Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Robert Foss | 2029 | 91.03% | 4 | 22.22% |
Milen Mitkov | 87 | 3.90% | 1 | 5.56% |
Todor Tomov | 82 | 3.68% | 6 | 33.33% |
Jonathan Marek | 27 | 1.21% | 5 | 27.78% |
Arnd Bergmann | 3 | 0.13% | 1 | 5.56% |
Souptick Joarder | 1 | 0.04% | 1 | 5.56% |
Total | 2229 | 18 |
// SPDX-License-Identifier: GPL-2.0 /* * camss-csid-4-7.c * * Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module * * Copyright (C) 2020 Linaro Ltd. */ #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include "camss-csid.h" #include "camss-csid-gen2.h" #include "camss.h" /* The CSID 2 IP-block is different from the others, * and is of a bare-bones Lite version, with no PIX * interface support. As a result of that it has an * alternate register layout. */ #define IS_LITE (csid->id >= 2 ? 1 : 0) #define CSID_HW_VERSION 0x0 #define HW_VERSION_STEPPING 0 #define HW_VERSION_REVISION 16 #define HW_VERSION_GENERATION 28 #define CSID_RST_STROBES 0x10 #define RST_STROBES 0 #define CSID_CSI2_RX_IRQ_STATUS 0x20 #define CSID_CSI2_RX_IRQ_MASK 0x24 #define CSID_CSI2_RX_IRQ_CLEAR 0x28 #define CSID_CSI2_RDIN_IRQ_STATUS(rdi) ((IS_LITE ? 0x30 : 0x40) \ + 0x10 * (rdi)) #define CSID_CSI2_RDIN_IRQ_MASK(rdi) ((IS_LITE ? 0x34 : 0x44) \ + 0x10 * (rdi)) #define CSID_CSI2_RDIN_IRQ_CLEAR(rdi) ((IS_LITE ? 0x38 : 0x48) \ + 0x10 * (rdi)) #define CSID_CSI2_RDIN_IRQ_SET(rdi) ((IS_LITE ? 0x3C : 0x4C) \ + 0x10 * (rdi)) #define CSID_TOP_IRQ_STATUS 0x70 #define TOP_IRQ_STATUS_RESET_DONE 0 #define CSID_TOP_IRQ_MASK 0x74 #define CSID_TOP_IRQ_CLEAR 0x78 #define CSID_TOP_IRQ_SET 0x7C #define CSID_IRQ_CMD 0x80 #define IRQ_CMD_CLEAR 0 #define IRQ_CMD_SET 4 #define CSID_CSI2_RX_CFG0 0x100 #define CSI2_RX_CFG0_NUM_ACTIVE_LANES 0 #define CSI2_RX_CFG0_DL0_INPUT_SEL 4 #define CSI2_RX_CFG0_DL1_INPUT_SEL 8 #define CSI2_RX_CFG0_DL2_INPUT_SEL 12 #define CSI2_RX_CFG0_DL3_INPUT_SEL 16 #define CSI2_RX_CFG0_PHY_NUM_SEL 20 #define CSI2_RX_CFG0_PHY_TYPE_SEL 24 #define CSID_CSI2_RX_CFG1 0x104 #define CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN 0 #define CSI2_RX_CFG1_DE_SCRAMBLE_EN 1 #define CSI2_RX_CFG1_VC_MODE 2 #define CSI2_RX_CFG1_COMPLETE_STREAM_EN 4 #define CSI2_RX_CFG1_COMPLETE_STREAM_FRAME_TIMING 5 #define CSI2_RX_CFG1_MISR_EN 6 #define CSI2_RX_CFG1_CGC_MODE 7 #define CGC_MODE_DYNAMIC_GATING 0 #define CGC_MODE_ALWAYS_ON 1 #define CSID_RDI_CFG0(rdi) ((IS_LITE ? 0x200 : 0x300) \ + 0x100 * (rdi)) #define RDI_CFG0_BYTE_CNTR_EN 0 #define RDI_CFG0_FORMAT_MEASURE_EN 1 #define RDI_CFG0_TIMESTAMP_EN 2 #define RDI_CFG0_DROP_H_EN 3 #define RDI_CFG0_DROP_V_EN 4 #define RDI_CFG0_CROP_H_EN 5 #define RDI_CFG0_CROP_V_EN 6 #define RDI_CFG0_MISR_EN 7 #define RDI_CFG0_CGC_MODE 8 #define CGC_MODE_DYNAMIC 0 #define CGC_MODE_ALWAYS_ON 1 #define RDI_CFG0_PLAIN_ALIGNMENT 9 #define PLAIN_ALIGNMENT_LSB 0 #define PLAIN_ALIGNMENT_MSB 1 #define RDI_CFG0_PLAIN_FORMAT 10 #define RDI_CFG0_DECODE_FORMAT 12 #define RDI_CFG0_DATA_TYPE 16 #define RDI_CFG0_VIRTUAL_CHANNEL 22 #define RDI_CFG0_DT_ID 27 #define RDI_CFG0_EARLY_EOF_EN 29 #define RDI_CFG0_PACKING_FORMAT 30 #define RDI_CFG0_ENABLE 31 #define CSID_RDI_CFG1(rdi) ((IS_LITE ? 0x204 : 0x304)\ + 0x100 * (rdi)) #define RDI_CFG1_TIMESTAMP_STB_SEL 0 #define CSID_RDI_CTRL(rdi) ((IS_LITE ? 0x208 : 0x308)\ + 0x100 * (rdi)) #define RDI_CTRL_HALT_CMD 0 #define HALT_CMD_HALT_AT_FRAME_BOUNDARY 0 #define HALT_CMD_RESUME_AT_FRAME_BOUNDARY 1 #define RDI_CTRL_HALT_MODE 2 #define CSID_RDI_FRM_DROP_PATTERN(rdi) ((IS_LITE ? 0x20C : 0x30C)\ + 0x100 * (rdi)) #define CSID_RDI_FRM_DROP_PERIOD(rdi) ((IS_LITE ? 0x210 : 0x310)\ + 0x100 * (rdi)) #define CSID_RDI_IRQ_SUBSAMPLE_PATTERN(rdi) ((IS_LITE ? 0x214 : 0x314)\ + 0x100 * (rdi)) #define CSID_RDI_IRQ_SUBSAMPLE_PERIOD(rdi) ((IS_LITE ? 0x218 : 0x318)\ + 0x100 * (rdi)) #define CSID_RDI_RPP_PIX_DROP_PATTERN(rdi) ((IS_LITE ? 0x224 : 0x324)\ + 0x100 * (rdi)) #define CSID_RDI_RPP_PIX_DROP_PERIOD(rdi) ((IS_LITE ? 0x228 : 0x328)\ + 0x100 * (rdi)) #define CSID_RDI_RPP_LINE_DROP_PATTERN(rdi) ((IS_LITE ? 0x22C : 0x32C)\ + 0x100 * (rdi)) #define CSID_RDI_RPP_LINE_DROP_PERIOD(rdi) ((IS_LITE ? 0x230 : 0x330)\ + 0x100 * (rdi)) #define CSID_TPG_CTRL 0x600 #define TPG_CTRL_TEST_EN 0 #define TPG_CTRL_FS_PKT_EN 1 #define TPG_CTRL_FE_PKT_EN 2 #define TPG_CTRL_NUM_ACTIVE_LANES 4 #define TPG_CTRL_CYCLES_BETWEEN_PKTS 8 #define TPG_CTRL_NUM_TRAIL_BYTES 20 #define CSID_TPG_VC_CFG0 0x604 #define TPG_VC_CFG0_VC_NUM 0 #define TPG_VC_CFG0_NUM_ACTIVE_SLOTS 8 #define NUM_ACTIVE_SLOTS_0_ENABLED 0 #define NUM_ACTIVE_SLOTS_0_1_ENABLED 1 #define NUM_ACTIVE_SLOTS_0_1_2_ENABLED 2 #define NUM_ACTIVE_SLOTS_0_1_3_ENABLED 3 #define TPG_VC_CFG0_LINE_INTERLEAVING_MODE 10 #define INTELEAVING_MODE_INTERLEAVED 0 #define INTELEAVING_MODE_ONE_SHOT 1 #define TPG_VC_CFG0_NUM_FRAMES 16 #define CSID_TPG_VC_CFG1 0x608 #define TPG_VC_CFG1_H_BLANKING_COUNT 0 #define TPG_VC_CFG1_V_BLANKING_COUNT 12 #define TPG_VC_CFG1_V_BLANK_FRAME_WIDTH_SEL 24 #define CSID_TPG_LFSR_SEED 0x60C #define CSID_TPG_DT_n_CFG_0(n) (0x610 + (n) * 0xC) #define TPG_DT_n_CFG_0_FRAME_HEIGHT 0 #define TPG_DT_n_CFG_0_FRAME_WIDTH 16 #define CSID_TPG_DT_n_CFG_1(n) (0x614 + (n) * 0xC) #define TPG_DT_n_CFG_1_DATA_TYPE 0 #define TPG_DT_n_CFG_1_ECC_XOR_MASK 8 #define TPG_DT_n_CFG_1_CRC_XOR_MASK 16 #define CSID_TPG_DT_n_CFG_2(n) (0x618 + (n) * 0xC) #define TPG_DT_n_CFG_2_PAYLOAD_MODE 0 #define TPG_DT_n_CFG_2_USER_SPECIFIED_PAYLOAD 4 #define TPG_DT_n_CFG_2_ENCODE_FORMAT 16 #define CSID_TPG_COLOR_BARS_CFG 0x640 #define TPG_COLOR_BARS_CFG_UNICOLOR_BAR_EN 0 #define TPG_COLOR_BARS_CFG_UNICOLOR_BAR_SEL 4 #define TPG_COLOR_BARS_CFG_SPLIT_EN 5 #define TPG_COLOR_BARS_CFG_ROTATE_PERIOD 8 #define CSID_TPG_COLOR_BOX_CFG 0x644 #define TPG_COLOR_BOX_CFG_MODE 0 #define TPG_COLOR_BOX_PATTERN_SEL 2 static const struct csid_format csid_formats[] = { { MEDIA_BUS_FMT_UYVY8_2X8, DATA_TYPE_YUV422_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 2, }, { MEDIA_BUS_FMT_VYUY8_2X8, DATA_TYPE_YUV422_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 2, }, { MEDIA_BUS_FMT_YUYV8_2X8, DATA_TYPE_YUV422_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 2, }, { MEDIA_BUS_FMT_YVYU8_2X8, DATA_TYPE_YUV422_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 2, }, { MEDIA_BUS_FMT_SBGGR8_1X8, DATA_TYPE_RAW_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 1, }, { MEDIA_BUS_FMT_SGBRG8_1X8, DATA_TYPE_RAW_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 1, }, { MEDIA_BUS_FMT_SGRBG8_1X8, DATA_TYPE_RAW_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 1, }, { MEDIA_BUS_FMT_SRGGB8_1X8, DATA_TYPE_RAW_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 1, }, { MEDIA_BUS_FMT_SBGGR10_1X10, DATA_TYPE_RAW_10BIT, DECODE_FORMAT_UNCOMPRESSED_10_BIT, 10, 1, }, { MEDIA_BUS_FMT_SGBRG10_1X10, DATA_TYPE_RAW_10BIT, DECODE_FORMAT_UNCOMPRESSED_10_BIT, 10, 1, }, { MEDIA_BUS_FMT_SGRBG10_1X10, DATA_TYPE_RAW_10BIT, DECODE_FORMAT_UNCOMPRESSED_10_BIT, 10, 1, }, { MEDIA_BUS_FMT_SRGGB10_1X10, DATA_TYPE_RAW_10BIT, DECODE_FORMAT_UNCOMPRESSED_10_BIT, 10, 1, }, { MEDIA_BUS_FMT_Y8_1X8, DATA_TYPE_RAW_8BIT, DECODE_FORMAT_UNCOMPRESSED_8_BIT, 8, 1, }, { MEDIA_BUS_FMT_Y10_1X10, DATA_TYPE_RAW_10BIT, DECODE_FORMAT_UNCOMPRESSED_10_BIT, 10, 1, }, { MEDIA_BUS_FMT_SBGGR12_1X12, DATA_TYPE_RAW_12BIT, DECODE_FORMAT_UNCOMPRESSED_12_BIT, 12, 1, }, { MEDIA_BUS_FMT_SGBRG12_1X12, DATA_TYPE_RAW_12BIT, DECODE_FORMAT_UNCOMPRESSED_12_BIT, 12, 1, }, { MEDIA_BUS_FMT_SGRBG12_1X12, DATA_TYPE_RAW_12BIT, DECODE_FORMAT_UNCOMPRESSED_12_BIT, 12, 1, }, { MEDIA_BUS_FMT_SRGGB12_1X12, DATA_TYPE_RAW_12BIT, DECODE_FORMAT_UNCOMPRESSED_12_BIT, 12, 1, }, { MEDIA_BUS_FMT_SBGGR14_1X14, DATA_TYPE_RAW_14BIT, DECODE_FORMAT_UNCOMPRESSED_14_BIT, 14, 1, }, { MEDIA_BUS_FMT_SGBRG14_1X14, DATA_TYPE_RAW_14BIT, DECODE_FORMAT_UNCOMPRESSED_14_BIT, 14, 1, }, { MEDIA_BUS_FMT_SGRBG14_1X14, DATA_TYPE_RAW_14BIT, DECODE_FORMAT_UNCOMPRESSED_14_BIT, 14, 1, }, { MEDIA_BUS_FMT_SRGGB14_1X14, DATA_TYPE_RAW_14BIT, DECODE_FORMAT_UNCOMPRESSED_14_BIT, 14, 1, }, }; static void __csid_configure_stream(struct csid_device *csid, u8 enable, u8 vc) { struct csid_testgen_config *tg = &csid->testgen; u32 val; u32 phy_sel = 0; u8 lane_cnt = csid->phy.lane_cnt; /* Source pads matching RDI channels on hardware. Pad 1 -> RDI0, Pad 2 -> RDI1, etc. */ struct v4l2_mbus_framefmt *input_format = &csid->fmt[MSM_CSID_PAD_FIRST_SRC + vc]; const struct csid_format *format = csid_get_fmt_entry(csid->formats, csid->nformats, input_format->code); if (!lane_cnt) lane_cnt = 4; if (!tg->enabled) phy_sel = csid->phy.csiphy_id; if (enable) { u8 dt_id = vc; if (tg->enabled) { /* Config Test Generator */ vc = 0xa; /* configure one DT, infinite frames */ val = vc << TPG_VC_CFG0_VC_NUM; val |= INTELEAVING_MODE_ONE_SHOT << TPG_VC_CFG0_LINE_INTERLEAVING_MODE; val |= 0 << TPG_VC_CFG0_NUM_FRAMES; writel_relaxed(val, csid->base + CSID_TPG_VC_CFG0); val = 0x740 << TPG_VC_CFG1_H_BLANKING_COUNT; val |= 0x3ff << TPG_VC_CFG1_V_BLANKING_COUNT; writel_relaxed(val, csid->base + CSID_TPG_VC_CFG1); writel_relaxed(0x12345678, csid->base + CSID_TPG_LFSR_SEED); val = input_format->height & 0x1fff << TPG_DT_n_CFG_0_FRAME_HEIGHT; val |= input_format->width & 0x1fff << TPG_DT_n_CFG_0_FRAME_WIDTH; writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_0(0)); val = format->data_type << TPG_DT_n_CFG_1_DATA_TYPE; writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_1(0)); val = tg->mode << TPG_DT_n_CFG_2_PAYLOAD_MODE; val |= 0xBE << TPG_DT_n_CFG_2_USER_SPECIFIED_PAYLOAD; val |= format->decode_format << TPG_DT_n_CFG_2_ENCODE_FORMAT; writel_relaxed(val, csid->base + CSID_TPG_DT_n_CFG_2(0)); writel_relaxed(0, csid->base + CSID_TPG_COLOR_BARS_CFG); writel_relaxed(0, csid->base + CSID_TPG_COLOR_BOX_CFG); } val = 1 << RDI_CFG0_BYTE_CNTR_EN; val |= 1 << RDI_CFG0_FORMAT_MEASURE_EN; val |= 1 << RDI_CFG0_TIMESTAMP_EN; /* note: for non-RDI path, this should be format->decode_format */ val |= DECODE_FORMAT_PAYLOAD_ONLY << RDI_CFG0_DECODE_FORMAT; val |= format->data_type << RDI_CFG0_DATA_TYPE; val |= vc << RDI_CFG0_VIRTUAL_CHANNEL; val |= dt_id << RDI_CFG0_DT_ID; writel_relaxed(val, csid->base + CSID_RDI_CFG0(vc)); /* CSID_TIMESTAMP_STB_POST_IRQ */ val = 2 << RDI_CFG1_TIMESTAMP_STB_SEL; writel_relaxed(val, csid->base + CSID_RDI_CFG1(vc)); val = 1; writel_relaxed(val, csid->base + CSID_RDI_FRM_DROP_PERIOD(vc)); val = 0; writel_relaxed(val, csid->base + CSID_RDI_FRM_DROP_PATTERN(vc)); val = 1; writel_relaxed(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PERIOD(vc)); val = 0; writel_relaxed(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PATTERN(vc)); val = 1; writel_relaxed(val, csid->base + CSID_RDI_RPP_PIX_DROP_PERIOD(vc)); val = 0; writel_relaxed(val, csid->base + CSID_RDI_RPP_PIX_DROP_PATTERN(vc)); val = 1; writel_relaxed(val, csid->base + CSID_RDI_RPP_LINE_DROP_PERIOD(vc)); val = 0; writel_relaxed(val, csid->base + CSID_RDI_RPP_LINE_DROP_PATTERN(vc)); val = 0; writel_relaxed(val, csid->base + CSID_RDI_CTRL(vc)); val = readl_relaxed(csid->base + CSID_RDI_CFG0(vc)); val |= 1 << RDI_CFG0_ENABLE; writel_relaxed(val, csid->base + CSID_RDI_CFG0(vc)); } if (tg->enabled) { val = enable << TPG_CTRL_TEST_EN; val |= 1 << TPG_CTRL_FS_PKT_EN; val |= 1 << TPG_CTRL_FE_PKT_EN; val |= (lane_cnt - 1) << TPG_CTRL_NUM_ACTIVE_LANES; val |= 0x64 << TPG_CTRL_CYCLES_BETWEEN_PKTS; val |= 0xA << TPG_CTRL_NUM_TRAIL_BYTES; writel_relaxed(val, csid->base + CSID_TPG_CTRL); } val = (lane_cnt - 1) << CSI2_RX_CFG0_NUM_ACTIVE_LANES; val |= csid->phy.lane_assign << CSI2_RX_CFG0_DL0_INPUT_SEL; val |= phy_sel << CSI2_RX_CFG0_PHY_NUM_SEL; writel_relaxed(val, csid->base + CSID_CSI2_RX_CFG0); val = 1 << CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN; val |= 1 << CSI2_RX_CFG1_MISR_EN; writel_relaxed(val, csid->base + CSID_CSI2_RX_CFG1); if (enable) val = HALT_CMD_RESUME_AT_FRAME_BOUNDARY << RDI_CTRL_HALT_CMD; else val = HALT_CMD_HALT_AT_FRAME_BOUNDARY << RDI_CTRL_HALT_CMD; writel_relaxed(val, csid->base + CSID_RDI_CTRL(vc)); } static void csid_configure_stream(struct csid_device *csid, u8 enable) { u8 i; /* Loop through all enabled VCs and configure stream for each */ for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++) if (csid->phy.en_vc & BIT(i)) __csid_configure_stream(csid, enable, i); } static int csid_configure_testgen_pattern(struct csid_device *csid, s32 val) { if (val > 0 && val <= csid->testgen.nmodes) csid->testgen.mode = val; return 0; } /* * csid_hw_version - CSID hardware version query * @csid: CSID device * * Return HW version or error */ static u32 csid_hw_version(struct csid_device *csid) { u32 hw_version; u32 hw_gen; u32 hw_rev; u32 hw_step; hw_version = readl_relaxed(csid->base + CSID_HW_VERSION); hw_gen = (hw_version >> HW_VERSION_GENERATION) & 0xF; hw_rev = (hw_version >> HW_VERSION_REVISION) & 0xFFF; hw_step = (hw_version >> HW_VERSION_STEPPING) & 0xFFFF; dev_dbg(csid->camss->dev, "CSID HW Version = %u.%u.%u\n", hw_gen, hw_rev, hw_step); return hw_version; } /* * csid_isr - CSID module interrupt service routine * @irq: Interrupt line * @dev: CSID device * * Return IRQ_HANDLED on success */ static irqreturn_t csid_isr(int irq, void *dev) { struct csid_device *csid = dev; u32 val; u8 reset_done; int i; val = readl_relaxed(csid->base + CSID_TOP_IRQ_STATUS); writel_relaxed(val, csid->base + CSID_TOP_IRQ_CLEAR); reset_done = val & BIT(TOP_IRQ_STATUS_RESET_DONE); val = readl_relaxed(csid->base + CSID_CSI2_RX_IRQ_STATUS); writel_relaxed(val, csid->base + CSID_CSI2_RX_IRQ_CLEAR); /* Read and clear IRQ status for each enabled RDI channel */ for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++) if (csid->phy.en_vc & BIT(i)) { val = readl_relaxed(csid->base + CSID_CSI2_RDIN_IRQ_STATUS(i)); writel_relaxed(val, csid->base + CSID_CSI2_RDIN_IRQ_CLEAR(i)); } val = 1 << IRQ_CMD_CLEAR; writel_relaxed(val, csid->base + CSID_IRQ_CMD); if (reset_done) complete(&csid->reset_complete); return IRQ_HANDLED; } /* * csid_reset - Trigger reset on CSID module and wait to complete * @csid: CSID device * * Return 0 on success or a negative error code otherwise */ static int csid_reset(struct csid_device *csid) { unsigned long time; u32 val; reinit_completion(&csid->reset_complete); writel_relaxed(1, csid->base + CSID_TOP_IRQ_CLEAR); writel_relaxed(1, csid->base + CSID_IRQ_CMD); writel_relaxed(1, csid->base + CSID_TOP_IRQ_MASK); writel_relaxed(1, csid->base + CSID_IRQ_CMD); /* preserve registers */ val = 0x1e << RST_STROBES; writel_relaxed(val, csid->base + CSID_RST_STROBES); time = wait_for_completion_timeout(&csid->reset_complete, msecs_to_jiffies(CSID_RESET_TIMEOUT_MS)); if (!time) { dev_err(csid->camss->dev, "CSID reset timeout\n"); return -EIO; } return 0; } static u32 csid_src_pad_code(struct csid_device *csid, u32 sink_code, unsigned int match_format_idx, u32 match_code) { switch (sink_code) { case MEDIA_BUS_FMT_SBGGR10_1X10: { u32 src_code[] = { MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE, }; return csid_find_code(src_code, ARRAY_SIZE(src_code), match_format_idx, match_code); } case MEDIA_BUS_FMT_Y10_1X10: { u32 src_code[] = { MEDIA_BUS_FMT_Y10_1X10, MEDIA_BUS_FMT_Y10_2X8_PADHI_LE, }; return csid_find_code(src_code, ARRAY_SIZE(src_code), match_format_idx, match_code); } default: if (match_format_idx > 0) return 0; return sink_code; } } static void csid_subdev_init(struct csid_device *csid) { csid->formats = csid_formats; csid->nformats = ARRAY_SIZE(csid_formats); csid->testgen.modes = csid_testgen_modes; csid->testgen.nmodes = CSID_PAYLOAD_MODE_NUM_SUPPORTED_GEN2; } const struct csid_hw_ops csid_ops_gen2 = { .configure_stream = csid_configure_stream, .configure_testgen_pattern = csid_configure_testgen_pattern, .hw_version = csid_hw_version, .isr = csid_isr, .reset = csid_reset, .src_pad_code = csid_src_pad_code, .subdev_init = csid_subdev_init, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1