Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Katsuhiro Suzuki | 3900 | 98.88% | 1 | 16.67% |
Evgeny Novikov | 24 | 0.61% | 1 | 16.67% |
Uwe Kleine-König | 10 | 0.25% | 3 | 50.00% |
Wolfram Sang | 10 | 0.25% | 1 | 16.67% |
Total | 3944 | 6 |
// SPDX-License-Identifier: GPL-2.0 // // Socionext MN88443x series demodulator driver for ISDB-S/ISDB-T. // // Copyright (c) 2018 Socionext Inc. #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/of_device.h> #include <linux/regmap.h> #include <media/dvb_math.h> #include "mn88443x.h" /* ISDB-S registers */ #define ATSIDU_S 0x2f #define ATSIDL_S 0x30 #define TSSET_S 0x31 #define AGCREAD_S 0x5a #define CPMON1_S 0x5e #define CPMON1_S_FSYNC BIT(5) #define CPMON1_S_ERRMON BIT(4) #define CPMON1_S_SIGOFF BIT(3) #define CPMON1_S_W2LOCK BIT(2) #define CPMON1_S_W1LOCK BIT(1) #define CPMON1_S_DW1LOCK BIT(0) #define TRMON_S 0x60 #define BERCNFLG_S 0x68 #define BERCNFLG_S_BERVRDY BIT(5) #define BERCNFLG_S_BERVCHK BIT(4) #define BERCNFLG_S_BERDRDY BIT(3) #define BERCNFLG_S_BERDCHK BIT(2) #define CNRDXU_S 0x69 #define CNRDXL_S 0x6a #define CNRDYU_S 0x6b #define CNRDYL_S 0x6c #define BERVRDU_S 0x71 #define BERVRDL_S 0x72 #define DOSET1_S 0x73 /* Primary ISDB-T */ #define PLLASET1 0x00 #define PLLASET2 0x01 #define PLLBSET1 0x02 #define PLLBSET2 0x03 #define PLLSET 0x04 #define OUTCSET 0x08 #define OUTCSET_CHDRV_8MA 0xff #define OUTCSET_CHDRV_4MA 0x00 #define PLDWSET 0x09 #define PLDWSET_NORMAL 0x00 #define PLDWSET_PULLDOWN 0xff #define HIZSET1 0x0a #define HIZSET2 0x0b /* Secondary ISDB-T (for MN884434 only) */ #define RCVSET 0x00 #define TSSET1_M 0x01 #define TSSET2_M 0x02 #define TSSET3_M 0x03 #define INTACSET 0x08 #define HIZSET3 0x0b /* ISDB-T registers */ #define TSSET1 0x05 #define TSSET1_TSASEL_MASK GENMASK(4, 3) #define TSSET1_TSASEL_ISDBT (0x0 << 3) #define TSSET1_TSASEL_ISDBS (0x1 << 3) #define TSSET1_TSASEL_NONE (0x2 << 3) #define TSSET1_TSBSEL_MASK GENMASK(2, 1) #define TSSET1_TSBSEL_ISDBS (0x0 << 1) #define TSSET1_TSBSEL_ISDBT (0x1 << 1) #define TSSET1_TSBSEL_NONE (0x2 << 1) #define TSSET2 0x06 #define TSSET3 0x07 #define TSSET3_INTASEL_MASK GENMASK(7, 6) #define TSSET3_INTASEL_T (0x0 << 6) #define TSSET3_INTASEL_S (0x1 << 6) #define TSSET3_INTASEL_NONE (0x2 << 6) #define TSSET3_INTBSEL_MASK GENMASK(5, 4) #define TSSET3_INTBSEL_S (0x0 << 4) #define TSSET3_INTBSEL_T (0x1 << 4) #define TSSET3_INTBSEL_NONE (0x2 << 4) #define OUTSET2 0x0d #define PWDSET 0x0f #define PWDSET_OFDMPD_MASK GENMASK(3, 2) #define PWDSET_OFDMPD_DOWN BIT(3) #define PWDSET_PSKPD_MASK GENMASK(1, 0) #define PWDSET_PSKPD_DOWN BIT(1) #define CLKSET1_T 0x11 #define MDSET_T 0x13 #define MDSET_T_MDAUTO_MASK GENMASK(7, 4) #define MDSET_T_MDAUTO_AUTO (0xf << 4) #define MDSET_T_MDAUTO_MANUAL (0x0 << 4) #define MDSET_T_FFTS_MASK GENMASK(3, 2) #define MDSET_T_FFTS_MODE1 (0x0 << 2) #define MDSET_T_FFTS_MODE2 (0x1 << 2) #define MDSET_T_FFTS_MODE3 (0x2 << 2) #define MDSET_T_GI_MASK GENMASK(1, 0) #define MDSET_T_GI_1_32 (0x0 << 0) #define MDSET_T_GI_1_16 (0x1 << 0) #define MDSET_T_GI_1_8 (0x2 << 0) #define MDSET_T_GI_1_4 (0x3 << 0) #define MDASET_T 0x14 #define ADCSET1_T 0x20 #define ADCSET1_T_REFSEL_MASK GENMASK(1, 0) #define ADCSET1_T_REFSEL_2V (0x3 << 0) #define ADCSET1_T_REFSEL_1_5V (0x2 << 0) #define ADCSET1_T_REFSEL_1V (0x1 << 0) #define NCOFREQU_T 0x24 #define NCOFREQM_T 0x25 #define NCOFREQL_T 0x26 #define FADU_T 0x27 #define FADM_T 0x28 #define FADL_T 0x29 #define AGCSET2_T 0x2c #define AGCSET2_T_IFPOLINV_INC BIT(0) #define AGCSET2_T_RFPOLINV_INC BIT(1) #define AGCV3_T 0x3e #define MDRD_T 0xa2 #define MDRD_T_SEGID_MASK GENMASK(5, 4) #define MDRD_T_SEGID_13 (0x0 << 4) #define MDRD_T_SEGID_1 (0x1 << 4) #define MDRD_T_SEGID_3 (0x2 << 4) #define MDRD_T_FFTS_MASK GENMASK(3, 2) #define MDRD_T_FFTS_MODE1 (0x0 << 2) #define MDRD_T_FFTS_MODE2 (0x1 << 2) #define MDRD_T_FFTS_MODE3 (0x2 << 2) #define MDRD_T_GI_MASK GENMASK(1, 0) #define MDRD_T_GI_1_32 (0x0 << 0) #define MDRD_T_GI_1_16 (0x1 << 0) #define MDRD_T_GI_1_8 (0x2 << 0) #define MDRD_T_GI_1_4 (0x3 << 0) #define SSEQRD_T 0xa3 #define SSEQRD_T_SSEQSTRD_MASK GENMASK(3, 0) #define SSEQRD_T_SSEQSTRD_RESET (0x0 << 0) #define SSEQRD_T_SSEQSTRD_TUNING (0x1 << 0) #define SSEQRD_T_SSEQSTRD_AGC (0x2 << 0) #define SSEQRD_T_SSEQSTRD_SEARCH (0x3 << 0) #define SSEQRD_T_SSEQSTRD_CLOCK_SYNC (0x4 << 0) #define SSEQRD_T_SSEQSTRD_FREQ_SYNC (0x8 << 0) #define SSEQRD_T_SSEQSTRD_FRAME_SYNC (0x9 << 0) #define SSEQRD_T_SSEQSTRD_SYNC (0xa << 0) #define SSEQRD_T_SSEQSTRD_LOCK (0xb << 0) #define AGCRDU_T 0xa8 #define AGCRDL_T 0xa9 #define CNRDU_T 0xbe #define CNRDL_T 0xbf #define BERFLG_T 0xc0 #define BERFLG_T_BERDRDY BIT(7) #define BERFLG_T_BERDCHK BIT(6) #define BERFLG_T_BERVRDYA BIT(5) #define BERFLG_T_BERVCHKA BIT(4) #define BERFLG_T_BERVRDYB BIT(3) #define BERFLG_T_BERVCHKB BIT(2) #define BERFLG_T_BERVRDYC BIT(1) #define BERFLG_T_BERVCHKC BIT(0) #define BERRDU_T 0xc1 #define BERRDM_T 0xc2 #define BERRDL_T 0xc3 #define BERLENRDU_T 0xc4 #define BERLENRDL_T 0xc5 #define ERRFLG_T 0xc6 #define ERRFLG_T_BERDOVF BIT(7) #define ERRFLG_T_BERVOVFA BIT(6) #define ERRFLG_T_BERVOVFB BIT(5) #define ERRFLG_T_BERVOVFC BIT(4) #define ERRFLG_T_NERRFA BIT(3) #define ERRFLG_T_NERRFB BIT(2) #define ERRFLG_T_NERRFC BIT(1) #define ERRFLG_T_NERRF BIT(0) #define DOSET1_T 0xcf #define CLK_LOW 4000000 #define CLK_DIRECT 20200000 #define CLK_MAX 25410000 #define S_T_FREQ 8126984 /* 512 / 63 MHz */ struct mn88443x_spec { bool primary; }; struct mn88443x_priv { const struct mn88443x_spec *spec; struct dvb_frontend fe; struct clk *mclk; struct gpio_desc *reset_gpio; u32 clk_freq; u32 if_freq; /* Common */ bool use_clkbuf; /* ISDB-S */ struct i2c_client *client_s; struct regmap *regmap_s; /* ISDB-T */ struct i2c_client *client_t; struct regmap *regmap_t; }; static int mn88443x_cmn_power_on(struct mn88443x_priv *chip) { struct device *dev = &chip->client_s->dev; struct regmap *r_t = chip->regmap_t; int ret; ret = clk_prepare_enable(chip->mclk); if (ret) { dev_err(dev, "Failed to prepare and enable mclk: %d\n", ret); return ret; } gpiod_set_value_cansleep(chip->reset_gpio, 1); usleep_range(100, 1000); gpiod_set_value_cansleep(chip->reset_gpio, 0); if (chip->spec->primary) { regmap_write(r_t, OUTCSET, OUTCSET_CHDRV_8MA); regmap_write(r_t, PLDWSET, PLDWSET_NORMAL); regmap_write(r_t, HIZSET1, 0x80); regmap_write(r_t, HIZSET2, 0xe0); } else { regmap_write(r_t, HIZSET3, 0x8f); } return 0; } static void mn88443x_cmn_power_off(struct mn88443x_priv *chip) { gpiod_set_value_cansleep(chip->reset_gpio, 1); clk_disable_unprepare(chip->mclk); } static void mn88443x_s_sleep(struct mn88443x_priv *chip) { struct regmap *r_t = chip->regmap_t; regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, PWDSET_PSKPD_DOWN); } static void mn88443x_s_wake(struct mn88443x_priv *chip) { struct regmap *r_t = chip->regmap_t; regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 0); } static void mn88443x_s_tune(struct mn88443x_priv *chip, struct dtv_frontend_properties *c) { struct regmap *r_s = chip->regmap_s; regmap_write(r_s, ATSIDU_S, c->stream_id >> 8); regmap_write(r_s, ATSIDL_S, c->stream_id); regmap_write(r_s, TSSET_S, 0); } static int mn88443x_s_read_status(struct mn88443x_priv *chip, struct dtv_frontend_properties *c, enum fe_status *status) { struct regmap *r_s = chip->regmap_s; u32 cpmon, tmpu, tmpl, flg; u64 tmp; /* Sync detection */ regmap_read(r_s, CPMON1_S, &cpmon); *status = 0; if (cpmon & CPMON1_S_FSYNC) *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; if (cpmon & CPMON1_S_W2LOCK) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; /* Signal strength */ c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_SIGNAL) { u32 agc; regmap_read(r_s, AGCREAD_S, &tmpu); agc = tmpu << 8; c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_RELATIVE; c->strength.stat[0].uvalue = agc; } /* C/N rate */ c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_VITERBI) { u32 cnr = 0, x, y, d; u64 d_3 = 0; regmap_read(r_s, CNRDXU_S, &tmpu); regmap_read(r_s, CNRDXL_S, &tmpl); x = (tmpu << 8) | tmpl; regmap_read(r_s, CNRDYU_S, &tmpu); regmap_read(r_s, CNRDYL_S, &tmpl); y = (tmpu << 8) | tmpl; /* CNR[dB]: 10 * log10(D) - 30.74 / D^3 - 3 */ /* D = x^2 / (2^15 * y - x^2) */ d = (y << 15) - x * x; if (d > 0) { /* (2^4 * D)^3 = 2^12 * D^3 */ /* 3.074 * 2^(12 + 24) = 211243671486 */ d_3 = div_u64(16 * x * x, d); d_3 = d_3 * d_3 * d_3; if (d_3) d_3 = div_u64(211243671486ULL, d_3); } if (d_3) { /* 0.3 * 2^24 = 5033164 */ tmp = (s64)2 * intlog10(x) - intlog10(abs(d)) - d_3 - 5033164; cnr = div_u64(tmp * 10000, 1 << 24); } if (cnr) { c->cnr.len = 1; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].uvalue = cnr; } } /* BER */ c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; regmap_read(r_s, BERCNFLG_S, &flg); if ((*status & FE_HAS_VITERBI) && (flg & BERCNFLG_S_BERVRDY)) { u32 bit_err, bit_cnt; regmap_read(r_s, BERVRDU_S, &tmpu); regmap_read(r_s, BERVRDL_S, &tmpl); bit_err = (tmpu << 8) | tmpl; bit_cnt = (1 << 13) * 204; if (bit_cnt) { c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = bit_err; c->post_bit_count.len = 1; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue = bit_cnt; } } return 0; } static void mn88443x_t_sleep(struct mn88443x_priv *chip) { struct regmap *r_t = chip->regmap_t; regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, PWDSET_OFDMPD_DOWN); } static void mn88443x_t_wake(struct mn88443x_priv *chip) { struct regmap *r_t = chip->regmap_t; regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 0); } static bool mn88443x_t_is_valid_clk(u32 adckt, u32 if_freq) { if (if_freq == DIRECT_IF_57MHZ) { if (adckt >= CLK_DIRECT && adckt <= 21000000) return true; if (adckt >= 25300000 && adckt <= CLK_MAX) return true; } else if (if_freq == DIRECT_IF_44MHZ) { if (adckt >= 25000000 && adckt <= CLK_MAX) return true; } else if (if_freq >= LOW_IF_4MHZ && if_freq < DIRECT_IF_44MHZ) { if (adckt >= CLK_DIRECT && adckt <= CLK_MAX) return true; } return false; } static int mn88443x_t_set_freq(struct mn88443x_priv *chip) { struct device *dev = &chip->client_s->dev; struct regmap *r_t = chip->regmap_t; s64 adckt, nco, ad_t; u32 m, v; /* Clock buffer (but not supported) or XTAL */ if (chip->clk_freq >= CLK_LOW && chip->clk_freq < CLK_DIRECT) { chip->use_clkbuf = true; regmap_write(r_t, CLKSET1_T, 0x07); adckt = 0; } else { chip->use_clkbuf = false; regmap_write(r_t, CLKSET1_T, 0x00); adckt = chip->clk_freq; } if (!mn88443x_t_is_valid_clk(adckt, chip->if_freq)) { dev_err(dev, "Invalid clock, CLK:%d, ADCKT:%lld, IF:%d\n", chip->clk_freq, adckt, chip->if_freq); return -EINVAL; } /* Direct IF or Low IF */ if (chip->if_freq == DIRECT_IF_57MHZ || chip->if_freq == DIRECT_IF_44MHZ) nco = adckt * 2 - chip->if_freq; else nco = -((s64)chip->if_freq); nco = div_s64(nco << 24, adckt); ad_t = div_s64(adckt << 22, S_T_FREQ); regmap_write(r_t, NCOFREQU_T, nco >> 16); regmap_write(r_t, NCOFREQM_T, nco >> 8); regmap_write(r_t, NCOFREQL_T, nco); regmap_write(r_t, FADU_T, ad_t >> 16); regmap_write(r_t, FADM_T, ad_t >> 8); regmap_write(r_t, FADL_T, ad_t); /* Level of IF */ m = ADCSET1_T_REFSEL_MASK; v = ADCSET1_T_REFSEL_1_5V; regmap_update_bits(r_t, ADCSET1_T, m, v); /* Polarity of AGC */ v = AGCSET2_T_IFPOLINV_INC | AGCSET2_T_RFPOLINV_INC; regmap_update_bits(r_t, AGCSET2_T, v, v); /* Lower output level of AGC */ regmap_write(r_t, AGCV3_T, 0x00); regmap_write(r_t, MDSET_T, 0xfa); return 0; } static void mn88443x_t_tune(struct mn88443x_priv *chip, struct dtv_frontend_properties *c) { struct regmap *r_t = chip->regmap_t; u32 m, v; m = MDSET_T_MDAUTO_MASK | MDSET_T_FFTS_MASK | MDSET_T_GI_MASK; v = MDSET_T_MDAUTO_AUTO | MDSET_T_FFTS_MODE3 | MDSET_T_GI_1_8; regmap_update_bits(r_t, MDSET_T, m, v); regmap_write(r_t, MDASET_T, 0); } static int mn88443x_t_read_status(struct mn88443x_priv *chip, struct dtv_frontend_properties *c, enum fe_status *status) { struct regmap *r_t = chip->regmap_t; u32 seqrd, st, flg, tmpu, tmpm, tmpl; u64 tmp; /* Sync detection */ regmap_read(r_t, SSEQRD_T, &seqrd); st = seqrd & SSEQRD_T_SSEQSTRD_MASK; *status = 0; if (st >= SSEQRD_T_SSEQSTRD_SYNC) *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; if (st >= SSEQRD_T_SSEQSTRD_FRAME_SYNC) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; /* Signal strength */ c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_SIGNAL) { u32 agc; regmap_read(r_t, AGCRDU_T, &tmpu); regmap_read(r_t, AGCRDL_T, &tmpl); agc = (tmpu << 8) | tmpl; c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_RELATIVE; c->strength.stat[0].uvalue = agc; } /* C/N rate */ c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_VITERBI) { u32 cnr; regmap_read(r_t, CNRDU_T, &tmpu); regmap_read(r_t, CNRDL_T, &tmpl); if (tmpu || tmpl) { /* CNR[dB]: 10 * (log10(65536 / value) + 0.2) */ /* intlog10(65536) = 80807124, 0.2 * 2^24 = 3355443 */ tmp = (u64)80807124 - intlog10((tmpu << 8) | tmpl) + 3355443; cnr = div_u64(tmp * 10000, 1 << 24); } else { cnr = 0; } c->cnr.len = 1; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].uvalue = cnr; } /* BER */ c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; regmap_read(r_t, BERFLG_T, &flg); if ((*status & FE_HAS_VITERBI) && (flg & BERFLG_T_BERVRDYA)) { u32 bit_err, bit_cnt; regmap_read(r_t, BERRDU_T, &tmpu); regmap_read(r_t, BERRDM_T, &tmpm); regmap_read(r_t, BERRDL_T, &tmpl); bit_err = (tmpu << 16) | (tmpm << 8) | tmpl; regmap_read(r_t, BERLENRDU_T, &tmpu); regmap_read(r_t, BERLENRDL_T, &tmpl); bit_cnt = ((tmpu << 8) | tmpl) * 203 * 8; if (bit_cnt) { c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = bit_err; c->post_bit_count.len = 1; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue = bit_cnt; } } return 0; } static int mn88443x_sleep(struct dvb_frontend *fe) { struct mn88443x_priv *chip = fe->demodulator_priv; mn88443x_s_sleep(chip); mn88443x_t_sleep(chip); return 0; } static int mn88443x_set_frontend(struct dvb_frontend *fe) { struct mn88443x_priv *chip = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct regmap *r_s = chip->regmap_s; struct regmap *r_t = chip->regmap_t; u8 tssel = 0, intsel = 0; if (c->delivery_system == SYS_ISDBS) { mn88443x_s_wake(chip); mn88443x_t_sleep(chip); tssel = TSSET1_TSASEL_ISDBS; intsel = TSSET3_INTASEL_S; } else if (c->delivery_system == SYS_ISDBT) { mn88443x_s_sleep(chip); mn88443x_t_wake(chip); mn88443x_t_set_freq(chip); tssel = TSSET1_TSASEL_ISDBT; intsel = TSSET3_INTASEL_T; } regmap_update_bits(r_t, TSSET1, TSSET1_TSASEL_MASK | TSSET1_TSBSEL_MASK, tssel | TSSET1_TSBSEL_NONE); regmap_write(r_t, TSSET2, 0); regmap_update_bits(r_t, TSSET3, TSSET3_INTASEL_MASK | TSSET3_INTBSEL_MASK, intsel | TSSET3_INTBSEL_NONE); regmap_write(r_t, DOSET1_T, 0x95); regmap_write(r_s, DOSET1_S, 0x80); if (c->delivery_system == SYS_ISDBS) mn88443x_s_tune(chip, c); else if (c->delivery_system == SYS_ISDBT) mn88443x_t_tune(chip, c); if (fe->ops.tuner_ops.set_params) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } return 0; } static int mn88443x_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *s) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; s->min_delay_ms = 850; if (c->delivery_system == SYS_ISDBS) { s->max_drift = 30000 * 2 + 1; s->step_size = 30000; } else if (c->delivery_system == SYS_ISDBT) { s->max_drift = 142857 * 2 + 1; s->step_size = 142857 * 2; } return 0; } static int mn88443x_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct mn88443x_priv *chip = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->delivery_system == SYS_ISDBS) return mn88443x_s_read_status(chip, c, status); if (c->delivery_system == SYS_ISDBT) return mn88443x_t_read_status(chip, c, status); return -EINVAL; } static const struct dvb_frontend_ops mn88443x_ops = { .delsys = { SYS_ISDBS, SYS_ISDBT }, .info = { .name = "Socionext MN88443x", .frequency_min_hz = 470 * MHz, .frequency_max_hz = 2071 * MHz, .symbol_rate_min = 28860000, .symbol_rate_max = 28860000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }, .sleep = mn88443x_sleep, .set_frontend = mn88443x_set_frontend, .get_tune_settings = mn88443x_get_tune_settings, .read_status = mn88443x_read_status, }; static const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_NONE, }; static int mn88443x_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mn88443x_config *conf = client->dev.platform_data; struct mn88443x_priv *chip; struct device *dev = &client->dev; int ret; chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; if (dev->of_node) chip->spec = of_device_get_match_data(dev); else chip->spec = (struct mn88443x_spec *)id->driver_data; if (!chip->spec) return -EINVAL; chip->mclk = devm_clk_get(dev, "mclk"); if (IS_ERR(chip->mclk) && !conf) { dev_err(dev, "Failed to request mclk: %ld\n", PTR_ERR(chip->mclk)); return PTR_ERR(chip->mclk); } ret = of_property_read_u32(dev->of_node, "if-frequency", &chip->if_freq); if (ret && !conf) { dev_err(dev, "Failed to load IF frequency: %d.\n", ret); return ret; } chip->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(chip->reset_gpio)) { dev_err(dev, "Failed to request reset_gpio: %ld\n", PTR_ERR(chip->reset_gpio)); return PTR_ERR(chip->reset_gpio); } if (conf) { chip->mclk = conf->mclk; chip->if_freq = conf->if_freq; chip->reset_gpio = conf->reset_gpio; *conf->fe = &chip->fe; } chip->client_s = client; chip->regmap_s = devm_regmap_init_i2c(chip->client_s, ®map_config); if (IS_ERR(chip->regmap_s)) return PTR_ERR(chip->regmap_s); /* * Chip has two I2C addresses for each satellite/terrestrial system. * ISDB-T uses address ISDB-S + 4, so we register a dummy client. */ chip->client_t = i2c_new_dummy_device(client->adapter, client->addr + 4); if (IS_ERR(chip->client_t)) return PTR_ERR(chip->client_t); chip->regmap_t = devm_regmap_init_i2c(chip->client_t, ®map_config); if (IS_ERR(chip->regmap_t)) { ret = PTR_ERR(chip->regmap_t); goto err_i2c_t; } chip->clk_freq = clk_get_rate(chip->mclk); memcpy(&chip->fe.ops, &mn88443x_ops, sizeof(mn88443x_ops)); chip->fe.demodulator_priv = chip; i2c_set_clientdata(client, chip); ret = mn88443x_cmn_power_on(chip); if (ret) goto err_i2c_t; mn88443x_s_sleep(chip); mn88443x_t_sleep(chip); return 0; err_i2c_t: i2c_unregister_device(chip->client_t); return ret; } static void mn88443x_remove(struct i2c_client *client) { struct mn88443x_priv *chip = i2c_get_clientdata(client); mn88443x_cmn_power_off(chip); i2c_unregister_device(chip->client_t); } static const struct mn88443x_spec mn88443x_spec_pri = { .primary = true, }; static const struct mn88443x_spec mn88443x_spec_sec = { .primary = false, }; static const struct of_device_id mn88443x_of_match[] = { { .compatible = "socionext,mn884433", .data = &mn88443x_spec_pri, }, { .compatible = "socionext,mn884434-0", .data = &mn88443x_spec_pri, }, { .compatible = "socionext,mn884434-1", .data = &mn88443x_spec_sec, }, {} }; MODULE_DEVICE_TABLE(of, mn88443x_of_match); static const struct i2c_device_id mn88443x_i2c_id[] = { { "mn884433", (kernel_ulong_t)&mn88443x_spec_pri }, { "mn884434-0", (kernel_ulong_t)&mn88443x_spec_pri }, { "mn884434-1", (kernel_ulong_t)&mn88443x_spec_sec }, {} }; MODULE_DEVICE_TABLE(i2c, mn88443x_i2c_id); static struct i2c_driver mn88443x_driver = { .driver = { .name = "mn88443x", .of_match_table = mn88443x_of_match, }, .probe = mn88443x_probe, .remove = mn88443x_remove, .id_table = mn88443x_i2c_id, }; module_i2c_driver(mn88443x_driver); MODULE_AUTHOR("Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com>"); MODULE_DESCRIPTION("Socionext MN88443x series demodulator driver."); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1