Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Malcolm Priestley | 3528 | 88.58% | 12 | 40.00% |
Igor M. Liplianin | 380 | 9.54% | 4 | 13.33% |
Mauro Carvalho Chehab | 48 | 1.21% | 7 | 23.33% |
Dirk Herrendoerfer | 12 | 0.30% | 1 | 3.33% |
Konstantin Dimitrov | 7 | 0.18% | 1 | 3.33% |
Colin Ian King | 2 | 0.05% | 1 | 3.33% |
Antti Palosaari | 2 | 0.05% | 1 | 3.33% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.33% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 3.33% |
Max Kellermann | 1 | 0.03% | 1 | 3.33% |
Total | 3983 | 30 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Driver for M88RS2000 demodulator and tuner Copyright (C) 2012 Malcolm Priestley (tvboxspy@gmail.com) Beta Driver Include various calculation code from DS3000 driver. Copyright (C) 2009 Konstantin Dimitrov. */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/jiffies.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/types.h> #include <media/dvb_frontend.h> #include "m88rs2000.h" struct m88rs2000_state { struct i2c_adapter *i2c; const struct m88rs2000_config *config; struct dvb_frontend frontend; u8 no_lock_count; u32 tuner_frequency; u32 symbol_rate; enum fe_code_rate fec_inner; u8 tuner_level; int errmode; }; static int m88rs2000_debug; module_param_named(debug, m88rs2000_debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able))."); #define dprintk(level, args...) do { \ if (level & m88rs2000_debug) \ printk(KERN_DEBUG "m88rs2000-fe: " args); \ } while (0) #define deb_info(args...) dprintk(0x01, args) #define info(format, arg...) \ printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg) static int m88rs2000_writereg(struct m88rs2000_state *state, u8 reg, u8 data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_addr, .flags = 0, .buf = buf, .len = 2 }; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) deb_info("%s: writereg error (reg == 0x%02x, val == 0x%02x, ret == %i)\n", __func__, reg, data, ret); return (ret != 1) ? -EREMOTEIO : 0; } static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_addr, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_addr, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) deb_info("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret); return b1[0]; } static u32 m88rs2000_get_mclk(struct dvb_frontend *fe) { struct m88rs2000_state *state = fe->demodulator_priv; u32 mclk; u8 reg; /* Must not be 0x00 or 0xff */ reg = m88rs2000_readreg(state, 0x86); if (!reg || reg == 0xff) return 0; reg /= 2; reg += 1; mclk = (u32)(reg * RS2000_FE_CRYSTAL_KHZ + 28 / 2) / 28; return mclk; } static int m88rs2000_set_carrieroffset(struct dvb_frontend *fe, s16 offset) { struct m88rs2000_state *state = fe->demodulator_priv; u32 mclk; s32 tmp; u8 reg; int ret; mclk = m88rs2000_get_mclk(fe); if (!mclk) return -EINVAL; tmp = (offset * 4096 + (s32)mclk / 2) / (s32)mclk; if (tmp < 0) tmp += 4096; /* Carrier Offset */ ret = m88rs2000_writereg(state, 0x9c, (u8)(tmp >> 4)); reg = m88rs2000_readreg(state, 0x9d); reg &= 0xf; reg |= (u8)(tmp & 0xf) << 4; ret |= m88rs2000_writereg(state, 0x9d, reg); return ret; } static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate) { struct m88rs2000_state *state = fe->demodulator_priv; int ret; u64 temp; u32 mclk; u8 b[3]; if ((srate < 1000000) || (srate > 45000000)) return -EINVAL; mclk = m88rs2000_get_mclk(fe); if (!mclk) return -EINVAL; temp = srate / 1000; temp *= 1 << 24; do_div(temp, mclk); b[0] = (u8) (temp >> 16) & 0xff; b[1] = (u8) (temp >> 8) & 0xff; b[2] = (u8) temp & 0xff; ret = m88rs2000_writereg(state, 0x93, b[2]); ret |= m88rs2000_writereg(state, 0x94, b[1]); ret |= m88rs2000_writereg(state, 0x95, b[0]); if (srate > 10000000) ret |= m88rs2000_writereg(state, 0xa0, 0x20); else ret |= m88rs2000_writereg(state, 0xa0, 0x60); ret |= m88rs2000_writereg(state, 0xa1, 0xe0); if (srate > 12000000) ret |= m88rs2000_writereg(state, 0xa3, 0x20); else if (srate > 2800000) ret |= m88rs2000_writereg(state, 0xa3, 0x98); else ret |= m88rs2000_writereg(state, 0xa3, 0x90); deb_info("m88rs2000: m88rs2000_set_symbolrate\n"); return ret; } static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *m) { struct m88rs2000_state *state = fe->demodulator_priv; int i; u8 reg; deb_info("%s\n", __func__); m88rs2000_writereg(state, 0x9a, 0x30); reg = m88rs2000_readreg(state, 0xb2); reg &= 0x3f; m88rs2000_writereg(state, 0xb2, reg); for (i = 0; i < m->msg_len; i++) m88rs2000_writereg(state, 0xb3 + i, m->msg[i]); reg = m88rs2000_readreg(state, 0xb1); reg &= 0x87; reg |= ((m->msg_len - 1) << 3) | 0x07; reg &= 0x7f; m88rs2000_writereg(state, 0xb1, reg); for (i = 0; i < 15; i++) { if ((m88rs2000_readreg(state, 0xb1) & 0x40) == 0x0) break; msleep(20); } reg = m88rs2000_readreg(state, 0xb1); if ((reg & 0x40) > 0x0) { reg &= 0x7f; reg |= 0x40; m88rs2000_writereg(state, 0xb1, reg); } reg = m88rs2000_readreg(state, 0xb2); reg &= 0x3f; reg |= 0x80; m88rs2000_writereg(state, 0xb2, reg); m88rs2000_writereg(state, 0x9a, 0xb0); return 0; } static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) { struct m88rs2000_state *state = fe->demodulator_priv; u8 reg0, reg1; deb_info("%s\n", __func__); m88rs2000_writereg(state, 0x9a, 0x30); msleep(50); reg0 = m88rs2000_readreg(state, 0xb1); reg1 = m88rs2000_readreg(state, 0xb2); /* TODO complete this section */ m88rs2000_writereg(state, 0xb2, reg1); m88rs2000_writereg(state, 0xb1, reg0); m88rs2000_writereg(state, 0x9a, 0xb0); return 0; } static int m88rs2000_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) { struct m88rs2000_state *state = fe->demodulator_priv; u8 reg0, reg1; m88rs2000_writereg(state, 0x9a, 0x30); reg0 = m88rs2000_readreg(state, 0xb1); reg1 = m88rs2000_readreg(state, 0xb2); reg1 &= 0x3f; switch (tone) { case SEC_TONE_ON: reg0 |= 0x4; reg0 &= 0xbc; break; case SEC_TONE_OFF: reg1 |= 0x80; break; default: break; } m88rs2000_writereg(state, 0xb2, reg1); m88rs2000_writereg(state, 0xb1, reg0); m88rs2000_writereg(state, 0x9a, 0xb0); return 0; } struct inittab { u8 cmd; u8 reg; u8 val; }; static struct inittab m88rs2000_setup[] = { {DEMOD_WRITE, 0x9a, 0x30}, {DEMOD_WRITE, 0x00, 0x01}, {WRITE_DELAY, 0x19, 0x00}, {DEMOD_WRITE, 0x00, 0x00}, {DEMOD_WRITE, 0x9a, 0xb0}, {DEMOD_WRITE, 0x81, 0xc1}, {DEMOD_WRITE, 0x81, 0x81}, {DEMOD_WRITE, 0x86, 0xc6}, {DEMOD_WRITE, 0x9a, 0x30}, {DEMOD_WRITE, 0xf0, 0x22}, {DEMOD_WRITE, 0xf1, 0xbf}, {DEMOD_WRITE, 0xb0, 0x45}, {DEMOD_WRITE, 0xb2, 0x01}, /* set voltage pin always set 1*/ {DEMOD_WRITE, 0x9a, 0xb0}, {0xff, 0xaa, 0xff} }; static struct inittab m88rs2000_shutdown[] = { {DEMOD_WRITE, 0x9a, 0x30}, {DEMOD_WRITE, 0xb0, 0x00}, {DEMOD_WRITE, 0xf1, 0x89}, {DEMOD_WRITE, 0x00, 0x01}, {DEMOD_WRITE, 0x9a, 0xb0}, {DEMOD_WRITE, 0x81, 0x81}, {0xff, 0xaa, 0xff} }; static struct inittab fe_reset[] = { {DEMOD_WRITE, 0x00, 0x01}, {DEMOD_WRITE, 0x20, 0x81}, {DEMOD_WRITE, 0x21, 0x80}, {DEMOD_WRITE, 0x10, 0x33}, {DEMOD_WRITE, 0x11, 0x44}, {DEMOD_WRITE, 0x12, 0x07}, {DEMOD_WRITE, 0x18, 0x20}, {DEMOD_WRITE, 0x28, 0x04}, {DEMOD_WRITE, 0x29, 0x8e}, {DEMOD_WRITE, 0x3b, 0xff}, {DEMOD_WRITE, 0x32, 0x10}, {DEMOD_WRITE, 0x33, 0x02}, {DEMOD_WRITE, 0x34, 0x30}, {DEMOD_WRITE, 0x35, 0xff}, {DEMOD_WRITE, 0x38, 0x50}, {DEMOD_WRITE, 0x39, 0x68}, {DEMOD_WRITE, 0x3c, 0x7f}, {DEMOD_WRITE, 0x3d, 0x0f}, {DEMOD_WRITE, 0x45, 0x20}, {DEMOD_WRITE, 0x46, 0x24}, {DEMOD_WRITE, 0x47, 0x7c}, {DEMOD_WRITE, 0x48, 0x16}, {DEMOD_WRITE, 0x49, 0x04}, {DEMOD_WRITE, 0x4a, 0x01}, {DEMOD_WRITE, 0x4b, 0x78}, {DEMOD_WRITE, 0X4d, 0xd2}, {DEMOD_WRITE, 0x4e, 0x6d}, {DEMOD_WRITE, 0x50, 0x30}, {DEMOD_WRITE, 0x51, 0x30}, {DEMOD_WRITE, 0x54, 0x7b}, {DEMOD_WRITE, 0x56, 0x09}, {DEMOD_WRITE, 0x58, 0x59}, {DEMOD_WRITE, 0x59, 0x37}, {DEMOD_WRITE, 0x63, 0xfa}, {0xff, 0xaa, 0xff} }; static struct inittab fe_trigger[] = { {DEMOD_WRITE, 0x97, 0x04}, {DEMOD_WRITE, 0x99, 0x77}, {DEMOD_WRITE, 0x9b, 0x64}, {DEMOD_WRITE, 0x9e, 0x00}, {DEMOD_WRITE, 0x9f, 0xf8}, {DEMOD_WRITE, 0x98, 0xff}, {DEMOD_WRITE, 0xc0, 0x0f}, {DEMOD_WRITE, 0x89, 0x01}, {DEMOD_WRITE, 0x00, 0x00}, {WRITE_DELAY, 0x0a, 0x00}, {DEMOD_WRITE, 0x00, 0x01}, {DEMOD_WRITE, 0x00, 0x00}, {DEMOD_WRITE, 0x9a, 0xb0}, {0xff, 0xaa, 0xff} }; static int m88rs2000_tab_set(struct m88rs2000_state *state, struct inittab *tab) { int ret = 0; u8 i; if (tab == NULL) return -EINVAL; for (i = 0; i < 255; i++) { switch (tab[i].cmd) { case 0x01: ret = m88rs2000_writereg(state, tab[i].reg, tab[i].val); break; case 0x10: if (tab[i].reg > 0) mdelay(tab[i].reg); break; case 0xff: if (tab[i].reg == 0xaa && tab[i].val == 0xff) return 0; break; case 0x00: break; default: return -EINVAL; } if (ret < 0) return -ENODEV; } return 0; } static int m88rs2000_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage volt) { struct m88rs2000_state *state = fe->demodulator_priv; u8 data; data = m88rs2000_readreg(state, 0xb2); data |= 0x03; /* bit0 V/H, bit1 off/on */ switch (volt) { case SEC_VOLTAGE_18: data &= ~0x03; break; case SEC_VOLTAGE_13: data &= ~0x03; data |= 0x01; break; case SEC_VOLTAGE_OFF: break; } m88rs2000_writereg(state, 0xb2, data); return 0; } static int m88rs2000_init(struct dvb_frontend *fe) { struct m88rs2000_state *state = fe->demodulator_priv; int ret; deb_info("m88rs2000: init chip\n"); /* Setup frontend from shutdown/cold */ if (state->config->inittab) ret = m88rs2000_tab_set(state, (struct inittab *)state->config->inittab); else ret = m88rs2000_tab_set(state, m88rs2000_setup); return ret; } static int m88rs2000_sleep(struct dvb_frontend *fe) { struct m88rs2000_state *state = fe->demodulator_priv; int ret; /* Shutdown the frondend */ ret = m88rs2000_tab_set(state, m88rs2000_shutdown); return ret; } static int m88rs2000_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct m88rs2000_state *state = fe->demodulator_priv; u8 reg = m88rs2000_readreg(state, 0x8c); *status = 0; if ((reg & 0xee) == 0xee) { *status = FE_HAS_CARRIER | FE_HAS_SIGNAL | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; if (state->config->set_ts_params) state->config->set_ts_params(fe, CALL_IS_READ); } return 0; } static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber) { struct m88rs2000_state *state = fe->demodulator_priv; u8 tmp0, tmp1; m88rs2000_writereg(state, 0x9a, 0x30); tmp0 = m88rs2000_readreg(state, 0xd8); if ((tmp0 & 0x10) != 0) { m88rs2000_writereg(state, 0x9a, 0xb0); *ber = 0xffffffff; return 0; } *ber = (m88rs2000_readreg(state, 0xd7) << 8) | m88rs2000_readreg(state, 0xd6); tmp1 = m88rs2000_readreg(state, 0xd9); m88rs2000_writereg(state, 0xd9, (tmp1 & ~7) | 4); /* needs twice */ m88rs2000_writereg(state, 0xd8, (tmp0 & ~8) | 0x30); m88rs2000_writereg(state, 0xd8, (tmp0 & ~8) | 0x30); m88rs2000_writereg(state, 0x9a, 0xb0); return 0; } static int m88rs2000_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { if (fe->ops.tuner_ops.get_rf_strength) fe->ops.tuner_ops.get_rf_strength(fe, strength); return 0; } static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr) { struct m88rs2000_state *state = fe->demodulator_priv; *snr = 512 * m88rs2000_readreg(state, 0x65); return 0; } static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct m88rs2000_state *state = fe->demodulator_priv; u8 tmp; *ucblocks = (m88rs2000_readreg(state, 0xd5) << 8) | m88rs2000_readreg(state, 0xd4); tmp = m88rs2000_readreg(state, 0xd8); m88rs2000_writereg(state, 0xd8, tmp & ~0x20); /* needs two times */ m88rs2000_writereg(state, 0xd8, tmp | 0x20); m88rs2000_writereg(state, 0xd8, tmp | 0x20); return 0; } static int m88rs2000_set_fec(struct m88rs2000_state *state, enum fe_code_rate fec) { u8 fec_set, reg; int ret; switch (fec) { case FEC_1_2: fec_set = 0x8; break; case FEC_2_3: fec_set = 0x10; break; case FEC_3_4: fec_set = 0x20; break; case FEC_5_6: fec_set = 0x40; break; case FEC_7_8: fec_set = 0x80; break; case FEC_AUTO: default: fec_set = 0x0; } reg = m88rs2000_readreg(state, 0x70); reg &= 0x7; ret = m88rs2000_writereg(state, 0x70, reg | fec_set); ret |= m88rs2000_writereg(state, 0x76, 0x8); return ret; } static enum fe_code_rate m88rs2000_get_fec(struct m88rs2000_state *state) { u8 reg; m88rs2000_writereg(state, 0x9a, 0x30); reg = m88rs2000_readreg(state, 0x76); m88rs2000_writereg(state, 0x9a, 0xb0); reg &= 0xf0; reg >>= 5; switch (reg) { case 0x4: return FEC_1_2; case 0x3: return FEC_2_3; case 0x2: return FEC_3_4; case 0x1: return FEC_5_6; case 0x0: return FEC_7_8; default: break; } return FEC_AUTO; } static int m88rs2000_set_frontend(struct dvb_frontend *fe) { struct m88rs2000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; enum fe_status status = 0; int i, ret = 0; u32 tuner_freq; s16 offset = 0; u8 reg; state->no_lock_count = 0; if (c->delivery_system != SYS_DVBS) { deb_info("%s: unsupported delivery system selected (%d)\n", __func__, c->delivery_system); return -EOPNOTSUPP; } /* Set Tuner */ if (fe->ops.tuner_ops.set_params) ret = fe->ops.tuner_ops.set_params(fe); if (ret < 0) return -ENODEV; if (fe->ops.tuner_ops.get_frequency) { ret = fe->ops.tuner_ops.get_frequency(fe, &tuner_freq); if (ret < 0) return -ENODEV; offset = (s16)((s32)tuner_freq - c->frequency); } else { offset = 0; } /* default mclk value 96.4285 * 2 * 1000 = 192857 */ if (((c->frequency % 192857) >= (192857 - 3000)) || (c->frequency % 192857) <= 3000) ret = m88rs2000_writereg(state, 0x86, 0xc2); else ret = m88rs2000_writereg(state, 0x86, 0xc6); ret |= m88rs2000_set_carrieroffset(fe, offset); if (ret < 0) return -ENODEV; /* Reset demod by symbol rate */ if (c->symbol_rate > 27500000) ret = m88rs2000_writereg(state, 0xf1, 0xa4); else ret = m88rs2000_writereg(state, 0xf1, 0xbf); ret |= m88rs2000_tab_set(state, fe_reset); if (ret < 0) return -ENODEV; /* Set FEC */ ret = m88rs2000_set_fec(state, c->fec_inner); ret |= m88rs2000_writereg(state, 0x85, 0x1); ret |= m88rs2000_writereg(state, 0x8a, 0xbf); ret |= m88rs2000_writereg(state, 0x8d, 0x1e); ret |= m88rs2000_writereg(state, 0x90, 0xf1); ret |= m88rs2000_writereg(state, 0x91, 0x08); if (ret < 0) return -ENODEV; /* Set Symbol Rate */ ret = m88rs2000_set_symbolrate(fe, c->symbol_rate); if (ret < 0) return -ENODEV; /* Set up Demod */ ret = m88rs2000_tab_set(state, fe_trigger); if (ret < 0) return -ENODEV; for (i = 0; i < 25; i++) { reg = m88rs2000_readreg(state, 0x8c); if ((reg & 0xee) == 0xee) { status = FE_HAS_LOCK; break; } state->no_lock_count++; if (state->no_lock_count == 15) { reg = m88rs2000_readreg(state, 0x70); reg ^= 0x4; m88rs2000_writereg(state, 0x70, reg); state->no_lock_count = 0; } msleep(20); } if (status & FE_HAS_LOCK) { state->fec_inner = m88rs2000_get_fec(state); /* Unknown suspect SNR level */ reg = m88rs2000_readreg(state, 0x65); } state->tuner_frequency = c->frequency; state->symbol_rate = c->symbol_rate; return 0; } static int m88rs2000_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct m88rs2000_state *state = fe->demodulator_priv; c->fec_inner = state->fec_inner; c->frequency = state->tuner_frequency; c->symbol_rate = state->symbol_rate; return 0; } static int m88rs2000_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->symbol_rate > 3000000) tune->min_delay_ms = 2000; else tune->min_delay_ms = 3000; tune->step_size = c->symbol_rate / 16000; tune->max_drift = c->symbol_rate / 2000; return 0; } static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct m88rs2000_state *state = fe->demodulator_priv; if (enable) m88rs2000_writereg(state, 0x81, 0x84); else m88rs2000_writereg(state, 0x81, 0x81); udelay(10); return 0; } static void m88rs2000_release(struct dvb_frontend *fe) { struct m88rs2000_state *state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops m88rs2000_ops = { .delsys = { SYS_DVBS }, .info = { .name = "M88RS2000 DVB-S", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, .frequency_stepsize_hz = 1 * MHz, .frequency_tolerance_hz = 5 * MHz, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, /* ppm */ .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO }, .release = m88rs2000_release, .init = m88rs2000_init, .sleep = m88rs2000_sleep, .i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl, .read_status = m88rs2000_read_status, .read_ber = m88rs2000_read_ber, .read_signal_strength = m88rs2000_read_signal_strength, .read_snr = m88rs2000_read_snr, .read_ucblocks = m88rs2000_read_ucblocks, .diseqc_send_master_cmd = m88rs2000_send_diseqc_msg, .diseqc_send_burst = m88rs2000_send_diseqc_burst, .set_tone = m88rs2000_set_tone, .set_voltage = m88rs2000_set_voltage, .set_frontend = m88rs2000_set_frontend, .get_frontend = m88rs2000_get_frontend, .get_tune_settings = m88rs2000_get_tune_settings, }; struct dvb_frontend *m88rs2000_attach(const struct m88rs2000_config *config, struct i2c_adapter *i2c) { struct m88rs2000_state *state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct m88rs2000_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->tuner_frequency = 0; state->symbol_rate = 0; state->fec_inner = 0; /* create dvb_frontend */ memcpy(&state->frontend.ops, &m88rs2000_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(m88rs2000_attach); MODULE_DESCRIPTION("M88RS2000 DVB-S Demodulator driver"); MODULE_AUTHOR("Malcolm Priestley tvboxspy@gmail.com"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.13");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1