Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steven Toth | 4490 | 95.65% | 6 | 25.00% |
Devin Heitmueller | 82 | 1.75% | 4 | 16.67% |
Michael Ira Krufky | 68 | 1.45% | 1 | 4.17% |
Mauro Carvalho Chehab | 46 | 0.98% | 8 | 33.33% |
Max Kellermann | 2 | 0.04% | 1 | 4.17% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.04% | 1 | 4.17% |
Matthias Schwarzott | 1 | 0.02% | 1 | 4.17% |
Scott K Logan | 1 | 0.02% | 1 | 4.17% |
Total | 4694 | 24 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Samsung S5H1411 VSB/QAM demodulator driver Copyright (C) 2008 Steven Toth <stoth@linuxtv.org> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/delay.h> #include <media/dvb_frontend.h> #include "s5h1411.h" struct s5h1411_state { struct i2c_adapter *i2c; /* configuration settings */ const struct s5h1411_config *config; struct dvb_frontend frontend; enum fe_modulation current_modulation; unsigned int first_tune:1; u32 current_frequency; int if_freq; u8 inversion; }; static int debug; #define dprintk(arg...) do { \ if (debug) \ printk(arg); \ } while (0) /* Register values to initialise the demod, defaults to VSB */ static struct init_tab { u8 addr; u8 reg; u16 data; } init_tab[] = { { S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, }, { S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, }, { S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, }, { S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, }, { S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, }, { S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, }, { S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, }, { S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, }, { S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, }, { S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, }, { S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, }, { S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, }, { S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, }, { S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, }, { S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, }, { S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, }, { S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, }, { S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, }, { S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, }, { S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, }, { S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, }, { S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, }, { S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, }, { S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, }, { S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, }, { S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, }, { S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, }, { S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, }, { S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, }, { S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, }, { S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, }, { S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, }, { S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, }, { S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, }, { S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, }, { S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, }, { S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, }, { S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, }, { S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, }, { S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, }, { S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, }, { S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, }, { S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, }, { S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, }, { S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, }, { S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, }, { S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, }, { S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, }, { S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, }, { S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, }, { S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, }, { S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, }, { S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, }, { S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, }, { S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, }, { S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, }, { S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, }, { S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, }, { S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, }, { S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, }, { S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, }, { S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, }, { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, }, { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, }, { S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, }, { S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, }, { S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, }, { S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, }, { S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, }, { S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, }, { S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, }, { S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, }, { S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, }, { S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, }, { S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, }, { S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, }, { S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, }, { S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, }, { S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, }, { S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, }, }; /* VSB SNR lookup table */ static struct vsb_snr_tab { u16 val; u16 data; } vsb_snr_tab[] = { { 0x39f, 300, }, { 0x39b, 295, }, { 0x397, 290, }, { 0x394, 285, }, { 0x38f, 280, }, { 0x38b, 275, }, { 0x387, 270, }, { 0x382, 265, }, { 0x37d, 260, }, { 0x377, 255, }, { 0x370, 250, }, { 0x36a, 245, }, { 0x364, 240, }, { 0x35b, 235, }, { 0x353, 230, }, { 0x349, 225, }, { 0x340, 220, }, { 0x337, 215, }, { 0x327, 210, }, { 0x31b, 205, }, { 0x310, 200, }, { 0x302, 195, }, { 0x2f3, 190, }, { 0x2e4, 185, }, { 0x2d7, 180, }, { 0x2cd, 175, }, { 0x2bb, 170, }, { 0x2a9, 165, }, { 0x29e, 160, }, { 0x284, 155, }, { 0x27a, 150, }, { 0x260, 145, }, { 0x23a, 140, }, { 0x224, 135, }, { 0x213, 130, }, { 0x204, 125, }, { 0x1fe, 120, }, { 0, 0, }, }; /* QAM64 SNR lookup table */ static struct qam64_snr_tab { u16 val; u16 data; } qam64_snr_tab[] = { { 0x0001, 0, }, { 0x0af0, 300, }, { 0x0d80, 290, }, { 0x10a0, 280, }, { 0x14b5, 270, }, { 0x1590, 268, }, { 0x1680, 266, }, { 0x17b0, 264, }, { 0x18c0, 262, }, { 0x19b0, 260, }, { 0x1ad0, 258, }, { 0x1d00, 256, }, { 0x1da0, 254, }, { 0x1ef0, 252, }, { 0x2050, 250, }, { 0x20f0, 249, }, { 0x21d0, 248, }, { 0x22b0, 247, }, { 0x23a0, 246, }, { 0x2470, 245, }, { 0x24f0, 244, }, { 0x25a0, 243, }, { 0x26c0, 242, }, { 0x27b0, 241, }, { 0x28d0, 240, }, { 0x29b0, 239, }, { 0x2ad0, 238, }, { 0x2ba0, 237, }, { 0x2c80, 236, }, { 0x2d20, 235, }, { 0x2e00, 234, }, { 0x2f10, 233, }, { 0x3050, 232, }, { 0x3190, 231, }, { 0x3300, 230, }, { 0x3340, 229, }, { 0x3200, 228, }, { 0x3550, 227, }, { 0x3610, 226, }, { 0x3600, 225, }, { 0x3700, 224, }, { 0x3800, 223, }, { 0x3920, 222, }, { 0x3a20, 221, }, { 0x3b30, 220, }, { 0x3d00, 219, }, { 0x3e00, 218, }, { 0x4000, 217, }, { 0x4100, 216, }, { 0x4300, 215, }, { 0x4400, 214, }, { 0x4600, 213, }, { 0x4700, 212, }, { 0x4800, 211, }, { 0x4a00, 210, }, { 0x4b00, 209, }, { 0x4d00, 208, }, { 0x4f00, 207, }, { 0x5050, 206, }, { 0x5200, 205, }, { 0x53c0, 204, }, { 0x5450, 203, }, { 0x5650, 202, }, { 0x5820, 201, }, { 0x6000, 200, }, { 0xffff, 0, }, }; /* QAM256 SNR lookup table */ static struct qam256_snr_tab { u16 val; u16 data; } qam256_snr_tab[] = { { 0x0001, 0, }, { 0x0970, 400, }, { 0x0a90, 390, }, { 0x0b90, 380, }, { 0x0d90, 370, }, { 0x0ff0, 360, }, { 0x1240, 350, }, { 0x1345, 348, }, { 0x13c0, 346, }, { 0x14c0, 344, }, { 0x1500, 342, }, { 0x1610, 340, }, { 0x1700, 338, }, { 0x1800, 336, }, { 0x18b0, 334, }, { 0x1900, 332, }, { 0x1ab0, 330, }, { 0x1bc0, 328, }, { 0x1cb0, 326, }, { 0x1db0, 324, }, { 0x1eb0, 322, }, { 0x2030, 320, }, { 0x2200, 318, }, { 0x2280, 316, }, { 0x2410, 314, }, { 0x25b0, 312, }, { 0x27a0, 310, }, { 0x2840, 308, }, { 0x29d0, 306, }, { 0x2b10, 304, }, { 0x2d30, 302, }, { 0x2f20, 300, }, { 0x30c0, 298, }, { 0x3260, 297, }, { 0x32c0, 296, }, { 0x3300, 295, }, { 0x33b0, 294, }, { 0x34b0, 293, }, { 0x35a0, 292, }, { 0x3650, 291, }, { 0x3800, 290, }, { 0x3900, 289, }, { 0x3a50, 288, }, { 0x3b30, 287, }, { 0x3cb0, 286, }, { 0x3e20, 285, }, { 0x3fa0, 284, }, { 0x40a0, 283, }, { 0x41c0, 282, }, { 0x42f0, 281, }, { 0x44a0, 280, }, { 0x4600, 279, }, { 0x47b0, 278, }, { 0x4900, 277, }, { 0x4a00, 276, }, { 0x4ba0, 275, }, { 0x4d00, 274, }, { 0x4f00, 273, }, { 0x5000, 272, }, { 0x51f0, 272, }, { 0x53a0, 270, }, { 0x5520, 269, }, { 0x5700, 268, }, { 0x5800, 267, }, { 0x5a00, 266, }, { 0x5c00, 265, }, { 0x5d00, 264, }, { 0x5f00, 263, }, { 0x6000, 262, }, { 0x6200, 261, }, { 0x6400, 260, }, { 0xffff, 0, }, }; /* 8 bit registers, 16 bit values */ static int s5h1411_writereg(struct s5h1411_state *state, u8 addr, u8 reg, u16 data) { int ret; u8 buf[] = { reg, data >> 8, data & 0xff }; struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 }; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, ret == %i)\n", __func__, addr, reg, data, ret); return (ret != 1) ? -1 : 0; } static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0, 0 }; struct i2c_msg msg[] = { { .addr = addr, .flags = 0, .buf = b0, .len = 1 }, { .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) printk(KERN_ERR "%s: readreg error (ret == %i)\n", __func__, ret); return (b1[0] << 8) | b1[1]; } static int s5h1411_softreset(struct dvb_frontend *fe) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s()\n", __func__); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1); return 0; } static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s(%d KHz)\n", __func__, KHz); switch (KHz) { case 3250: s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342); s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9); break; case 3500: s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96); s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225); break; case 4000: s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e); s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd); break; default: dprintk("%s(%d KHz) Invalid, defaulting to 5380\n", __func__, KHz); fallthrough; case 5380: case 44000: s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655); s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4); break; } state->if_freq = KHz; return 0; } static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode) { struct s5h1411_state *state = fe->demodulator_priv; u16 val; dprintk("%s(%d)\n", __func__, mode); val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff; switch (mode) { case S5H1411_MPEGTIMING_CONTINUOUS_INVERTING_CLOCK: val |= 0x0000; break; case S5H1411_MPEGTIMING_CONTINUOUS_NONINVERTING_CLOCK: dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode); val |= 0x1000; break; case S5H1411_MPEGTIMING_NONCONTINUOUS_INVERTING_CLOCK: val |= 0x2000; break; case S5H1411_MPEGTIMING_NONCONTINUOUS_NONINVERTING_CLOCK: val |= 0x3000; break; default: return -EINVAL; } /* Configure MPEG Signal Timing charactistics */ return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val); } static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion) { struct s5h1411_state *state = fe->demodulator_priv; u16 val; dprintk("%s(%d)\n", __func__, inversion); val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000; if (inversion == 1) val |= 0x1000; /* Inverted */ state->inversion = inversion; return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val); } static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial) { struct s5h1411_state *state = fe->demodulator_priv; u16 val; dprintk("%s(%d)\n", __func__, serial); val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100; if (serial == 1) val |= 0x100; return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val); } static int s5h1411_enable_modulation(struct dvb_frontend *fe, enum fe_modulation m) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s(0x%08x)\n", __func__, m); if ((state->first_tune == 0) && (m == state->current_modulation)) { dprintk("%s() Already at desired modulation. Skipping...\n", __func__); return 0; } switch (m) { case VSB_8: dprintk("%s() VSB_8\n", __func__); s5h1411_set_if_freq(fe, state->config->vsb_if); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1); break; case QAM_64: case QAM_256: case QAM_AUTO: dprintk("%s() QAM_AUTO (64/256)\n", __func__); s5h1411_set_if_freq(fe, state->config->qam_if); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001); s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101); s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0); break; default: dprintk("%s() Invalid modulation\n", __func__); return -EINVAL; } state->current_modulation = m; state->first_tune = 0; s5h1411_softreset(fe); return 0; } static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, enable); if (enable) return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1); else return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0); } static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable) { struct s5h1411_state *state = fe->demodulator_priv; u16 val; dprintk("%s(%d)\n", __func__, enable); val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02; if (enable) return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val | 0x02); else return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val); } static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, enable); if (enable) s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1); else { s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0); s5h1411_softreset(fe); } return 0; } static int s5h1411_sleep(struct dvb_frontend *fe) { return s5h1411_set_powerstate(fe, 1); } static int s5h1411_register_reset(struct dvb_frontend *fe) { struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s()\n", __func__); return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0); } /* Talk to the demod, set the FEC, GUARD, QAM settings etc */ static int s5h1411_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct s5h1411_state *state = fe->demodulator_priv; dprintk("%s(frequency=%d)\n", __func__, p->frequency); s5h1411_softreset(fe); state->current_frequency = p->frequency; s5h1411_enable_modulation(fe, p->modulation); if (fe->ops.tuner_ops.set_params) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* Issue a reset to the demod so it knows to resync against the newly tuned frequency */ s5h1411_softreset(fe); return 0; } /* Reset the demod hardware and reset all of the configuration registers to a default state. */ static int s5h1411_init(struct dvb_frontend *fe) { struct s5h1411_state *state = fe->demodulator_priv; int i; dprintk("%s()\n", __func__); s5h1411_set_powerstate(fe, 0); s5h1411_register_reset(fe); for (i = 0; i < ARRAY_SIZE(init_tab); i++) s5h1411_writereg(state, init_tab[i].addr, init_tab[i].reg, init_tab[i].data); /* The datasheet says that after initialisation, VSB is default */ state->current_modulation = VSB_8; /* Although the datasheet says it's in VSB, empirical evidence shows problems getting lock on the first tuning request. Make sure we call enable_modulation the first time around */ state->first_tune = 1; if (state->config->output_mode == S5H1411_SERIAL_OUTPUT) /* Serial */ s5h1411_set_serialmode(fe, 1); else /* Parallel */ s5h1411_set_serialmode(fe, 0); s5h1411_set_spectralinversion(fe, state->config->inversion); s5h1411_set_if_freq(fe, state->config->vsb_if); s5h1411_set_gpio(fe, state->config->gpio); s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing); s5h1411_softreset(fe); /* Note: Leaving the I2C gate closed. */ s5h1411_i2c_gate_ctrl(fe, 0); return 0; } static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct s5h1411_state *state = fe->demodulator_priv; u16 reg; u32 tuner_status = 0; *status = 0; /* Register F2 bit 15 = Master Lock, removed */ switch (state->current_modulation) { case QAM_64: case QAM_256: reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0); if (reg & 0x10) /* QAM FEC Lock */ *status |= FE_HAS_SYNC | FE_HAS_LOCK; if (reg & 0x100) /* QAM EQ Lock */ *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL; break; case VSB_8: reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2); if (reg & 0x1000) /* FEC Lock */ *status |= FE_HAS_SYNC | FE_HAS_LOCK; if (reg & 0x2000) /* EQ Lock */ *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL; reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53); if (reg & 0x1) /* AFC Lock */ *status |= FE_HAS_SIGNAL; break; default: return -EINVAL; } switch (state->config->status_mode) { case S5H1411_DEMODLOCKING: if (*status & FE_HAS_VITERBI) *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; break; case S5H1411_TUNERLOCKING: /* Get the tuner status */ if (fe->ops.tuner_ops.get_status) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.get_status(fe, &tuner_status); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (tuner_status) *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; break; } dprintk("%s() status 0x%08x\n", __func__, *status); return 0; } static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) { if (v < qam256_snr_tab[i].val) { *snr = qam256_snr_tab[i].data; ret = 0; break; } } return ret; } static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) { if (v < qam64_snr_tab[i].val) { *snr = qam64_snr_tab[i].data; ret = 0; break; } } return ret; } static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) { if (v > vsb_snr_tab[i].val) { *snr = vsb_snr_tab[i].data; ret = 0; break; } } dprintk("%s() snr=%d\n", __func__, *snr); return ret; } static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr) { struct s5h1411_state *state = fe->demodulator_priv; u16 reg; dprintk("%s()\n", __func__); switch (state->current_modulation) { case QAM_64: reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1); return s5h1411_qam64_lookup_snr(fe, snr, reg); case QAM_256: reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1); return s5h1411_qam256_lookup_snr(fe, snr, reg); case VSB_8: reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2) & 0x3ff; return s5h1411_vsb_lookup_snr(fe, snr, reg); default: break; } return -EINVAL; } static int s5h1411_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { /* borrowed from lgdt330x.c * * Calculate strength from SNR up to 35dB * Even though the SNR can go higher than 35dB, * there is some comfort factor in having a range of * strong signals that can show at 100% */ u16 snr; u32 tmp; int ret = s5h1411_read_snr(fe, &snr); *signal_strength = 0; if (0 == ret) { /* The following calculation method was chosen * purely for the sake of code re-use from the * other demod drivers that use this method */ /* Convert from SNR in dB * 10 to 8.24 fixed-point */ tmp = (snr * ((1 << 24) / 10)); /* Convert from 8.24 fixed-point to * scale the range 0 - 35*2^24 into 0 - 65535*/ if (tmp >= 8960 * 0x10000) *signal_strength = 0xffff; else *signal_strength = tmp / 8960; } return ret; } static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct s5h1411_state *state = fe->demodulator_priv; *ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9); return 0; } static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber) { return s5h1411_read_ucblocks(fe, ber); } static int s5h1411_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct s5h1411_state *state = fe->demodulator_priv; p->frequency = state->current_frequency; p->modulation = state->current_modulation; return 0; } static int s5h1411_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void s5h1411_release(struct dvb_frontend *fe) { struct s5h1411_state *state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops s5h1411_ops; struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config, struct i2c_adapter *i2c) { struct s5h1411_state *state = NULL; u16 reg; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->current_modulation = VSB_8; state->inversion = state->config->inversion; /* check if the demod exists */ reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05); if (reg != 0x0066) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &s5h1411_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; if (s5h1411_init(&state->frontend) != 0) { printk(KERN_ERR "%s: Failed to initialize correctly\n", __func__); goto error; } /* Note: Leaving the I2C gate open here. */ s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1); /* Put the device into low-power mode until first use */ s5h1411_set_powerstate(&state->frontend, 1); return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(s5h1411_attach); static const struct dvb_frontend_ops s5h1411_ops = { .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, .info = { .name = "Samsung S5H1411 QAM/8VSB Frontend", .frequency_min_hz = 54 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 62500, .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB }, .init = s5h1411_init, .sleep = s5h1411_sleep, .i2c_gate_ctrl = s5h1411_i2c_gate_ctrl, .set_frontend = s5h1411_set_frontend, .get_frontend = s5h1411_get_frontend, .get_tune_settings = s5h1411_get_tune_settings, .read_status = s5h1411_read_status, .read_ber = s5h1411_read_ber, .read_signal_strength = s5h1411_read_signal_strength, .read_snr = s5h1411_read_snr, .read_ucblocks = s5h1411_read_ucblocks, .release = s5h1411_release, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Enable verbose debug messages"); MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1