irq(d, GICD_ICACTIVER); } } static void gic_eoimode1_eoi_irq(struct irq_data *d) { /* * No need to deactivate an LPI, or an interrupt that * is is getting forwarded to a vcpu. */ if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) return; if (!gic_arm64_erratum_2941627_needed(d)) gic_write_dir(gic_irq(d)); else gic_poke_irq(d, GICD_ICACTIVER); } static int gic_set_type(struct irq_data *d, unsigned int type) { enum gic_intid_range range; unsigned int irq = gic_irq(d); void __iomem *base; u32 offset, index; int ret; range = get_intid_range(d); /* Interrupt configuration for SGIs can't be changed */ if (range == SGI_RANGE) return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; /* SPIs have restrictions on the supported types */ if ((range == SPI_RANGE || range == ESPI_RANGE) && type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) return -EINVAL; if (gic_irq_in_rdist(d)) base = gic_data_rdist_sgi_base(); else base = gic_dist_base_alias(d); offset = convert_offset_index(d, GICD_ICFGR, &index); ret = gic_configure_irq(index, type, base + offset, NULL); if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { /* Misconfigured PPIs are usually not fatal */ pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq); ret = 0; } return ret; } static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) { if (get_intid_range(d) == SGI_RANGE) return -EINVAL; if (vcpu) irqd_set_forwarded_to_vcpu(d); else irqd_clr_forwarded_to_vcpu(d); return 0; } static u64 gic_cpu_to_affinity(int cpu) { u64 mpidr = cpu_logical_map(cpu); u64 aff; /* ASR8601 needs to have its affinities shifted down... */ if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); return aff; } static void gic_deactivate_unhandled(u32 irqnr) { if (static_branch_likely(&supports_deactivate_key)) { if (irqnr < 8192) gic_write_dir(irqnr); } else { write_gicreg(irqnr, ICC_EOIR1_EL1); isb(); } } /* * Follow a read of the IAR with any HW maintenance that needs to happen prior * to invoking the relevant IRQ handler. We must do two things: * * (1) Ensure instruction ordering between a read of IAR and subsequent * instructions in the IRQ handler using an ISB. * * It is possible for the IAR to report an IRQ which was signalled *after* * the CPU took an IRQ exception as multiple interrupts can race to be * recognized by the GIC, earlier interrupts could be withdrawn, and/or * later interrupts could be prioritized by the GIC. * * For devices which are tightly coupled to the CPU, such as PMUs, a * context synchronization event is necessary to ensure that system * register state is not stale, as these may have been indirectly written * *after* exception entry. * * (2) Deactivate the interrupt when EOI mode 1 is in use. */ static inline void gic_complete_ack(u32 irqnr) { if (static_branch_likely(&supports_deactivate_key)) write_gicreg(irqnr, ICC_EOIR1_EL1); isb(); } static bool gic_rpr_is_nmi_prio(void) { if (!gic_supports_nmi()) return false; return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI)); } static bool gic_irqnr_is_special(u32 irqnr) { return irqnr >= 1020 && irqnr <= 1023; } static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) { if (gic_irqnr_is_special(irqnr)) return; gic_complete_ack(irqnr); if (generic_handle_domain_irq(gic_data.domain, irqnr)) { WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); gic_deactivate_unhandled(irqnr); } } static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) { if (gic_irqnr_is_special(irqnr)) return; gic_complete_ack(irqnr); if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); gic_deactivate_unhandled(irqnr); } } /* * An exception has been taken from a context with IRQs enabled, and this could * be an IRQ or an NMI. * * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, * after handling any NMI but before handling any IRQ. * * The entry code has performed IRQ entry, and if an NMI is detected we must * perform NMI entry/exit around invoking the handler. */ static void __gic_handle_irq_from_irqson(struct pt_regs *regs) { bool is_nmi; u32 irqnr; irqnr = gic_read_iar(); is_nmi = gic_rpr_is_nmi_prio(); if (is_nmi) { nmi_enter(); __gic_handle_nmi(irqnr, regs); nmi_exit(); } if (gic_prio_masking_enabled()) { gic_pmr_mask_irqs(); gic_arch_enable_irqs(); } if (!is_nmi) __gic_handle_irq(irqnr, regs); } /* * An exception has been taken from a context with IRQs disabled, which can only * be an NMI. * * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave * DAIF.IF (and ICC_PMR_EL1) unchanged. * * The entry code has performed NMI entry. */ static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) { u64 pmr; u32 irqnr; /* * We were in a context with IRQs disabled. However, the * entry code has set PMR to a value that allows any * interrupt to be acknowledged, and not just NMIs. This can * lead to surprising effects if the NMI has been retired in * the meantime, and that there is an IRQ pending. The IRQ * would then be taken in NMI context, something that nobody * wants to debug twice. * * Until we sort this, drop PMR again to a level that will * actually only allow NMIs before reading IAR, and then * restore it to what it was. */ pmr = gic_read_pmr(); gic_pmr_mask_irqs(); isb(); irqnr = gic_read_iar(); gic_write_pmr(pmr); __gic_handle_nmi(irqnr, regs); } static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) { if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) __gic_handle_irq_from_irqsoff(regs); else __gic_handle_irq_from_irqson(regs); } static u32 gic_get_pribits(void) { u32 pribits; pribits = gic_read_ctlr(); pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; pribits++; return pribits; } static bool gic_has_group0(void) { u32 val; u32 old_pmr; old_pmr = gic_read_pmr(); /* * Let's find out if Group0 is under control of EL3 or not by * setting the highest possible, non-zero priority in PMR. * * If SCR_EL3.FIQ is set, the priority gets shifted down in * order for the CPU interface to set bit 7, and keep the * actual priority in the non-secure range. In the process, it * looses the least significant bit and the actual priority * becomes 0x80. Reading it back returns 0, indicating that * we're don't have access to Group0. */ gic_write_pmr(BIT(8 - gic_get_pribits())); val = gic_read_pmr(); gic_write_pmr(old_pmr); return val != 0; } static void __init gic_dist_init(void) { unsigned int i; u64 affinity; void __iomem *base = gic_data.dist_base; u32 val; /* Disable the distributor */ writel_relaxed(0, base + GICD_CTLR); gic_dist_wait_for_rwp(); /* * Configure SPIs as non-secure Group-1. This will only matter * if the GIC only has a single security state. This will not * do the right thing if the kernel is running in secure mode, * but that's not the intended use case anyway. */ for (i = 32; i < GIC_LINE_NR; i += 32) writel_relaxed(~0, base + GICD_IGROUPR + i / 8); /* Extended SPI range, not handled by the GICv2/GICv3 common code */ for (i = 0; i < GIC_ESPI_NR; i += 32) { writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); } for (i = 0; i < GIC_ESPI_NR; i += 32) writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); for (i = 0; i < GIC_ESPI_NR; i += 16) writel_relaxed(0, base + GICD_ICFGRnE + i / 4); for (i = 0; i < GIC_ESPI_NR; i += 4) writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i); /* Now do the common stuff */ gic_dist_config(base, GIC_LINE_NR, NULL); val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { pr_info("Enabling SGIs without active state\n"); val |= GICD_CTLR_nASSGIreq; } /* Enable distributor with ARE, Group1, and wait for it to drain */ writel_relaxed(val, base + GICD_CTLR); gic_dist_wait_for_rwp(); /* * Set all global interrupts to the boot CPU only. ARE must be * enabled. */ affinity = gic_cpu_to_affinity(smp_processor_id()); for (i = 32; i < GIC_LINE_NR; i++) gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); for (i = 0; i < GIC_ESPI_NR; i++) gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); } static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) { int ret = -ENODEV; int i; for (i = 0; i < gic_data.nr_redist_regions; i++) { void __iomem *ptr = gic_data.redist_regions[i].redist_base; u64 typer; u32 reg; reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ pr_warn("No redistributor present @%p\n", ptr); break; } do { typer = gic_read_typer(ptr + GICR_TYPER); ret = fn(gic_data.redist_regions + i, ptr); if (!ret) return 0; if (gic_data.redist_regions[i].single_redist) break; if (gic_data.redist_stride) { ptr += gic_data.redist_stride; } else { ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ if (typer & GICR_TYPER_VLPIS) ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ } } while (!(typer & GICR_TYPER_LAST)); } return ret ? -ENODEV : 0; } static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) { unsigned long mpidr; u64 typer; u32 aff; /* * Convert affinity to a 32bit value that can be matched to * GICR_TYPER bits [63:32]. */ mpidr = gic_cpu_to_affinity(smp_processor_id()); aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); typer = gic_read_typer(ptr + GICR_TYPER); if ((typer >> 32) == aff) { u64 offset = ptr - region->redist_base; raw_spin_lock_init(&gic_data_rdist()->rd_lock); gic_data_rdist_rd_base() = ptr; gic_data_rdist()->phys_base = region->phys_base + offset; pr_info("CPU%d: found redistributor %lx region %d:%pa\n", smp_processor_id(), mpidr, (int)(region - gic_data.redist_regions), &gic_data_rdist()->phys_base); return 0; } /* Try next one */ return 1; } static int gic_populate_rdist(void) { if (gic_iterate_rdists(__gic_populate_rdist) == 0) return 0; /* We couldn't even deal with ourselves... */ WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", smp_processor_id(), (unsigned long)cpu_logical_map(smp_processor_id())); return -ENODEV; } static int __gic_update_rdist_properties(struct redist_region *region, void __iomem *ptr) { u64 typer = gic_read_typer(ptr + GICR_TYPER); u32 ctlr = readl_relaxed(ptr + GICR_CTLR); /* Boot-time cleanup */ if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { u64 val; /* Deactivate any present vPE */ val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); if (val & GICR_VPENDBASER_Valid) gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, ptr + SZ_128K + GICR_VPENDBASER); /* Mark the VPE table as invalid */ val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); val &= ~GICR_VPROPBASER_4_1_VALID; gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); } gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); /* * TYPER.RVPEID implies some form of DirectLPI, no matter what the * doc says... :-/ And CTLR.IR implies another subset of DirectLPI * that the ITS driver can make use of for LPIs (and not VLPIs). * * These are 3 different ways to express the same thing, depending * on the revision of the architecture and its relaxations over * time. Just group them under the 'direct_lpi' banner. */ gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | !!(ctlr & GICR_CTLR_IR) | gic_data.rdists.has_rvpeid); gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); /* Detect non-sensical configurations */ if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { gic_data.rdists.has_direct_lpi = false; gic_data.rdists.has_vlpis = false; gic_data.rdists.has_rvpeid = false; } gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); return 1; } static void gic_update_rdist_properties(void) { gic_data.ppi_nr = UINT_MAX; gic_iterate_rdists(__gic_update_rdist_properties); if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) gic_data.ppi_nr = 0; pr_info("GICv3 features: %d PPIs%s%s\n", gic_data.ppi_nr, gic_data.has_rss ? ", RSS" : "", gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); if (gic_data.rdists.has_vlpis) pr_info("GICv4 features: %s%s%s\n", gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", gic_data.rdists.has_rvpeid ? "RVPEID " : "", gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); } /* Check whether it's single security state view */ static inline bool gic_dist_security_disabled(void) { return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; } static void gic_cpu_sys_reg_init(void) { int i, cpu = smp_processor_id(); u64 mpidr = gic_cpu_to_affinity(cpu); u64 need_rss = MPIDR_RS(mpidr); bool group0; u32 pribits; /* * Need to check that the SRE bit has actually been set. If * not, it means that SRE is disabled at EL2. We're going to * die painfully, and there is nothing we can do about it. * * Kindly inform the luser. */ if (!gic_enable_sre()) pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); pribits = gic_get_pribits(); group0 = gic_has_group0(); /* Set priority mask register */ if (!gic_prio_masking_enabled()) { write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); } else if (gic_supports_nmi()) { /* * Mismatch configuration with boot CPU, the system is likely * to die as interrupt masking will not work properly on all * CPUs * * The boot CPU calls this function before enabling NMI support, * and as a result we'll never see this warning in the boot path * for that CPU. */ if (static_branch_unlikely(&gic_nonsecure_priorities)) WARN_ON(!group0 || gic_dist_security_disabled()); else WARN_ON(group0 && !gic_dist_security_disabled()); } /* * Some firmwares hand over to the kernel with the BPR changed from * its reset value (and with a value large enough to prevent * any pre-emptive interrupts from working at all). Writing a zero * to BPR restores is reset value. */ gic_write_bpr1(0); if (static_branch_likely(&supports_deactivate_key)) { /* EOI drops priority only (mode 1) */ gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); } else { /* EOI deactivates interrupt too (mode 0) */ gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); } /* Always whack Group0 before Group1 */ if (group0) { switch(pribits) { case 8: case 7: write_gicreg(0, ICC_AP0R3_EL1); write_gicreg(0, ICC_AP0R2_EL1); fallthrough; case 6: write_gicreg(0, ICC_AP0R1_EL1); fallthrough; case 5: case 4: write_gicreg(0, ICC_AP0R0_EL1); } isb(); } switch(pribits) { case 8: case 7: write_gicreg(0, ICC_AP1R3_EL1); write_gicreg(0, ICC_AP1R2_EL1); fallthrough; case 6: write_gicreg(0, ICC_AP1R1_EL1); fallthrough; case 5: case 4: write_gicreg(0, ICC_AP1R0_EL1); } isb(); /* ... and let's hit the road... */ gic_write_grpen1(1); /* Keep the RSS capability status in per_cpu variable */ per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); /* Check all the CPUs have capable of sending SGIs to other CPUs */ for_each_online_cpu(i) { bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); if (need_rss && (!have_rss)) pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", cpu, (unsigned long)mpidr, i, (unsigned long)gic_cpu_to_affinity(i)); } /** * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED * UNPREDICTABLE choice of : * - The write is ignored. * - The RS field is treated as 0. */ if (need_rss && (!gic_data.has_rss)) pr_crit_once("RSS is required but GICD doesn't support it\n"); } static bool gicv3_nolpi; static int __init gicv3_nolpi_cfg(char *buf) { return kstrtobool(buf, &gicv3_nolpi); } early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); static int gic_dist_supports_lpis(void) { return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && !gicv3_nolpi); } static void gic_cpu_init(void) { void __iomem *rbase; int i; /* Register ourselves with the rest of the world */ if (gic_populate_rdist()) return; gic_enable_redist(true); WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), "Distributor has extended ranges, but CPU%d doesn't\n", smp_processor_id()); rbase = gic_data_rdist_sgi_base(); /* Configure SGIs/PPIs as non-secure Group-1 */ for (i = 0; i < gic_data.ppi_nr + 16; i += 32) writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp); /* initialise system registers */ gic_cpu_sys_reg_init(); } #ifdef CONFIG_SMP #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) static int gic_starting_cpu(unsigned int cpu) { gic_cpu_init(); if (gic_dist_supports_lpis()) its_cpu_init(); return 0; } static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, unsigned long cluster_id) { int next_cpu, cpu = *base_cpu; unsigned long mpidr; u16 tlist = 0; mpidr = gic_cpu_to_affinity(cpu); while (cpu < nr_cpu_ids) { tlist |= 1 << (mpidr & 0xf); next_cpu = cpumask_next(cpu, mask); if (next_cpu >= nr_cpu_ids) goto out; cpu = next_cpu; mpidr = gic_cpu_to_affinity(cpu); if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { cpu--; goto out; } } out: *base_cpu = cpu; return tlist; } #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ << ICC_SGI1R_AFFINITY_## level ##_SHIFT) static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) { u64 val; val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | irq << ICC_SGI1R_SGI_ID_SHIFT | MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | MPIDR_TO_SGI_RS(cluster_id) | tlist << ICC_SGI1R_TARGET_LIST_SHIFT); pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); gic_write_sgi1r(val); } static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) { int cpu; if (WARN_ON(d->hwirq >= 16)) return; /* * Ensure that stores to Normal memory are visible to the * other CPUs before issuing the IPI. */ dsb(ishst); for_each_cpu(cpu, mask) { u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); u16 tlist; tlist = gic_compute_target_list(&cpu, mask, cluster_id); gic_send_sgi(cluster_id, tlist, d->hwirq); } /* Force the above writes to ICC_SGI1R_EL1 to be executed */ isb(); } static void __init gic_smp_init(void) { struct irq_fwspec sgi_fwspec = { .fwnode = gic_data.fwnode, .param_count = 1, }; int base_sgi; cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, "irqchip/arm/gicv3:starting", gic_starting_cpu, NULL); /* Register all 8 non-secure SGIs */ base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); if (WARN_ON(base_sgi <= 0)) return; set_smp_ipi_range(base_sgi, 8); } static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { unsigned int cpu; u32 offset, index; void __iomem *reg; int enabled; u64 val; if (force) cpu = cpumask_first(mask_val); else cpu = cpumask_any_and(mask_val, cpu_online_mask); if (cpu >= nr_cpu_ids) return -EINVAL; if (gic_irq_in_rdist(d)) return -EINVAL; /* If interrupt was enabled, disable it first */ enabled = gic_peek_irq(d, GICD_ISENABLER); if (enabled) gic_mask_irq(d); offset = convert_offset_index(d, GICD_IROUTER, &index); reg = gic_dist_base(d) + offset + (index * 8); val = gic_cpu_to_affinity(cpu); gic_write_irouter(val, reg); /* * If the interrupt was enabled, enabled it again. Otherwise, * just wait for the distributor to have digested our changes. */ if (enabled) gic_unmask_irq(d); irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK_DONE; } #else #define gic_set_affinity NULL #define gic_ipi_send_mask NULL #define gic_smp_init() do { } while(0) #endif static int gic_retrigger(struct irq_data *data) { return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); } #ifdef CONFIG_CPU_PM static int gic_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { if (cmd == CPU_PM_EXIT) { if (gic_dist_security_disabled()) gic_enable_redist(true); gic_cpu_sys_reg_init(); } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { gic_write_grpen1(0); gic_enable_redist(false); } return NOTIFY_OK; } static struct notifier_block gic_cpu_pm_notifier_block = { .notifier_call = gic_cpu_pm_notifier, }; static void gic_cpu_pm_init(void) { cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); } #else static inline void gic_cpu_pm_init(void) { } #endif /* CONFIG_CPU_PM */ static struct irq_chip gic_chip = { .name = "GICv3", .irq_mask = gic_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoi_irq, .irq_set_type = gic_set_type, .irq_set_affinity = gic_set_affinity, .irq_retrigger = gic_retrigger, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .irq_nmi_setup = gic_irq_nmi_setup, .irq_nmi_teardown = gic_irq_nmi_teardown, .ipi_send_mask = gic_ipi_send_mask, .flags = IRQCHIP_SET_TYPE_MASKED | IRQCHIP_SKIP_SET_WAKE | IRQCHIP_MASK_ON_SUSPEND, }; static struct irq_chip gic_eoimode1_chip = { .name = "GICv3", .irq_mask = gic_eoimode1_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoimode1_eoi_irq, .irq_set_type = gic_set_type, .irq_set_affinity = gic_set_affinity, .irq_retrigger = gic_retrigger, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, .irq_nmi_setup = gic_irq_nmi_setup, .irq_nmi_teardown = gic_irq_nmi_teardown, .ipi_send_mask = gic_ipi_send_mask, .flags = IRQCHIP_SET_TYPE_MASKED | IRQCHIP_SKIP_SET_WAKE | IRQCHIP_MASK_ON_SUSPEND, }; static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { struct irq_chip *chip = &gic_chip; struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); if (static_branch_likely(&supports_deactivate_key)) chip = &gic_eoimode1_chip; switch (__get_intid_range(hw)) { case SGI_RANGE: case PPI_RANGE: case EPPI_RANGE: irq_set_percpu_devid(irq); irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_percpu_devid_irq, NULL, NULL); break; case SPI_RANGE: case ESPI_RANGE: irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_fasteoi_irq, NULL, NULL); irq_set_probe(irq); irqd_set_single_target(irqd); break; case LPI_RANGE: if (!gic_dist_supports_lpis()) return -EPERM; irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_fasteoi_irq, NULL, NULL); break; default: return -EPERM; } /* Prevents SW retriggers which mess up the ACK/EOI ordering */ irqd_set_handle_enforce_irqctx(irqd); return 0; } static int gic_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { if (fwspec->param_count == 1 && fwspec->param[0] < 16) { *hwirq = fwspec->param[0]; *type = IRQ_TYPE_EDGE_RISING; return 0; } if (is_of_node(fwspec->fwnode)) { if (fwspec->param_count < 3) return -EINVAL; switch (fwspec->param[0]) { case 0: /* SPI */ *hwirq = fwspec->param[1] + 32; break; case 1: /* PPI */ *hwirq = fwspec->param[1] + 16; break; case 2: /* ESPI */ *hwirq = fwspec->param[1] + ESPI_BASE_INTID; break; case 3: /* EPPI */ *hwirq = fwspec->param[1] + EPPI_BASE_INTID; break; case GIC_IRQ_TYPE_LPI: /* LPI */ *hwirq = fwspec->param[1]; break; case GIC_IRQ_TYPE_PARTITION: *hwirq = fwspec->param[1]; if (fwspec->param[1] >= 16) *hwirq += EPPI_BASE_INTID - 16; else *hwirq += 16; break; default: return -EINVAL; } *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; /* * Make it clear that broken DTs are... broken. * Partitioned PPIs are an unfortunate exception. */ WARN_ON(*type == IRQ_TYPE_NONE && fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); return 0; } if (is_fwnode_irqchip(fwspec->fwnode)) { if(fwspec->param_count != 2) return -EINVAL; if (fwspec->param[0] < 16) { pr_err(FW_BUG "Illegal GSI%d translation request\n", fwspec->param[0]); return -EINVAL; } *hwirq = fwspec->param[0]; *type = fwspec->param[1]; WARN_ON(*type == IRQ_TYPE_NONE); return 0; } return -EINVAL; } static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { int i, ret; irq_hw_number_t hwirq; unsigned int type = IRQ_TYPE_NONE; struct irq_fwspec *fwspec = arg; ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) { ret = gic_irq_domain_map(domain, virq + i, hwirq + i); if (ret) return ret; } return 0; } static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++) { struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); irq_set_handler(virq + i, NULL); irq_domain_reset_irq_data(d); } } static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, irq_hw_number_t hwirq) { enum gic_intid_range range; if (!gic_data.ppi_descs) return false; if (!is_of_node(fwspec->fwnode)) return false; if (fwspec->param_count < 4 || !fwspec->param[3]) return false; range = __get_intid_range(hwirq); if (range != PPI_RANGE && range != EPPI_RANGE) return false; return true; } static int gic_irq_domain_select(struct irq_domain *d, struct irq_fwspec *fwspec, enum irq_domain_bus_token bus_token) { unsigned int type, ret, ppi_idx; irq_hw_number_t hwirq; /* Not for us */ if (fwspec->fwnode != d->fwnode) return 0; /* If this is not DT, then we have a single domain */ if (!is_of_node(fwspec->fwnode)) return 1; ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); if (WARN_ON_ONCE(ret)) return 0; if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) return d == gic_data.domain; /* * If this is a PPI and we have a 4th (non-null) parameter, * then we need to match the partition domain. */ ppi_idx = __gic_get_ppi_index(hwirq); return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); } static const struct irq_domain_ops gic_irq_domain_ops = { .translate = gic_irq_domain_translate, .alloc = gic_irq_domain_alloc, .free = gic_irq_domain_free, .select = gic_irq_domain_select, }; static int partition_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { unsigned long ppi_intid; struct device_node *np; unsigned int ppi_idx; int ret; if (!gic_data.ppi_descs) return -ENOMEM; np = of_find_node_by_phandle(fwspec->param[3]); if (WARN_ON(!np)) return -EINVAL; ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); if (WARN_ON_ONCE(ret)) return 0; ppi_idx = __gic_get_ppi_index(ppi_intid); ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], of_node_to_fwnode(np)); if (ret < 0) return ret; *hwirq = ret; *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; return 0; } static const struct irq_domain_ops partition_domain_ops = { .translate = partition_domain_translate, .select = gic_irq_domain_select, }; static bool gic_enable_quirk_msm8996(void *data) { struct gic_chip_data *d = data; d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; return true; } static bool gic_enable_quirk_mtk_gicr(void *data) { struct gic_chip_data *d = data; d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE; return true; } static bool gic_enable_quirk_cavium_38539(void *data) { struct gic_chip_data *d = data; d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; return true; } static bool gic_enable_quirk_hip06_07(void *data) { struct gic_chip_data *d = data; /* * HIP06 GICD_IIDR clashes with GIC-600 product number (despite * not being an actual ARM implementation). The saving grace is * that GIC-600 doesn't have ESPI, so nothing to do in that case. * HIP07 doesn't even have a proper IIDR, and still pretends to * have ESPI. In both cases, put them right. */ if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { /* Zero both ESPI and the RES0 field next to it... */ d->rdists.gicd_typer &= ~GENMASK(9, 8); return true; } return false; } #define T241_CHIPN_MASK GENMASK_ULL(45, 44) #define T241_CHIP_GICDA_OFFSET 0x1580000 #define SMCCC_SOC_ID_T241 0x036b0241 static bool gic_enable_quirk_nvidia_t241(void *data) { s32 soc_id = arm_smccc_get_soc_id_version(); unsigned long chip_bmask = 0; phys_addr_t phys; u32 i; /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) return false; /* Find the chips based on GICR regions PHYS addr */ for (i = 0; i < gic_data.nr_redist_regions; i++) { chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, (u64)gic_data.redist_regions[i].phys_base)); } if (hweight32(chip_bmask) < 3) return false; /* Setup GICD alias regions */ for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { if (chip_bmask & BIT(i)) { phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; phys |= FIELD_PREP(T241_CHIPN_MASK, i); t241_dist_base_alias[i] = ioremap(phys, SZ_64K); WARN_ON_ONCE(!t241_dist_base_alias[i]); } } static_branch_enable(&gic_nvidia_t241_erratum); return true; } static bool gic_enable_quirk_asr8601(void *data) { struct gic_chip_data *d = data; d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; return true; } static bool gic_enable_quirk_arm64_2941627(void *data) { static_branch_enable(&gic_arm64_2941627_erratum); return true; } static const struct gic_quirk gic_quirks[] = { { .desc = "GICv3: Qualcomm MSM8996 broken firmware", .compatible = "qcom,msm8996-gic-v3", .init = gic_enable_quirk_msm8996, }, { .desc = "GICv3: ASR erratum 8601001", .compatible = "asr,asr8601-gic-v3", .init = gic_enable_quirk_asr8601, }, { .desc = "GICv3: Mediatek Chromebook GICR save problem", .property = "mediatek,broken-save-restore-fw", .init = gic_enable_quirk_mtk_gicr, }, { .desc = "GICv3: HIP06 erratum 161010803", .iidr = 0x0204043b, .mask = 0xffffffff, .init = gic_enable_quirk_hip06_07, }, { .desc = "GICv3: HIP07 erratum 161010803", .iidr = 0x00000000, .mask = 0xffffffff, .init = gic_enable_quirk_hip06_07, }, { /* * Reserved register accesses generate a Synchronous * External Abort. This erratum applies to: * - ThunderX: CN88xx * - OCTEON TX: CN83xx, CN81xx * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* */ .desc = "GICv3: Cavium erratum 38539", .iidr = 0xa000034c, .mask = 0xe8f00fff, .init = gic_enable_quirk_cavium_38539, }, { .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", .iidr = 0x0402043b, .mask = 0xffffffff, .init = gic_enable_quirk_nvidia_t241, }, { /* * GIC-700: 2941627 workaround - IP variant [0,1] * */ .desc = "GICv3: ARM64 erratum 2941627", .iidr = 0x0400043b, .mask = 0xff0e0fff, .init = gic_enable_quirk_arm64_2941627, }, { /* * GIC-700: 2941627 workaround - IP variant [2] */ .desc = "GICv3: ARM64 erratum 2941627", .iidr = 0x0402043b, .mask = 0xff0f0fff, .init = gic_enable_quirk_arm64_2941627, }, { } }; static void gic_enable_nmi_support(void) { int i; if (!gic_prio_masking_enabled()) return; if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) { pr_warn("Skipping NMI enable due to firmware issues\n"); return; } ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL); if (!ppi_nmi_refs) return; for (i = 0; i < gic_data.ppi_nr; i++) refcount_set(&ppi_nmi_refs[i], 0); pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); /* * How priority values are used by the GIC depends on two things: * the security state of the GIC (controlled by the GICD_CTRL.DS bit) * and if Group 0 interrupts can be delivered to Linux in the non-secure * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the * ICC_PMR_EL1 register and the priority that software assigns to * interrupts: * * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority * ----------------------------------------------------------- * 1 | - | unchanged | unchanged * ----------------------------------------------------------- * 0 | 1 | non-secure | non-secure * ----------------------------------------------------------- * 0 | 0 | unchanged | non-secure * * where non-secure means that the value is right-shifted by one and the * MSB bit set, to make it fit in the non-secure priority range. * * In the first two cases, where ICC_PMR_EL1 and the interrupt priority * are both either modified or unchanged, we can use the same set of * priorities. * * In the last case, where only the interrupt priorities are modified to * be in the non-secure range, we use a different PMR value to mask IRQs * and the rest of the values that we use remain unchanged. */ if (gic_has_group0() && !gic_dist_security_disabled()) static_branch_enable(&gic_nonsecure_priorities); static_branch_enable(&supports_pseudo_nmis); if (static_branch_likely(&supports_deactivate_key)) gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; else gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; } static int __init gic_init_bases(phys_addr_t dist_phys_base, void __iomem *dist_base, struct redist_region *rdist_regs, u32 nr_redist_regions, u64 redist_stride, struct fwnode_handle *handle) { u32 typer; int err; if (!is_hyp_mode_available()) static_branch_disable(&supports_deactivate_key); if (static_branch_likely(&supports_deactivate_key)) pr_info("GIC: Using split EOI/Deactivate mode\n"); gic_data.fwnode = handle; gic_data.dist_phys_base = dist_phys_base; gic_data.dist_base = dist_base; gic_data.redist_regions = rdist_regs; gic_data.nr_redist_regions = nr_redist_regions; gic_data.redist_stride = redist_stride; /* * Find out how many interrupts are supported. */ typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); gic_data.rdists.gicd_typer = typer; gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), gic_quirks, &gic_data); pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); /* * ThunderX1 explodes on reading GICD_TYPER2, in violation of the * architecture spec (which says that reserved registers are RES0). */ if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, &gic_data); gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ gic_data.rdists.has_rvpeid = true; gic_data.rdists.has_vlpis = true; gic_data.rdists.has_direct_lpi = true; gic_data.rdists.has_vpend_valid_dirty = true; } if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { err = -ENOMEM; goto out_free; } irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); gic_data.has_rss = !!(typer & GICD_TYPER_RSS); if (typer & GICD_TYPER_MBIS) { err = mbi_init(handle, gic_data.domain); if (err) pr_err("Failed to initialize MBIs\n"); } set_handle_irq(gic_handle_irq); gic_update_rdist_properties(); gic_dist_init(); gic_cpu_init(); gic_smp_init(); gic_cpu_pm_init(); if (gic_dist_supports_lpis()) { its_init(handle, &gic_data.rdists, gic_data.domain); its_cpu_init(); its_lpi_memreserve_init(); } else { if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) gicv2m_init(handle, gic_data.domain); } gic_enable_nmi_support(); return 0; out_free: if (gic_data.domain) irq_domain_remove(gic_data.domain); free_percpu(gic_data.rdists.rdist); return err; } static int __init gic_validate_dist_version(void __iomem *dist_base) { u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) return -ENODEV; return 0; } /* Create all possible partitions at boot time */ static void __init gic_populate_ppi_partitions(struct device_node *gic_node) { struct device_node *parts_node, *child_part; int part_idx = 0, i; int nr_parts; struct partition_affinity *parts; parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); if (!parts_node) return; gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); if (!gic_data.ppi_descs) goto out_put_node; nr_parts = of_get_child_count(parts_node); if (!nr_parts) goto out_put_node; parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); if (WARN_ON(!parts)) goto out_put_node; for_each_child_of_node(parts_node, child_part) { struct partition_affinity *part; int n; part = &parts[part_idx]; part->partition_id = of_node_to_fwnode(child_part); pr_info("GIC: PPI partition %pOFn[%d] { ", child_part, part_idx); n = of_property_count_elems_of_size(child_part, "affinity", sizeof(u32)); WARN_ON(n <= 0); for (i = 0; i < n; i++) { int err, cpu; u32 cpu_phandle; struct device_node *cpu_node; err = of_property_read_u32_index(child_part, "affinity", i, &cpu_phandle); if (WARN_ON(err)) continue; cpu_node = of_find_node_by_phandle(cpu_phandle); if (WARN_ON(!cpu_node)) continue; cpu = of_cpu_node_to_id(cpu_node); if (WARN_ON(cpu < 0)) { of_node_put(cpu_node); continue; } pr_cont("%pOF[%d] ", cpu_node, cpu); cpumask_set_cpu(cpu, &part->mask); of_node_put(cpu_node); } pr_cont("}\n"); part_idx++; } for (i = 0; i < gic_data.ppi_nr; i++) { unsigned int irq; struct partition_desc *desc; struct irq_fwspec ppi_fwspec = { .fwnode = gic_data.fwnode, .param_count = 3, .param = { [0] = GIC_IRQ_TYPE_PARTITION, [1] = i, [2] = IRQ_TYPE_NONE, }, }; irq = irq_create_fwspec_mapping(&ppi_fwspec); if (WARN_ON(!irq)) continue; desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, irq, &partition_domain_ops); if (WARN_ON(!desc)) continue; gic_data.ppi_descs[i] = desc; } out_put_node: of_node_put(parts_node); } static void __init gic_of_setup_kvm_info(struct device_node *node) { int ret; struct resource r; u32 gicv_idx; gic_v3_kvm_info.type = GIC_V3; gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); if (!gic_v3_kvm_info.maint_irq) return; if (of_property_read_u32(node, "#redistributor-regions", &gicv_idx)) gicv_idx = 1; gicv_idx += 3; /* Also skip GICD, GICC, GICH */ ret = of_address_to_resource(node, gicv_idx, &r); if (!ret) gic_v3_kvm_info.vcpu = r; gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; vgic_set_kvm_info(&gic_v3_kvm_info); } static void gic_request_region(resource_size_t base, resource_size_t size, const char *name) { if (!request_mem_region(base, size, name)) pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", name, &base); } static void __iomem *gic_of_iomap(struct device_node *node, int idx, const char *name, struct resource *res) { void __iomem *base; int ret; ret = of_address_to_resource(node, idx, res); if (ret) return IOMEM_ERR_PTR(ret); gic_request_region(res->start, resource_size(res), name); base = of_iomap(node, idx); return base ?: IOMEM_ERR_PTR(-ENOMEM); } static int __init gic_of_init(struct device_node *node, struct device_node *parent) { phys_addr_t dist_phys_base; void __iomem *dist_base; struct redist_region *rdist_regs; struct resource res; u64 redist_stride; u32 nr_redist_regions; int err, i; dist_base = gic_of_iomap(node, 0, "GICD", &res); if (IS_ERR(dist_base)) { pr_err("%pOF: unable to map gic dist registers\n", node); return PTR_ERR(dist_base); } dist_phys_base = res.start; err = gic_validate_dist_version(dist_base); if (err) { pr_err("%pOF: no distributor detected, giving up\n", node); goto out_unmap_dist; } if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) nr_redist_regions = 1; rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), GFP_KERNEL); if (!rdist_regs) { err = -ENOMEM; goto out_unmap_dist; } for (i = 0; i < nr_redist_regions; i++) { rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); if (IS_ERR(rdist_regs[i].redist_base)) { pr_err("%pOF: couldn't map region %d\n", node, i); err = -ENODEV; goto out_unmap_rdist; } rdist_regs[i].phys_base = res.start; } if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) redist_stride = 0; gic_enable_of_quirks(node, gic_quirks, &gic_data); err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, nr_redist_regions, redist_stride, &node->fwnode); if (err) goto out_unmap_rdist; gic_populate_ppi_partitions(node); if (static_branch_likely(&supports_deactivate_key)) gic_of_setup_kvm_info(node); return 0; out_unmap_rdist: for (i = 0; i < nr_redist_regions; i++) if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) iounmap(rdist_regs[i].redist_base); kfree(rdist_regs); out_unmap_dist: iounmap(dist_base); return err; } IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); #ifdef CONFIG_ACPI static struct { void __iomem *dist_base; struct redist_region *redist_regs; u32 nr_redist_regions; bool single_redist; int enabled_rdists; u32 maint_irq; int maint_irq_mode; phys_addr_t vcpu_base; } acpi_data __initdata; static void __init gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) { static int count = 0; acpi_data.redist_regs[count].phys_base = phys_base; acpi_data.redist_regs[count].redist_base = redist_base; acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; count++; } static int __init gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_redistributor *redist = (struct acpi_madt_generic_redistributor *)header; void __iomem *redist_base; redist_base = ioremap(redist->base_address, redist->length); if (!redist_base) { pr_err("Couldn't map GICR region @%llx\n", redist->base_address); return -ENOMEM; } gic_request_region(redist->base_address, redist->length, "GICR"); gic_acpi_register_redist(redist->base_address, redist_base); return 0; } static int __init gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; void __iomem *redist_base; /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; redist_base = ioremap(gicc->gicr_base_address, size); if (!redist_base) return -ENOMEM; gic_request_region(gicc->gicr_base_address, size, "GICR"); gic_acpi_register_redist(gicc->gicr_base_address, redist_base); return 0; } static int __init gic_acpi_collect_gicr_base(void) { acpi_tbl_entry_handler redist_parser; enum acpi_madt_type type; if (acpi_data.single_redist) { type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; redist_parser = gic_acpi_parse_madt_gicc; } else { type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; redist_parser = gic_acpi_parse_madt_redist; } /* Collect redistributor base addresses in GICR entries */ if (acpi_table_parse_madt(type, redist_parser, 0) > 0) return 0; pr_info("No valid GICR entries exist\n"); return -ENODEV; } static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, const unsigned long end) { /* Subtable presence means that redist exists, that's it */ return 0; } static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; /* * If GICC is enabled and has valid gicr base address, then it means * GICR base is presented via GICC */ if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) { acpi_data.enabled_rdists++; return 0; } /* * It's perfectly valid firmware can pass disabled GICC entry, driver * should not treat as errors, skip the entry instead of probe fail. */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; return -ENODEV; } static int __init gic_acpi_count_gicr_regions(void) { int count; /* * Count how many redistributor regions we have. It is not allowed * to mix redistributor description, GICR and GICC subtables have to be * mutually exclusive. */ count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, gic_acpi_match_gicr, 0); if (count > 0) { acpi_data.single_redist = false; return count; } count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, gic_acpi_match_gicc, 0); if (count > 0) { acpi_data.single_redist = true; count = acpi_data.enabled_rdists; } return count; } static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, struct acpi_probe_entry *ape) { struct acpi_madt_generic_distributor *dist; int count; dist = (struct acpi_madt_generic_distributor *)header; if (dist->version != ape->driver_data) return false; /* We need to do that exercise anyway, the sooner the better */ count = gic_acpi_count_gicr_regions(); if (count <= 0) return false; acpi_data.nr_redist_regions = count; return true; } static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; int maint_irq_mode; static int first_madt = true; /* Skip unusable CPUs */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; if (first_madt) { first_madt = false; acpi_data.maint_irq = gicc->vgic_interrupt; acpi_data.maint_irq_mode = maint_irq_mode; acpi_data.vcpu_base = gicc->gicv_base_address; return 0; } /* * The maintenance interrupt and GICV should be the same for every CPU */ if ((acpi_data.maint_irq != gicc->vgic_interrupt) || (acpi_data.maint_irq_mode != maint_irq_mode) || (acpi_data.vcpu_base != gicc->gicv_base_address)) return -EINVAL; return 0; } static bool __init gic_acpi_collect_virt_info(void) { int count; count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, gic_acpi_parse_virt_madt_gicc, 0); return (count > 0); } #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) static void __init gic_acpi_setup_kvm_info(void) { int irq; if (!gic_acpi_collect_virt_info()) { pr_warn("Unable to get hardware information used for virtualization\n"); return; } gic_v3_kvm_info.type = GIC_V3; irq = acpi_register_gsi(NULL, acpi_data.maint_irq, acpi_data.maint_irq_mode, ACPI_ACTIVE_HIGH); if (irq <= 0) return; gic_v3_kvm_info.maint_irq = irq; if (acpi_data.vcpu_base) { struct resource *vcpu = &gic_v3_kvm_info.vcpu; vcpu->flags = IORESOURCE_MEM; vcpu->start = acpi_data.vcpu_base; vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; } gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; vgic_set_kvm_info(&gic_v3_kvm_info); } static struct fwnode_handle *gsi_domain_handle; static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) { return gsi_domain_handle; } static int __init gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_distributor *dist; size_t size; int i, err; /* Get distributor base address */ dist = (struct acpi_madt_generic_distributor *)header; acpi_data.dist_base = ioremap(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE); if (!acpi_data.dist_base) { pr_err("Unable to map GICD registers\n"); return -ENOMEM; } gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); err = gic_validate_dist_version(acpi_data.dist_base); if (err) { pr_err("No distributor detected at @%p, giving up\n", acpi_data.dist_base); goto out_dist_unmap; } size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); if (!acpi_data.redist_regs) { err = -ENOMEM; goto out_dist_unmap; } err = gic_acpi_collect_gicr_base(); if (err) goto out_redist_unmap; gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); if (!gsi_domain_handle) { err = -ENOMEM; goto out_redist_unmap; } err = gic_init_bases(dist->base_address, acpi_data.dist_base, acpi_data.redist_regs, acpi_data.nr_redist_regions, 0, gsi_domain_handle); if (err) goto out_fwhandle_free; acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); if (static_branch_likely(&supports_deactivate_key)) gic_acpi_setup_kvm_info(); return 0; out_fwhandle_free: irq_domain_free_fwnode(gsi_domain_handle); out_redist_unmap: for (i = 0; i < acpi_data.nr_redist_regions; i++) if (acpi_data.redist_regs[i].redist_base) iounmap(acpi_data.redist_regs[i].redist_base); kfree(acpi_data.redist_regs); out_dist_unmap: iounmap(acpi_data.dist_base); return err; } IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, gic_acpi_init); IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, gic_acpi_init); IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, gic_acpi_init); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1