Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pavel Machek | 6379 | 98.64% | 1 | 9.09% |
Sakari Ailus | 44 | 0.68% | 2 | 18.18% |
Tomi Valkeinen | 16 | 0.25% | 1 | 9.09% |
Hans Verkuil | 10 | 0.15% | 1 | 9.09% |
Javier Martinez Canillas | 7 | 0.11% | 1 | 9.09% |
Krzysztof Kozlowski | 5 | 0.08% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.03% | 1 | 9.09% |
Zhen Lei | 2 | 0.03% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.03% | 2 | 18.18% |
Total | 6467 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * et8ek8_driver.c * * Copyright (C) 2008 Nokia Corporation * * Contact: Sakari Ailus <sakari.ailus@iki.fi> * Tuukka Toivonen <tuukkat76@gmail.com> * Pavel Machek <pavel@ucw.cz> * * Based on code from Toni Leinonen <toni.leinonen@offcode.fi>. * * This driver is based on the Micron MT9T012 camera imager driver * (C) Texas Instruments. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/v4l2-mediabus.h> #include <media/media-entity.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-subdev.h> #include "et8ek8_reg.h" #define ET8EK8_NAME "et8ek8" #define ET8EK8_PRIV_MEM_SIZE 128 #define ET8EK8_MAX_MSG 8 struct et8ek8_sensor { struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_mbus_framefmt format; struct gpio_desc *reset; struct regulator *vana; struct clk *ext_clk; u32 xclk_freq; u16 version; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *exposure; struct v4l2_ctrl *pixel_rate; struct et8ek8_reglist *current_reglist; u8 priv_mem[ET8EK8_PRIV_MEM_SIZE]; struct mutex power_lock; int power_count; }; #define to_et8ek8_sensor(sd) container_of(sd, struct et8ek8_sensor, subdev) enum et8ek8_versions { ET8EK8_REV_1 = 0x0001, ET8EK8_REV_2, }; /* * This table describes what should be written to the sensor register * for each gain value. The gain(index in the table) is in terms of * 0.1EV, i.e. 10 indexes in the table give 2 time more gain [0] in * the *analog gain, [1] in the digital gain * * Analog gain [dB] = 20*log10(regvalue/32); 0x20..0x100 */ static struct et8ek8_gain { u16 analog; u16 digital; } const et8ek8_gain_table[] = { { 32, 0}, /* x1 */ { 34, 0}, { 37, 0}, { 39, 0}, { 42, 0}, { 45, 0}, { 49, 0}, { 52, 0}, { 56, 0}, { 60, 0}, { 64, 0}, /* x2 */ { 69, 0}, { 74, 0}, { 79, 0}, { 84, 0}, { 91, 0}, { 97, 0}, {104, 0}, {111, 0}, {119, 0}, {128, 0}, /* x4 */ {137, 0}, {147, 0}, {158, 0}, {169, 0}, {181, 0}, {194, 0}, {208, 0}, {223, 0}, {239, 0}, {256, 0}, /* x8 */ {256, 73}, {256, 152}, {256, 236}, {256, 327}, {256, 424}, {256, 528}, {256, 639}, {256, 758}, {256, 886}, {256, 1023}, /* x16 */ }; /* Register definitions */ #define REG_REVISION_NUMBER_L 0x1200 #define REG_REVISION_NUMBER_H 0x1201 #define PRIV_MEM_START_REG 0x0008 #define PRIV_MEM_WIN_SIZE 8 #define ET8EK8_I2C_DELAY 3 /* msec delay b/w accesses */ #define USE_CRC 1 /* * Register access helpers * * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int et8ek8_i2c_read_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 *val) { int r; struct i2c_msg msg; unsigned char data[4]; if (!client->adapter) return -ENODEV; if (data_length != ET8EK8_REG_8BIT && data_length != ET8EK8_REG_16BIT) return -EINVAL; msg.addr = client->addr; msg.flags = 0; msg.len = 2; msg.buf = data; /* high byte goes out first */ data[0] = (u8) (reg >> 8); data[1] = (u8) (reg & 0xff); r = i2c_transfer(client->adapter, &msg, 1); if (r < 0) goto err; msg.len = data_length; msg.flags = I2C_M_RD; r = i2c_transfer(client->adapter, &msg, 1); if (r < 0) goto err; *val = 0; /* high byte comes first */ if (data_length == ET8EK8_REG_8BIT) *val = data[0]; else *val = (data[1] << 8) + data[0]; return 0; err: dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r); return r; } static void et8ek8_i2c_create_msg(struct i2c_client *client, u16 len, u16 reg, u32 val, struct i2c_msg *msg, unsigned char *buf) { msg->addr = client->addr; msg->flags = 0; /* Write */ msg->len = 2 + len; msg->buf = buf; /* high byte goes out first */ buf[0] = (u8) (reg >> 8); buf[1] = (u8) (reg & 0xff); switch (len) { case ET8EK8_REG_8BIT: buf[2] = (u8) (val) & 0xff; break; case ET8EK8_REG_16BIT: buf[2] = (u8) (val) & 0xff; buf[3] = (u8) (val >> 8) & 0xff; break; default: WARN_ONCE(1, ET8EK8_NAME ": %s: invalid message length.\n", __func__); } } /* * A buffered write method that puts the wanted register write * commands in smaller number of message lists and passes the lists to * the i2c framework */ static int et8ek8_i2c_buffered_write_regs(struct i2c_client *client, const struct et8ek8_reg *wnext, int cnt) { struct i2c_msg msg[ET8EK8_MAX_MSG]; unsigned char data[ET8EK8_MAX_MSG][6]; int wcnt = 0; u16 reg, data_length; u32 val; int rval; /* Create new write messages for all writes */ while (wcnt < cnt) { data_length = wnext->type; reg = wnext->reg; val = wnext->val; wnext++; et8ek8_i2c_create_msg(client, data_length, reg, val, &msg[wcnt], &data[wcnt][0]); /* Update write count */ wcnt++; if (wcnt < ET8EK8_MAX_MSG) continue; rval = i2c_transfer(client->adapter, msg, wcnt); if (rval < 0) return rval; cnt -= wcnt; wcnt = 0; } rval = i2c_transfer(client->adapter, msg, wcnt); return rval < 0 ? rval : 0; } /* * Write a list of registers to i2c device. * * The list of registers is terminated by ET8EK8_REG_TERM. * Returns zero if successful, or non-zero otherwise. */ static int et8ek8_i2c_write_regs(struct i2c_client *client, const struct et8ek8_reg *regs) { int r, cnt = 0; const struct et8ek8_reg *next; if (!client->adapter) return -ENODEV; if (!regs) return -EINVAL; /* Initialize list pointers to the start of the list */ next = regs; do { /* * We have to go through the list to figure out how * many regular writes we have in a row */ while (next->type != ET8EK8_REG_TERM && next->type != ET8EK8_REG_DELAY) { /* * Here we check that the actual length fields * are valid */ if (WARN(next->type != ET8EK8_REG_8BIT && next->type != ET8EK8_REG_16BIT, "Invalid type = %d", next->type)) { return -EINVAL; } /* * Increment count of successive writes and * read pointer */ cnt++; next++; } /* Now we start writing ... */ r = et8ek8_i2c_buffered_write_regs(client, regs, cnt); /* ... and then check that everything was OK */ if (r < 0) { dev_err(&client->dev, "i2c transfer error!\n"); return r; } /* * If we ran into a sleep statement when going through * the list, this is where we snooze for the required time */ if (next->type == ET8EK8_REG_DELAY) { msleep(next->val); /* * ZZZ ... * Update list pointers and cnt and start over ... */ next++; regs = next; cnt = 0; } } while (next->type != ET8EK8_REG_TERM); return 0; } /* * Write to a 8/16-bit register. * Returns zero if successful, or non-zero otherwise. */ static int et8ek8_i2c_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val) { int r; struct i2c_msg msg; unsigned char data[6]; if (!client->adapter) return -ENODEV; if (data_length != ET8EK8_REG_8BIT && data_length != ET8EK8_REG_16BIT) return -EINVAL; et8ek8_i2c_create_msg(client, data_length, reg, val, &msg, data); r = i2c_transfer(client->adapter, &msg, 1); if (r < 0) { dev_err(&client->dev, "wrote 0x%x to offset 0x%x error %d\n", val, reg, r); return r; } return 0; } static struct et8ek8_reglist *et8ek8_reglist_find_type( struct et8ek8_meta_reglist *meta, u16 type) { struct et8ek8_reglist **next = &meta->reglist[0].ptr; while (*next) { if ((*next)->type == type) return *next; next++; } return NULL; } static int et8ek8_i2c_reglist_find_write(struct i2c_client *client, struct et8ek8_meta_reglist *meta, u16 type) { struct et8ek8_reglist *reglist; reglist = et8ek8_reglist_find_type(meta, type); if (!reglist) return -EINVAL; return et8ek8_i2c_write_regs(client, reglist->regs); } static struct et8ek8_reglist **et8ek8_reglist_first( struct et8ek8_meta_reglist *meta) { return &meta->reglist[0].ptr; } static void et8ek8_reglist_to_mbus(const struct et8ek8_reglist *reglist, struct v4l2_mbus_framefmt *fmt) { fmt->width = reglist->mode.window_width; fmt->height = reglist->mode.window_height; fmt->code = reglist->mode.bus_format; } static struct et8ek8_reglist *et8ek8_reglist_find_mode_fmt( struct et8ek8_meta_reglist *meta, struct v4l2_mbus_framefmt *fmt) { struct et8ek8_reglist **list = et8ek8_reglist_first(meta); struct et8ek8_reglist *best_match = NULL; struct et8ek8_reglist *best_other = NULL; struct v4l2_mbus_framefmt format; unsigned int max_dist_match = (unsigned int)-1; unsigned int max_dist_other = (unsigned int)-1; /* * Find the mode with the closest image size. The distance between * image sizes is the size in pixels of the non-overlapping regions * between the requested size and the frame-specified size. * * Store both the closest mode that matches the requested format, and * the closest mode for all other formats. The best match is returned * if found, otherwise the best mode with a non-matching format is * returned. */ for (; *list; list++) { unsigned int dist; if ((*list)->type != ET8EK8_REGLIST_MODE) continue; et8ek8_reglist_to_mbus(*list, &format); dist = min(fmt->width, format.width) * min(fmt->height, format.height); dist = format.width * format.height + fmt->width * fmt->height - 2 * dist; if (fmt->code == format.code) { if (dist < max_dist_match || !best_match) { best_match = *list; max_dist_match = dist; } } else { if (dist < max_dist_other || !best_other) { best_other = *list; max_dist_other = dist; } } } return best_match ? best_match : best_other; } #define TIMEPERFRAME_AVG_FPS(t) \ (((t).denominator + ((t).numerator >> 1)) / (t).numerator) static struct et8ek8_reglist *et8ek8_reglist_find_mode_ival( struct et8ek8_meta_reglist *meta, struct et8ek8_reglist *current_reglist, struct v4l2_fract *timeperframe) { int fps = TIMEPERFRAME_AVG_FPS(*timeperframe); struct et8ek8_reglist **list = et8ek8_reglist_first(meta); struct et8ek8_mode *current_mode = ¤t_reglist->mode; for (; *list; list++) { struct et8ek8_mode *mode = &(*list)->mode; if ((*list)->type != ET8EK8_REGLIST_MODE) continue; if (mode->window_width != current_mode->window_width || mode->window_height != current_mode->window_height) continue; if (TIMEPERFRAME_AVG_FPS(mode->timeperframe) == fps) return *list; } return NULL; } static int et8ek8_reglist_cmp(const void *a, const void *b) { const struct et8ek8_reglist **list1 = (const struct et8ek8_reglist **)a, **list2 = (const struct et8ek8_reglist **)b; /* Put real modes in the beginning. */ if ((*list1)->type == ET8EK8_REGLIST_MODE && (*list2)->type != ET8EK8_REGLIST_MODE) return -1; if ((*list1)->type != ET8EK8_REGLIST_MODE && (*list2)->type == ET8EK8_REGLIST_MODE) return 1; /* Descending width. */ if ((*list1)->mode.window_width > (*list2)->mode.window_width) return -1; if ((*list1)->mode.window_width < (*list2)->mode.window_width) return 1; if ((*list1)->mode.window_height > (*list2)->mode.window_height) return -1; if ((*list1)->mode.window_height < (*list2)->mode.window_height) return 1; return 0; } static int et8ek8_reglist_import(struct i2c_client *client, struct et8ek8_meta_reglist *meta) { int nlists = 0, i; dev_info(&client->dev, "meta_reglist version %s\n", meta->version); while (meta->reglist[nlists].ptr) nlists++; if (!nlists) return -EINVAL; sort(&meta->reglist[0].ptr, nlists, sizeof(meta->reglist[0].ptr), et8ek8_reglist_cmp, NULL); i = nlists; nlists = 0; while (i--) { struct et8ek8_reglist *list; list = meta->reglist[nlists].ptr; dev_dbg(&client->dev, "%s: type %d\tw %d\th %d\tfmt %x\tival %d/%d\tptr %p\n", __func__, list->type, list->mode.window_width, list->mode.window_height, list->mode.bus_format, list->mode.timeperframe.numerator, list->mode.timeperframe.denominator, (void *)meta->reglist[nlists].ptr); nlists++; } return 0; } /* Called to change the V4L2 gain control value. This function * rounds and clamps the given value and updates the V4L2 control value. * If power is on, also updates the sensor analog and digital gains. * gain is in 0.1 EV (exposure value) units. */ static int et8ek8_set_gain(struct et8ek8_sensor *sensor, s32 gain) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev); struct et8ek8_gain new; int r; new = et8ek8_gain_table[gain]; /* FIXME: optimise I2C writes! */ r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x124a, new.analog >> 8); if (r) return r; r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1249, new.analog & 0xff); if (r) return r; r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x124d, new.digital >> 8); if (r) return r; r = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x124c, new.digital & 0xff); return r; } static int et8ek8_set_test_pattern(struct et8ek8_sensor *sensor, s32 mode) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev); int cbh_mode, cbv_mode, tp_mode, din_sw, r1420, rval; /* Values for normal mode */ cbh_mode = 0; cbv_mode = 0; tp_mode = 0; din_sw = 0x00; r1420 = 0xF0; if (mode) { /* Test pattern mode */ if (mode < 5) { cbh_mode = 1; cbv_mode = 1; tp_mode = mode + 3; } else { cbh_mode = 0; cbv_mode = 0; tp_mode = mode - 4 + 3; } din_sw = 0x01; r1420 = 0xE0; } rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x111B, tp_mode << 4); if (rval) return rval; rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1121, cbh_mode << 7); if (rval) return rval; rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1124, cbv_mode << 7); if (rval) return rval; rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x112C, din_sw); if (rval) return rval; return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1420, r1420); } /* ----------------------------------------------------------------------------- * V4L2 controls */ static int et8ek8_set_ctrl(struct v4l2_ctrl *ctrl) { struct et8ek8_sensor *sensor = container_of(ctrl->handler, struct et8ek8_sensor, ctrl_handler); switch (ctrl->id) { case V4L2_CID_GAIN: return et8ek8_set_gain(sensor, ctrl->val); case V4L2_CID_EXPOSURE: { struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev); return et8ek8_i2c_write_reg(client, ET8EK8_REG_16BIT, 0x1243, ctrl->val); } case V4L2_CID_TEST_PATTERN: return et8ek8_set_test_pattern(sensor, ctrl->val); case V4L2_CID_PIXEL_RATE: return 0; default: return -EINVAL; } } static const struct v4l2_ctrl_ops et8ek8_ctrl_ops = { .s_ctrl = et8ek8_set_ctrl, }; static const char * const et8ek8_test_pattern_menu[] = { "Normal", "Vertical colorbar", "Horizontal colorbar", "Scale", "Ramp", "Small vertical colorbar", "Small horizontal colorbar", "Small scale", "Small ramp", }; static int et8ek8_init_controls(struct et8ek8_sensor *sensor) { s32 max_rows; v4l2_ctrl_handler_init(&sensor->ctrl_handler, 4); /* V4L2_CID_GAIN */ v4l2_ctrl_new_std(&sensor->ctrl_handler, &et8ek8_ctrl_ops, V4L2_CID_GAIN, 0, ARRAY_SIZE(et8ek8_gain_table) - 1, 1, 0); max_rows = sensor->current_reglist->mode.max_exp; { u32 min = 1, max = max_rows; sensor->exposure = v4l2_ctrl_new_std(&sensor->ctrl_handler, &et8ek8_ctrl_ops, V4L2_CID_EXPOSURE, min, max, min, max); } /* V4L2_CID_PIXEL_RATE */ sensor->pixel_rate = v4l2_ctrl_new_std(&sensor->ctrl_handler, &et8ek8_ctrl_ops, V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); /* V4L2_CID_TEST_PATTERN */ v4l2_ctrl_new_std_menu_items(&sensor->ctrl_handler, &et8ek8_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(et8ek8_test_pattern_menu) - 1, 0, 0, et8ek8_test_pattern_menu); if (sensor->ctrl_handler.error) return sensor->ctrl_handler.error; sensor->subdev.ctrl_handler = &sensor->ctrl_handler; return 0; } static void et8ek8_update_controls(struct et8ek8_sensor *sensor) { struct v4l2_ctrl *ctrl; struct et8ek8_mode *mode = &sensor->current_reglist->mode; u32 min, max, pixel_rate; static const int S = 8; ctrl = sensor->exposure; min = 1; max = mode->max_exp; /* * Calculate average pixel clock per line. Assume buffers can spread * the data over horizontal blanking time. Rounding upwards. * Formula taken from stock Nokia N900 kernel. */ pixel_rate = ((mode->pixel_clock + (1 << S) - 1) >> S) + mode->width; pixel_rate = mode->window_width * (pixel_rate - 1) / mode->width; __v4l2_ctrl_modify_range(ctrl, min, max, min, max); __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate, pixel_rate << S); } static int et8ek8_configure(struct et8ek8_sensor *sensor) { struct v4l2_subdev *subdev = &sensor->subdev; struct i2c_client *client = v4l2_get_subdevdata(subdev); int rval; rval = et8ek8_i2c_write_regs(client, sensor->current_reglist->regs); if (rval) goto fail; /* Controls set while the power to the sensor is turned off are saved * but not applied to the hardware. Now that we're about to start * streaming apply all the current values to the hardware. */ rval = v4l2_ctrl_handler_setup(&sensor->ctrl_handler); if (rval) goto fail; return 0; fail: dev_err(&client->dev, "sensor configuration failed\n"); return rval; } static int et8ek8_stream_on(struct et8ek8_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev); return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1252, 0xb0); } static int et8ek8_stream_off(struct et8ek8_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->subdev); return et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1252, 0x30); } static int et8ek8_s_stream(struct v4l2_subdev *subdev, int streaming) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); int ret; if (!streaming) return et8ek8_stream_off(sensor); ret = et8ek8_configure(sensor); if (ret < 0) return ret; return et8ek8_stream_on(sensor); } /* -------------------------------------------------------------------------- * V4L2 subdev operations */ static int et8ek8_power_off(struct et8ek8_sensor *sensor) { gpiod_set_value(sensor->reset, 0); udelay(1); clk_disable_unprepare(sensor->ext_clk); return regulator_disable(sensor->vana); } static int et8ek8_power_on(struct et8ek8_sensor *sensor) { struct v4l2_subdev *subdev = &sensor->subdev; struct i2c_client *client = v4l2_get_subdevdata(subdev); unsigned int xclk_freq; int val, rval; rval = regulator_enable(sensor->vana); if (rval) { dev_err(&client->dev, "failed to enable vana regulator\n"); return rval; } if (sensor->current_reglist) xclk_freq = sensor->current_reglist->mode.ext_clock; else xclk_freq = sensor->xclk_freq; rval = clk_set_rate(sensor->ext_clk, xclk_freq); if (rval < 0) { dev_err(&client->dev, "unable to set extclk clock freq to %u\n", xclk_freq); goto out; } rval = clk_prepare_enable(sensor->ext_clk); if (rval < 0) { dev_err(&client->dev, "failed to enable extclk\n"); goto out; } if (rval) goto out; udelay(10); /* I wish this is a good value */ gpiod_set_value(sensor->reset, 1); msleep(5000 * 1000 / xclk_freq + 1); /* Wait 5000 cycles */ rval = et8ek8_i2c_reglist_find_write(client, &meta_reglist, ET8EK8_REGLIST_POWERON); if (rval) goto out; #ifdef USE_CRC rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT, 0x1263, &val); if (rval) goto out; #if USE_CRC /* TODO get crc setting from DT */ val |= BIT(4); #else val &= ~BIT(4); #endif rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x1263, val); if (rval) goto out; #endif out: if (rval) et8ek8_power_off(sensor); return rval; } /* -------------------------------------------------------------------------- * V4L2 subdev video operations */ #define MAX_FMTS 4 static int et8ek8_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct et8ek8_reglist **list = et8ek8_reglist_first(&meta_reglist); u32 pixelformat[MAX_FMTS]; int npixelformat = 0; if (code->index >= MAX_FMTS) return -EINVAL; for (; *list; list++) { struct et8ek8_mode *mode = &(*list)->mode; int i; if ((*list)->type != ET8EK8_REGLIST_MODE) continue; for (i = 0; i < npixelformat; i++) { if (pixelformat[i] == mode->bus_format) break; } if (i != npixelformat) continue; if (code->index == npixelformat) { code->code = mode->bus_format; return 0; } pixelformat[npixelformat] = mode->bus_format; npixelformat++; } return -EINVAL; } static int et8ek8_enum_frame_size(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct et8ek8_reglist **list = et8ek8_reglist_first(&meta_reglist); struct v4l2_mbus_framefmt format; int cmp_width = INT_MAX; int cmp_height = INT_MAX; int index = fse->index; for (; *list; list++) { if ((*list)->type != ET8EK8_REGLIST_MODE) continue; et8ek8_reglist_to_mbus(*list, &format); if (fse->code != format.code) continue; /* Assume that the modes are grouped by frame size. */ if (format.width == cmp_width && format.height == cmp_height) continue; cmp_width = format.width; cmp_height = format.height; if (index-- == 0) { fse->min_width = format.width; fse->min_height = format.height; fse->max_width = format.width; fse->max_height = format.height; return 0; } } return -EINVAL; } static int et8ek8_enum_frame_ival(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct et8ek8_reglist **list = et8ek8_reglist_first(&meta_reglist); struct v4l2_mbus_framefmt format; int index = fie->index; for (; *list; list++) { struct et8ek8_mode *mode = &(*list)->mode; if ((*list)->type != ET8EK8_REGLIST_MODE) continue; et8ek8_reglist_to_mbus(*list, &format); if (fie->code != format.code) continue; if (fie->width != format.width || fie->height != format.height) continue; if (index-- == 0) { fie->interval = mode->timeperframe; return 0; } } return -EINVAL; } static struct v4l2_mbus_framefmt * __et8ek8_get_pad_format(struct et8ek8_sensor *sensor, struct v4l2_subdev_state *sd_state, unsigned int pad, enum v4l2_subdev_format_whence which) { switch (which) { case V4L2_SUBDEV_FORMAT_TRY: return v4l2_subdev_get_try_format(&sensor->subdev, sd_state, pad); case V4L2_SUBDEV_FORMAT_ACTIVE: return &sensor->format; default: return NULL; } } static int et8ek8_get_pad_format(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct v4l2_mbus_framefmt *format; format = __et8ek8_get_pad_format(sensor, sd_state, fmt->pad, fmt->which); if (!format) return -EINVAL; fmt->format = *format; return 0; } static int et8ek8_set_pad_format(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct v4l2_mbus_framefmt *format; struct et8ek8_reglist *reglist; format = __et8ek8_get_pad_format(sensor, sd_state, fmt->pad, fmt->which); if (!format) return -EINVAL; reglist = et8ek8_reglist_find_mode_fmt(&meta_reglist, &fmt->format); et8ek8_reglist_to_mbus(reglist, &fmt->format); *format = fmt->format; if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { sensor->current_reglist = reglist; et8ek8_update_controls(sensor); } return 0; } static int et8ek8_get_frame_interval(struct v4l2_subdev *subdev, struct v4l2_subdev_frame_interval *fi) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); memset(fi, 0, sizeof(*fi)); fi->interval = sensor->current_reglist->mode.timeperframe; return 0; } static int et8ek8_set_frame_interval(struct v4l2_subdev *subdev, struct v4l2_subdev_frame_interval *fi) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct et8ek8_reglist *reglist; reglist = et8ek8_reglist_find_mode_ival(&meta_reglist, sensor->current_reglist, &fi->interval); if (!reglist) return -EINVAL; if (sensor->current_reglist->mode.ext_clock != reglist->mode.ext_clock) return -EINVAL; sensor->current_reglist = reglist; et8ek8_update_controls(sensor); return 0; } static int et8ek8_g_priv_mem(struct v4l2_subdev *subdev) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(subdev); unsigned int length = ET8EK8_PRIV_MEM_SIZE; unsigned int offset = 0; u8 *ptr = sensor->priv_mem; int rval = 0; /* Read the EEPROM window-by-window, each window 8 bytes */ do { u8 buffer[PRIV_MEM_WIN_SIZE]; struct i2c_msg msg; int bytes, i; int ofs; /* Set the current window */ rval = et8ek8_i2c_write_reg(client, ET8EK8_REG_8BIT, 0x0001, 0xe0 | (offset >> 3)); if (rval < 0) return rval; /* Wait for status bit */ for (i = 0; i < 1000; ++i) { u32 status; rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT, 0x0003, &status); if (rval < 0) return rval; if (!(status & 0x08)) break; usleep_range(1000, 2000); } if (i == 1000) return -EIO; /* Read window, 8 bytes at once, and copy to user space */ ofs = offset & 0x07; /* Offset within this window */ bytes = length + ofs > 8 ? 8-ofs : length; msg.addr = client->addr; msg.flags = 0; msg.len = 2; msg.buf = buffer; ofs += PRIV_MEM_START_REG; buffer[0] = (u8)(ofs >> 8); buffer[1] = (u8)(ofs & 0xFF); rval = i2c_transfer(client->adapter, &msg, 1); if (rval < 0) return rval; mdelay(ET8EK8_I2C_DELAY); msg.addr = client->addr; msg.len = bytes; msg.flags = I2C_M_RD; msg.buf = buffer; memset(buffer, 0, sizeof(buffer)); rval = i2c_transfer(client->adapter, &msg, 1); if (rval < 0) return rval; rval = 0; memcpy(ptr, buffer, bytes); length -= bytes; offset += bytes; ptr += bytes; } while (length > 0); return rval; } static int et8ek8_dev_init(struct v4l2_subdev *subdev) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(subdev); int rval, rev_l, rev_h; rval = et8ek8_power_on(sensor); if (rval) { dev_err(&client->dev, "could not power on\n"); return rval; } rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT, REG_REVISION_NUMBER_L, &rev_l); if (!rval) rval = et8ek8_i2c_read_reg(client, ET8EK8_REG_8BIT, REG_REVISION_NUMBER_H, &rev_h); if (rval) { dev_err(&client->dev, "no et8ek8 sensor detected\n"); goto out_poweroff; } sensor->version = (rev_h << 8) + rev_l; if (sensor->version != ET8EK8_REV_1 && sensor->version != ET8EK8_REV_2) dev_info(&client->dev, "unknown version 0x%x detected, continuing anyway\n", sensor->version); rval = et8ek8_reglist_import(client, &meta_reglist); if (rval) { dev_err(&client->dev, "invalid register list %s, import failed\n", ET8EK8_NAME); goto out_poweroff; } sensor->current_reglist = et8ek8_reglist_find_type(&meta_reglist, ET8EK8_REGLIST_MODE); if (!sensor->current_reglist) { dev_err(&client->dev, "invalid register list %s, no mode found\n", ET8EK8_NAME); rval = -ENODEV; goto out_poweroff; } et8ek8_reglist_to_mbus(sensor->current_reglist, &sensor->format); rval = et8ek8_i2c_reglist_find_write(client, &meta_reglist, ET8EK8_REGLIST_POWERON); if (rval) { dev_err(&client->dev, "invalid register list %s, no POWERON mode found\n", ET8EK8_NAME); goto out_poweroff; } rval = et8ek8_stream_on(sensor); /* Needed to be able to read EEPROM */ if (rval) goto out_poweroff; rval = et8ek8_g_priv_mem(subdev); if (rval) dev_warn(&client->dev, "can not read OTP (EEPROM) memory from sensor\n"); rval = et8ek8_stream_off(sensor); if (rval) goto out_poweroff; rval = et8ek8_power_off(sensor); if (rval) goto out_poweroff; return 0; out_poweroff: et8ek8_power_off(sensor); return rval; } /* -------------------------------------------------------------------------- * sysfs attributes */ static ssize_t priv_mem_show(struct device *dev, struct device_attribute *attr, char *buf) { struct v4l2_subdev *subdev = dev_get_drvdata(dev); struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); #if PAGE_SIZE < ET8EK8_PRIV_MEM_SIZE #error PAGE_SIZE too small! #endif memcpy(buf, sensor->priv_mem, ET8EK8_PRIV_MEM_SIZE); return ET8EK8_PRIV_MEM_SIZE; } static DEVICE_ATTR_RO(priv_mem); /* -------------------------------------------------------------------------- * V4L2 subdev core operations */ static int et8ek8_registered(struct v4l2_subdev *subdev) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(subdev); int rval; dev_dbg(&client->dev, "registered!"); rval = device_create_file(&client->dev, &dev_attr_priv_mem); if (rval) { dev_err(&client->dev, "could not register sysfs entry\n"); return rval; } rval = et8ek8_dev_init(subdev); if (rval) goto err_file; rval = et8ek8_init_controls(sensor); if (rval) { dev_err(&client->dev, "controls initialization failed\n"); goto err_file; } __et8ek8_get_pad_format(sensor, NULL, 0, V4L2_SUBDEV_FORMAT_ACTIVE); return 0; err_file: device_remove_file(&client->dev, &dev_attr_priv_mem); return rval; } static int __et8ek8_set_power(struct et8ek8_sensor *sensor, bool on) { return on ? et8ek8_power_on(sensor) : et8ek8_power_off(sensor); } static int et8ek8_set_power(struct v4l2_subdev *subdev, int on) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); int ret = 0; mutex_lock(&sensor->power_lock); /* If the power count is modified from 0 to != 0 or from != 0 to 0, * update the power state. */ if (sensor->power_count == !on) { ret = __et8ek8_set_power(sensor, !!on); if (ret < 0) goto done; } /* Update the power count. */ sensor->power_count += on ? 1 : -1; WARN_ON(sensor->power_count < 0); done: mutex_unlock(&sensor->power_lock); return ret; } static int et8ek8_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct et8ek8_sensor *sensor = to_et8ek8_sensor(sd); struct v4l2_mbus_framefmt *format; struct et8ek8_reglist *reglist; reglist = et8ek8_reglist_find_type(&meta_reglist, ET8EK8_REGLIST_MODE); format = __et8ek8_get_pad_format(sensor, fh->state, 0, V4L2_SUBDEV_FORMAT_TRY); et8ek8_reglist_to_mbus(reglist, format); return et8ek8_set_power(sd, true); } static int et8ek8_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { return et8ek8_set_power(sd, false); } static const struct v4l2_subdev_video_ops et8ek8_video_ops = { .s_stream = et8ek8_s_stream, .g_frame_interval = et8ek8_get_frame_interval, .s_frame_interval = et8ek8_set_frame_interval, }; static const struct v4l2_subdev_core_ops et8ek8_core_ops = { .s_power = et8ek8_set_power, }; static const struct v4l2_subdev_pad_ops et8ek8_pad_ops = { .enum_mbus_code = et8ek8_enum_mbus_code, .enum_frame_size = et8ek8_enum_frame_size, .enum_frame_interval = et8ek8_enum_frame_ival, .get_fmt = et8ek8_get_pad_format, .set_fmt = et8ek8_set_pad_format, }; static const struct v4l2_subdev_ops et8ek8_ops = { .core = &et8ek8_core_ops, .video = &et8ek8_video_ops, .pad = &et8ek8_pad_ops, }; static const struct v4l2_subdev_internal_ops et8ek8_internal_ops = { .registered = et8ek8_registered, .open = et8ek8_open, .close = et8ek8_close, }; /* -------------------------------------------------------------------------- * I2C driver */ static int __maybe_unused et8ek8_suspend(struct device *dev) { struct v4l2_subdev *subdev = dev_get_drvdata(dev); struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); if (!sensor->power_count) return 0; return __et8ek8_set_power(sensor, false); } static int __maybe_unused et8ek8_resume(struct device *dev) { struct v4l2_subdev *subdev = dev_get_drvdata(dev); struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); if (!sensor->power_count) return 0; return __et8ek8_set_power(sensor, true); } static int et8ek8_probe(struct i2c_client *client) { struct et8ek8_sensor *sensor; struct device *dev = &client->dev; int ret; sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(sensor->reset)) { dev_dbg(&client->dev, "could not request reset gpio\n"); return PTR_ERR(sensor->reset); } sensor->vana = devm_regulator_get(dev, "vana"); if (IS_ERR(sensor->vana)) { dev_err(&client->dev, "could not get regulator for vana\n"); return PTR_ERR(sensor->vana); } sensor->ext_clk = devm_clk_get(dev, NULL); if (IS_ERR(sensor->ext_clk)) { dev_err(&client->dev, "could not get clock\n"); return PTR_ERR(sensor->ext_clk); } ret = of_property_read_u32(dev->of_node, "clock-frequency", &sensor->xclk_freq); if (ret) { dev_warn(dev, "can't get clock-frequency\n"); return ret; } mutex_init(&sensor->power_lock); v4l2_i2c_subdev_init(&sensor->subdev, client, &et8ek8_ops); sensor->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->subdev.internal_ops = &et8ek8_internal_ops; sensor->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&sensor->subdev.entity, 1, &sensor->pad); if (ret < 0) { dev_err(&client->dev, "media entity init failed!\n"); goto err_mutex; } ret = v4l2_async_register_subdev_sensor(&sensor->subdev); if (ret < 0) goto err_entity; dev_dbg(dev, "initialized!\n"); return 0; err_entity: media_entity_cleanup(&sensor->subdev.entity); err_mutex: mutex_destroy(&sensor->power_lock); return ret; } static void __exit et8ek8_remove(struct i2c_client *client) { struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct et8ek8_sensor *sensor = to_et8ek8_sensor(subdev); if (sensor->power_count) { WARN_ON(1); et8ek8_power_off(sensor); sensor->power_count = 0; } v4l2_device_unregister_subdev(&sensor->subdev); device_remove_file(&client->dev, &dev_attr_priv_mem); v4l2_ctrl_handler_free(&sensor->ctrl_handler); v4l2_async_unregister_subdev(&sensor->subdev); media_entity_cleanup(&sensor->subdev.entity); mutex_destroy(&sensor->power_lock); } static const struct of_device_id et8ek8_of_table[] = { { .compatible = "toshiba,et8ek8" }, { }, }; MODULE_DEVICE_TABLE(of, et8ek8_of_table); static const struct i2c_device_id et8ek8_id_table[] = { { ET8EK8_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, et8ek8_id_table); static const struct dev_pm_ops et8ek8_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(et8ek8_suspend, et8ek8_resume) }; static struct i2c_driver et8ek8_i2c_driver = { .driver = { .name = ET8EK8_NAME, .pm = &et8ek8_pm_ops, .of_match_table = et8ek8_of_table, }, .probe = et8ek8_probe, .remove = __exit_p(et8ek8_remove), .id_table = et8ek8_id_table, }; module_i2c_driver(et8ek8_i2c_driver); MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>, Pavel Machek <pavel@ucw.cz"); MODULE_DESCRIPTION("Toshiba ET8EK8 camera sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1