Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Manjunatha Halli | 7368 | 96.82% | 2 | 7.14% |
Mauro Carvalho Chehab | 53 | 0.70% | 6 | 21.43% |
Alexey Khoroshilov | 45 | 0.59% | 1 | 3.57% |
Dan Carpenter | 35 | 0.46% | 4 | 14.29% |
Xi Wang | 30 | 0.39% | 1 | 3.57% |
Allen Pais | 24 | 0.32% | 1 | 3.57% |
Hans Verkuil | 17 | 0.22% | 3 | 10.71% |
Kees Cook | 15 | 0.20% | 1 | 3.57% |
Wang Qing | 7 | 0.09% | 1 | 3.57% |
Fabian Frederick | 4 | 0.05% | 1 | 3.57% |
Geliang Tang | 3 | 0.04% | 1 | 3.57% |
Lucas De Marchi | 3 | 0.04% | 1 | 3.57% |
Thomas Gleixner | 2 | 0.03% | 1 | 3.57% |
Ezequiel García | 1 | 0.01% | 1 | 3.57% |
Johannes Berg | 1 | 0.01% | 1 | 3.57% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 3.57% |
Colin Ian King | 1 | 0.01% | 1 | 3.57% |
Total | 7610 | 28 |
// SPDX-License-Identifier: GPL-2.0-only /* * FM Driver for Connectivity chip of Texas Instruments. * * This sub-module of FM driver is common for FM RX and TX * functionality. This module is responsible for: * 1) Forming group of Channel-8 commands to perform particular * functionality (eg., frequency set require more than * one Channel-8 command to be sent to the chip). * 2) Sending each Channel-8 command to the chip and reading * response back over Shared Transport. * 3) Managing TX and RX Queues and Tasklets. * 4) Handling FM Interrupt packet and taking appropriate action. * 5) Loading FM firmware to the chip (common, FM TX, and FM RX * firmware files based on mode selection) * * Copyright (C) 2011 Texas Instruments * Author: Raja Mani <raja_mani@ti.com> * Author: Manjunatha Halli <manjunatha_halli@ti.com> */ #include <linux/delay.h> #include <linux/firmware.h> #include <linux/module.h> #include <linux/nospec.h> #include <linux/jiffies.h> #include "fmdrv.h" #include "fmdrv_v4l2.h" #include "fmdrv_common.h" #include <linux/ti_wilink_st.h> #include "fmdrv_rx.h" #include "fmdrv_tx.h" /* Region info */ static struct region_info region_configs[] = { /* Europe/US */ { .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, .bot_freq = 87500, /* 87.5 MHz */ .top_freq = 108000, /* 108 MHz */ .fm_band = 0, }, /* Japan */ { .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, .bot_freq = 76000, /* 76 MHz */ .top_freq = 90000, /* 90 MHz */ .fm_band = 1, }, }; /* Band selection */ static u8 default_radio_region; /* Europe/US */ module_param(default_radio_region, byte, 0); MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); /* RDS buffer blocks */ static u32 default_rds_buf = 300; module_param(default_rds_buf, uint, 0444); MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries"); /* Radio Nr */ static u32 radio_nr = -1; module_param(radio_nr, int, 0444); MODULE_PARM_DESC(radio_nr, "Radio Nr"); /* FM irq handlers forward declaration */ static void fm_irq_send_flag_getcmd(struct fmdev *); static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); static void fm_irq_handle_hw_malfunction(struct fmdev *); static void fm_irq_handle_rds_start(struct fmdev *); static void fm_irq_send_rdsdata_getcmd(struct fmdev *); static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); static void fm_irq_handle_rds_finish(struct fmdev *); static void fm_irq_handle_tune_op_ended(struct fmdev *); static void fm_irq_handle_power_enb(struct fmdev *); static void fm_irq_handle_low_rssi_start(struct fmdev *); static void fm_irq_afjump_set_pi(struct fmdev *); static void fm_irq_handle_set_pi_resp(struct fmdev *); static void fm_irq_afjump_set_pimask(struct fmdev *); static void fm_irq_handle_set_pimask_resp(struct fmdev *); static void fm_irq_afjump_setfreq(struct fmdev *); static void fm_irq_handle_setfreq_resp(struct fmdev *); static void fm_irq_afjump_enableint(struct fmdev *); static void fm_irq_afjump_enableint_resp(struct fmdev *); static void fm_irq_start_afjump(struct fmdev *); static void fm_irq_handle_start_afjump_resp(struct fmdev *); static void fm_irq_afjump_rd_freq(struct fmdev *); static void fm_irq_afjump_rd_freq_resp(struct fmdev *); static void fm_irq_handle_low_rssi_finish(struct fmdev *); static void fm_irq_send_intmsk_cmd(struct fmdev *); static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); /* * When FM common module receives interrupt packet, following handlers * will be executed one after another to service the interrupt(s) */ enum fmc_irq_handler_index { FM_SEND_FLAG_GETCMD_IDX, FM_HANDLE_FLAG_GETCMD_RESP_IDX, /* HW malfunction irq handler */ FM_HW_MAL_FUNC_IDX, /* RDS threshold reached irq handler */ FM_RDS_START_IDX, FM_RDS_SEND_RDS_GETCMD_IDX, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, FM_RDS_FINISH_IDX, /* Tune operation ended irq handler */ FM_HW_TUNE_OP_ENDED_IDX, /* TX power enable irq handler */ FM_HW_POWER_ENB_IDX, /* Low RSSI irq handler */ FM_LOW_RSSI_START_IDX, FM_AF_JUMP_SETPI_IDX, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, FM_AF_JUMP_SETPI_MASK_IDX, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, FM_AF_JUMP_SET_AF_FREQ_IDX, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, FM_AF_JUMP_ENABLE_INT_IDX, FM_AF_JUMP_ENABLE_INT_RESP_IDX, FM_AF_JUMP_START_AFJUMP_IDX, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, FM_AF_JUMP_RD_FREQ_IDX, FM_AF_JUMP_RD_FREQ_RESP_IDX, FM_LOW_RSSI_FINISH_IDX, /* Interrupt process post action */ FM_SEND_INTMSK_CMD_IDX, FM_HANDLE_INTMSK_CMD_RESP_IDX, }; /* FM interrupt handler table */ static int_handler_prototype int_handler_table[] = { fm_irq_send_flag_getcmd, fm_irq_handle_flag_getcmd_resp, fm_irq_handle_hw_malfunction, fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ fm_irq_send_rdsdata_getcmd, fm_irq_handle_rdsdata_getcmd_resp, fm_irq_handle_rds_finish, fm_irq_handle_tune_op_ended, fm_irq_handle_power_enb, /* TX power enable irq handler */ fm_irq_handle_low_rssi_start, fm_irq_afjump_set_pi, fm_irq_handle_set_pi_resp, fm_irq_afjump_set_pimask, fm_irq_handle_set_pimask_resp, fm_irq_afjump_setfreq, fm_irq_handle_setfreq_resp, fm_irq_afjump_enableint, fm_irq_afjump_enableint_resp, fm_irq_start_afjump, fm_irq_handle_start_afjump_resp, fm_irq_afjump_rd_freq, fm_irq_afjump_rd_freq_resp, fm_irq_handle_low_rssi_finish, fm_irq_send_intmsk_cmd, /* Interrupt process post action */ fm_irq_handle_intmsk_cmd_resp }; static long (*g_st_write) (struct sk_buff *skb); static struct completion wait_for_fmdrv_reg_comp; static inline void fm_irq_call(struct fmdev *fmdev) { fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); } /* Continue next function in interrupt handler table */ static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) { fmdev->irq_info.stage = stage; fm_irq_call(fmdev); } static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) { fmdev->irq_info.stage = stage; mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); } #ifdef FM_DUMP_TXRX_PKT /* To dump outgoing FM Channel-8 packets */ inline void dump_tx_skb_data(struct sk_buff *skb) { int len, len_org; u8 index; struct fm_cmd_msg_hdr *cmd_hdr; cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, cmd_hdr->len, cmd_hdr->op, cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); len_org = skb->len - FM_CMD_MSG_HDR_SIZE; if (len_org > 0) { printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen); len = min(len_org, 14); for (index = 0; index < len; index++) printk(KERN_CONT "%x ", skb->data[FM_CMD_MSG_HDR_SIZE + index]); printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); } printk(KERN_CONT "\n"); } /* To dump incoming FM Channel-8 packets */ inline void dump_rx_skb_data(struct sk_buff *skb) { int len, len_org; u8 index; struct fm_event_msg_hdr *evt_hdr; evt_hdr = (struct fm_event_msg_hdr *)skb->data; printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len, evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); len_org = skb->len - FM_EVT_MSG_HDR_SIZE; if (len_org > 0) { printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen); len = min(len_org, 14); for (index = 0; index < len; index++) printk(KERN_CONT "%x ", skb->data[FM_EVT_MSG_HDR_SIZE + index]); printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); } printk(KERN_CONT "\n"); } #endif void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) { fmdev->rx.region = region_configs[region_to_set]; } /* * FM common sub-module will schedule this tasklet whenever it receives * FM packet from ST driver. */ static void recv_tasklet(struct tasklet_struct *t) { struct fmdev *fmdev; struct fm_irq *irq_info; struct fm_event_msg_hdr *evt_hdr; struct sk_buff *skb; u8 num_fm_hci_cmds; unsigned long flags; fmdev = from_tasklet(fmdev, t, tx_task); irq_info = &fmdev->irq_info; /* Process all packets in the RX queue */ while ((skb = skb_dequeue(&fmdev->rx_q))) { if (skb->len < sizeof(struct fm_event_msg_hdr)) { fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n", skb, skb->len, sizeof(struct fm_event_msg_hdr)); kfree_skb(skb); continue; } evt_hdr = (void *)skb->data; num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; /* FM interrupt packet? */ if (evt_hdr->op == FM_INTERRUPT) { /* FM interrupt handler started already? */ if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { set_bit(FM_INTTASK_RUNNING, &fmdev->flag); if (irq_info->stage != 0) { fmerr("Inval stage resetting to zero\n"); irq_info->stage = 0; } /* * Execute first function in interrupt handler * table. */ irq_info->handlers[irq_info->stage](fmdev); } else { set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); } kfree_skb(skb); } /* Anyone waiting for this with completion handler? */ else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { spin_lock_irqsave(&fmdev->resp_skb_lock, flags); fmdev->resp_skb = skb; spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); complete(fmdev->resp_comp); fmdev->resp_comp = NULL; atomic_set(&fmdev->tx_cnt, 1); } /* Is this for interrupt handler? */ else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { if (fmdev->resp_skb != NULL) fmerr("Response SKB ptr not NULL\n"); spin_lock_irqsave(&fmdev->resp_skb_lock, flags); fmdev->resp_skb = skb; spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); /* Execute interrupt handler where state index points */ irq_info->handlers[irq_info->stage](fmdev); kfree_skb(skb); atomic_set(&fmdev->tx_cnt, 1); } else { fmerr("Nobody claimed SKB(%p),purging\n", skb); } /* * Check flow control field. If Num_FM_HCI_Commands field is * not zero, schedule FM TX tasklet. */ if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) if (!skb_queue_empty(&fmdev->tx_q)) tasklet_schedule(&fmdev->tx_task); } } /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ static void send_tasklet(struct tasklet_struct *t) { struct fmdev *fmdev; struct sk_buff *skb; int len; fmdev = from_tasklet(fmdev, t, tx_task); if (!atomic_read(&fmdev->tx_cnt)) return; /* Check, is there any timeout happened to last transmitted packet */ if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) { fmerr("TX timeout occurred\n"); atomic_set(&fmdev->tx_cnt, 1); } /* Send queued FM TX packets */ skb = skb_dequeue(&fmdev->tx_q); if (!skb) return; atomic_dec(&fmdev->tx_cnt); fmdev->pre_op = fm_cb(skb)->fm_op; if (fmdev->resp_comp != NULL) fmerr("Response completion handler is not NULL\n"); fmdev->resp_comp = fm_cb(skb)->completion; /* Write FM packet to ST driver */ len = g_st_write(skb); if (len < 0) { kfree_skb(skb); fmdev->resp_comp = NULL; fmerr("TX tasklet failed to send skb(%p)\n", skb); atomic_set(&fmdev->tx_cnt, 1); } else { fmdev->last_tx_jiffies = jiffies; } } /* * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for * transmission */ static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, int payload_len, struct completion *wait_completion) { struct sk_buff *skb; struct fm_cmd_msg_hdr *hdr; int size; if (fm_op >= FM_INTERRUPT) { fmerr("Invalid fm opcode - %d\n", fm_op); return -EINVAL; } if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { fmerr("Payload data is NULL during fw download\n"); return -EINVAL; } if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) size = FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); else size = payload_len; skb = alloc_skb(size, GFP_ATOMIC); if (!skb) { fmerr("No memory to create new SKB\n"); return -ENOMEM; } /* * Don't fill FM header info for the commands which come from * FM firmware file. */ if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { /* Fill command header info */ hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE); hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; /* FM opcode */ hdr->op = fm_op; /* read/write type */ hdr->rd_wr = type; hdr->dlen = payload_len; fm_cb(skb)->fm_op = fm_op; /* * If firmware download has finished and the command is * not a read command then payload is != NULL - a write * command with u16 payload - convert to be16 */ if (payload != NULL) *(__be16 *)payload = cpu_to_be16(*(u16 *)payload); } else if (payload != NULL) { fm_cb(skb)->fm_op = *((u8 *)payload + 2); } if (payload != NULL) skb_put_data(skb, payload, payload_len); fm_cb(skb)->completion = wait_completion; skb_queue_tail(&fmdev->tx_q, skb); tasklet_schedule(&fmdev->tx_task); return 0; } /* Sends FM Channel-8 command to the chip and waits for the response */ int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, unsigned int payload_len, void *response, int *response_len) { struct sk_buff *skb; struct fm_event_msg_hdr *evt_hdr; unsigned long flags; int ret; init_completion(&fmdev->maintask_comp); ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, &fmdev->maintask_comp); if (ret) return ret; if (!wait_for_completion_timeout(&fmdev->maintask_comp, FM_DRV_TX_TIMEOUT)) { fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n", jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); return -ETIMEDOUT; } if (!fmdev->resp_skb) { fmerr("Response SKB is missing\n"); return -EFAULT; } spin_lock_irqsave(&fmdev->resp_skb_lock, flags); skb = fmdev->resp_skb; fmdev->resp_skb = NULL; spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); evt_hdr = (void *)skb->data; if (evt_hdr->status != 0) { fmerr("Received event pkt status(%d) is not zero\n", evt_hdr->status); kfree_skb(skb); return -EIO; } /* Send response data to caller */ if (response != NULL && response_len != NULL && evt_hdr->dlen && evt_hdr->dlen <= payload_len) { /* Skip header info and copy only response data */ skb_pull(skb, sizeof(struct fm_event_msg_hdr)); memcpy(response, skb->data, evt_hdr->dlen); *response_len = evt_hdr->dlen; } else if (response_len != NULL && evt_hdr->dlen == 0) { *response_len = 0; } kfree_skb(skb); return 0; } /* --- Helper functions used in FM interrupt handlers ---*/ static inline int check_cmdresp_status(struct fmdev *fmdev, struct sk_buff **skb) { struct fm_event_msg_hdr *fm_evt_hdr; unsigned long flags; del_timer(&fmdev->irq_info.timer); spin_lock_irqsave(&fmdev->resp_skb_lock, flags); *skb = fmdev->resp_skb; fmdev->resp_skb = NULL; spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); fm_evt_hdr = (void *)(*skb)->data; if (fm_evt_hdr->status != 0) { fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n", fm_evt_hdr->op); mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); return -1; } return 0; } static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) { struct sk_buff *skb; if (!check_cmdresp_status(fmdev, &skb)) fm_irq_call_stage(fmdev, stage); } /* * Interrupt process timeout handler. * One of the irq handler did not get proper response from the chip. So take * recovery action here. FM interrupts are disabled in the beginning of * interrupt process. Therefore reset stage index to re-enable default * interrupts. So that next interrupt will be processed as usual. */ static void int_timeout_handler(struct timer_list *t) { struct fmdev *fmdev; struct fm_irq *fmirq; fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); fmdev = from_timer(fmdev, t, irq_info.timer); fmirq = &fmdev->irq_info; fmirq->retry++; if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { /* Stop recovery action (interrupt reenable process) and * reset stage index & retry count values */ fmirq->stage = 0; fmirq->retry = 0; fmerr("Recovery action failed duringirq processing, max retry reached\n"); return; } fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); } /* --------- FM interrupt handlers ------------*/ static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) { u16 flag; /* Send FLAG_GET command , to know the source of interrupt */ if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); } static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) { struct sk_buff *skb; struct fm_event_msg_hdr *fm_evt_hdr; if (check_cmdresp_status(fmdev, &skb)) return; fm_evt_hdr = (void *)skb->data; if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag)) return; /* Skip header info and copy only response data */ skb_pull(skb, sizeof(struct fm_event_msg_hdr)); memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag); fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); /* Continue next function in interrupt handler table */ fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); } static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) { if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) fmerr("irq: HW MAL int received - do nothing\n"); /* Continue next function in interrupt handler table */ fm_irq_call_stage(fmdev, FM_RDS_START_IDX); } static void fm_irq_handle_rds_start(struct fmdev *fmdev) { if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { fmdbg("irq: rds threshold reached\n"); fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; } else { /* Continue next function in interrupt handler table */ fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; } fm_irq_call(fmdev); } static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) { /* Send the command to read RDS data from the chip */ if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); } /* Keeps track of current RX channel AF (Alternate Frequency) */ static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) { struct tuned_station_info *stat_info = &fmdev->rx.stat_info; u8 reg_idx = fmdev->rx.region.fm_band; u8 index; u32 freq; /* First AF indicates the number of AF follows. Reset the list */ if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); fmdev->rx.stat_info.afcache_size = 0; fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); return; } if (af < FM_RDS_MIN_AF) return; if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) return; if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) return; freq = fmdev->rx.region.bot_freq + (af * 100); if (freq == fmdev->rx.freq) { fmdbg("Current freq(%d) is matching with received AF(%d)\n", fmdev->rx.freq, freq); return; } /* Do check in AF cache */ for (index = 0; index < stat_info->afcache_size; index++) { if (stat_info->af_cache[index] == freq) break; } /* Reached the limit of the list - ignore the next AF */ if (index == stat_info->af_list_max) { fmdbg("AF cache is full\n"); return; } /* * If we reached the end of the list then this AF is not * in the list - add it. */ if (index == stat_info->afcache_size) { fmdbg("Storing AF %d to cache index %d\n", freq, index); stat_info->af_cache[index] = freq; stat_info->afcache_size++; } } /* * Converts RDS buffer data from big endian format * to little endian format. */ static void fm_rdsparse_swapbytes(struct fmdev *fmdev, struct fm_rdsdata_format *rds_format) { u8 index = 0; u8 *rds_buff; /* * Since in Orca the 2 RDS Data bytes are in little endian and * in Dolphin they are in big endian, the parsing of the RDS data * is chip dependent */ if (fmdev->asci_id != 0x6350) { rds_buff = &rds_format->data.groupdatabuff.buff[0]; while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { swap(rds_buff[index], rds_buff[index + 1]); index += 2; } } } static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) { struct sk_buff *skb; struct fm_rdsdata_format rds_fmt; struct fm_rds *rds = &fmdev->rx.rds; unsigned long group_idx, flags; u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE]; u8 type, blk_idx, idx; u16 cur_picode; u32 rds_len; if (check_cmdresp_status(fmdev, &skb)) return; /* Skip header info */ skb_pull(skb, sizeof(struct fm_event_msg_hdr)); rds_data = skb->data; rds_len = skb->len; /* Parse the RDS data */ while (rds_len >= FM_RDS_BLK_SIZE) { meta_data = rds_data[2]; /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ type = (meta_data & 0x07); /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); fmdbg("Block index:%d(%s)\n", blk_idx, (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) break; if (blk_idx > FM_RDS_BLK_IDX_D) { fmdbg("Block sequence mismatch\n"); rds->last_blk_idx = -1; break; } /* Skip checkword (control) byte and copy only data byte */ idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1), FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1)); memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data, FM_RDS_BLK_SIZE - 1); rds->last_blk_idx = blk_idx; /* If completed a whole group then handle it */ if (blk_idx == FM_RDS_BLK_IDX_D) { fmdbg("Good block received\n"); fm_rdsparse_swapbytes(fmdev, &rds_fmt); /* * Extract PI code and store in local cache. * We need this during AF switch processing. */ cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata); if (fmdev->rx.stat_info.picode != cur_picode) fmdev->rx.stat_info.picode = cur_picode; fmdbg("picode:%d\n", cur_picode); group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, (group_idx % 2) ? "B" : "A"); group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); } } rds_len -= FM_RDS_BLK_SIZE; rds_data += FM_RDS_BLK_SIZE; } /* Copy raw rds data to internal rds buffer */ rds_data = skb->data; rds_len = skb->len; spin_lock_irqsave(&fmdev->rds_buff_lock, flags); while (rds_len > 0) { /* * Fill RDS buffer as per V4L2 specification. * Store control byte */ type = (rds_data[2] & 0x07); blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); tmpbuf[2] = blk_idx; /* Offset name */ tmpbuf[2] |= blk_idx << 3; /* Received offset */ /* Store data byte */ tmpbuf[0] = rds_data[0]; tmpbuf[1] = rds_data[1]; memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; /* Check for overflow & start over */ if (rds->wr_idx == rds->rd_idx) { fmdbg("RDS buffer overflow\n"); rds->wr_idx = 0; rds->rd_idx = 0; break; } rds_len -= FM_RDS_BLK_SIZE; rds_data += FM_RDS_BLK_SIZE; } spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); /* Wakeup read queue */ if (rds->wr_idx != rds->rd_idx) wake_up_interruptible(&rds->read_queue); fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); } static void fm_irq_handle_rds_finish(struct fmdev *fmdev) { fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); } static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) { if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> irq_info.mask) { fmdbg("irq: tune ended/bandlimit reached\n"); if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; } else { complete(&fmdev->maintask_comp); fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; } } else fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; fm_irq_call(fmdev); } static void fm_irq_handle_power_enb(struct fmdev *fmdev) { if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { fmdbg("irq: Power Enabled/Disabled\n"); complete(&fmdev->maintask_comp); } fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); } static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) { if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && (fmdev->rx.freq != FM_UNDEFINED_FREQ) && (fmdev->rx.stat_info.afcache_size != 0)) { fmdbg("irq: rssi level has fallen below threshold level\n"); /* Disable further low RSSI interrupts */ fmdev->irq_info.mask &= ~FM_LEV_EVENT; fmdev->rx.afjump_idx = 0; fmdev->rx.freq_before_jump = fmdev->rx.freq; fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; } else { /* Continue next function in interrupt handler table */ fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; } fm_irq_call(fmdev); } static void fm_irq_afjump_set_pi(struct fmdev *fmdev) { u16 payload; /* Set PI code - must be updated if the AF list is not empty */ payload = fmdev->rx.stat_info.picode; if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); } static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) { fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); } /* * Set PI mask. * 0xFFFF = Enable PI code matching * 0x0000 = Disable PI code matching */ static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) { u16 payload; payload = 0x0000; if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); } static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) { fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); } static void fm_irq_afjump_setfreq(struct fmdev *fmdev) { u16 frq_index; u16 payload; fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - fmdev->rx.region.bot_freq) / FM_FREQ_MUL; payload = frq_index; if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); } static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) { fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); } static void fm_irq_afjump_enableint(struct fmdev *fmdev) { u16 payload; /* Enable FR (tuning operation ended) interrupt */ payload = FM_FR_EVENT; if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); } static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) { fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); } static void fm_irq_start_afjump(struct fmdev *fmdev) { u16 payload; payload = FM_TUNER_AF_JUMP_MODE; if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); } static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) { struct sk_buff *skb; if (check_cmdresp_status(fmdev, &skb)) return; fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); } static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) { u16 payload; if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); } static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) { struct sk_buff *skb; u16 read_freq; u32 curr_freq, jumped_freq; if (check_cmdresp_status(fmdev, &skb)) return; /* Skip header info and copy only response data */ skb_pull(skb, sizeof(struct fm_event_msg_hdr)); memcpy(&read_freq, skb->data, sizeof(read_freq)); read_freq = be16_to_cpu((__force __be16)read_freq); curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; /* If the frequency was changed the jump succeeded */ if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { fmdbg("Successfully switched to alternate freq %d\n", curr_freq); fmdev->rx.freq = curr_freq; fm_rx_reset_rds_cache(fmdev); /* AF feature is on, enable low level RSSI interrupt */ if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) fmdev->irq_info.mask |= FM_LEV_EVENT; fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; } else { /* jump to the next freq in the AF list */ fmdev->rx.afjump_idx++; /* If we reached the end of the list - stop searching */ if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { fmdbg("AF switch processing failed\n"); fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; } else { /* AF List is not over - try next one */ fmdbg("Trying next freq in AF cache\n"); fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; } } fm_irq_call(fmdev); } static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) { fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); } static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) { u16 payload; /* Re-enable FM interrupts */ payload = fmdev->irq_info.mask; if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); } static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) { struct sk_buff *skb; if (check_cmdresp_status(fmdev, &skb)) return; /* * This is last function in interrupt table to be executed. * So, reset stage index to 0. */ fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; /* Start processing any pending interrupt */ if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); else clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); } /* Returns availability of RDS data in internal buffer */ int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, struct poll_table_struct *pts) { poll_wait(file, &fmdev->rx.rds.read_queue, pts); if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) return 0; return -EAGAIN; } /* Copies RDS data from internal buffer to user buffer */ int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, u8 __user *buf, size_t count) { u32 block_count; u8 tmpbuf[FM_RDS_BLK_SIZE]; unsigned long flags; int ret; if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { if (file->f_flags & O_NONBLOCK) return -EWOULDBLOCK; ret = wait_event_interruptible(fmdev->rx.rds.read_queue, (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); if (ret) return -EINTR; } /* Calculate block count from byte count */ count /= FM_RDS_BLK_SIZE; block_count = 0; ret = 0; while (block_count < count) { spin_lock_irqsave(&fmdev->rds_buff_lock, flags); if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); break; } memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], FM_RDS_BLK_SIZE); fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) fmdev->rx.rds.rd_idx = 0; spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE)) break; block_count++; buf += FM_RDS_BLK_SIZE; ret += FM_RDS_BLK_SIZE; } return ret; } int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) { switch (fmdev->curr_fmmode) { case FM_MODE_RX: return fm_rx_set_freq(fmdev, freq_to_set); case FM_MODE_TX: return fm_tx_set_freq(fmdev, freq_to_set); default: return -EINVAL; } } int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) { if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { fmerr("RX frequency is not set\n"); return -EPERM; } if (cur_tuned_frq == NULL) { fmerr("Invalid memory\n"); return -ENOMEM; } switch (fmdev->curr_fmmode) { case FM_MODE_RX: *cur_tuned_frq = fmdev->rx.freq; return 0; case FM_MODE_TX: *cur_tuned_frq = 0; /* TODO : Change this later */ return 0; default: return -EINVAL; } } int fmc_set_region(struct fmdev *fmdev, u8 region_to_set) { switch (fmdev->curr_fmmode) { case FM_MODE_RX: return fm_rx_set_region(fmdev, region_to_set); case FM_MODE_TX: return fm_tx_set_region(fmdev, region_to_set); default: return -EINVAL; } } int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) { switch (fmdev->curr_fmmode) { case FM_MODE_RX: return fm_rx_set_mute_mode(fmdev, mute_mode_toset); case FM_MODE_TX: return fm_tx_set_mute_mode(fmdev, mute_mode_toset); default: return -EINVAL; } } int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) { switch (fmdev->curr_fmmode) { case FM_MODE_RX: return fm_rx_set_stereo_mono(fmdev, mode); case FM_MODE_TX: return fm_tx_set_stereo_mono(fmdev, mode); default: return -EINVAL; } } int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) { switch (fmdev->curr_fmmode) { case FM_MODE_RX: return fm_rx_set_rds_mode(fmdev, rds_en_dis); case FM_MODE_TX: return fm_tx_set_rds_mode(fmdev, rds_en_dis); default: return -EINVAL; } } /* Sends power off command to the chip */ static int fm_power_down(struct fmdev *fmdev) { u16 payload; int ret; if (!test_bit(FM_CORE_READY, &fmdev->flag)) { fmerr("FM core is not ready\n"); return -EPERM; } if (fmdev->curr_fmmode == FM_MODE_OFF) { fmdbg("FM chip is already in OFF state\n"); return 0; } payload = 0x0; ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, sizeof(payload), NULL, NULL); if (ret < 0) return ret; return fmc_release(fmdev); } /* Reads init command from FM firmware file and loads to the chip */ static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) { const struct firmware *fw_entry; struct bts_header *fw_header; struct bts_action *action; struct bts_action_delay *delay; u8 *fw_data; int ret, fw_len; set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); ret = request_firmware(&fw_entry, fw_name, &fmdev->radio_dev->dev); if (ret < 0) { fmerr("Unable to read firmware(%s) content\n", fw_name); return ret; } fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size); fw_data = (void *)fw_entry->data; fw_len = fw_entry->size; fw_header = (struct bts_header *)fw_data; if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { fmerr("%s not a legal TI firmware file\n", fw_name); ret = -EINVAL; goto rel_fw; } fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); /* Skip file header info , we already verified it */ fw_data += sizeof(struct bts_header); fw_len -= sizeof(struct bts_header); while (fw_data && fw_len > 0) { action = (struct bts_action *)fw_data; switch (action->type) { case ACTION_SEND_COMMAND: /* Send */ ret = fmc_send_cmd(fmdev, 0, 0, action->data, action->size, NULL, NULL); if (ret) goto rel_fw; break; case ACTION_DELAY: /* Delay */ delay = (struct bts_action_delay *)action->data; mdelay(delay->msec); break; } fw_data += (sizeof(struct bts_action) + (action->size)); fw_len -= (sizeof(struct bts_action) + (action->size)); } fmdbg("Transfered only %d of %d bytes of the firmware to chip\n", fw_entry->size - fw_len, fw_entry->size); rel_fw: release_firmware(fw_entry); clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); return ret; } /* Loads default RX configuration to the chip */ static int load_default_rx_configuration(struct fmdev *fmdev) { int ret; ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); if (ret < 0) return ret; return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); } /* Does FM power on sequence */ static int fm_power_up(struct fmdev *fmdev, u8 mode) { u16 payload; __be16 asic_id = 0, asic_ver = 0; int resp_len, ret; u8 fw_name[50]; if (mode >= FM_MODE_ENTRY_MAX) { fmerr("Invalid firmware download option\n"); return -EINVAL; } /* * Initialize FM common module. FM GPIO toggling is * taken care in Shared Transport driver. */ ret = fmc_prepare(fmdev); if (ret < 0) { fmerr("Unable to prepare FM Common\n"); return ret; } payload = FM_ENABLE; if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, sizeof(payload), NULL, NULL)) goto rel; /* Allow the chip to settle down in Channel-8 mode */ msleep(20); if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, sizeof(asic_id), &asic_id, &resp_len)) goto rel; if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, sizeof(asic_ver), &asic_ver, &resp_len)) goto rel; fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); ret = fm_download_firmware(fmdev, fw_name); if (ret < 0) { fmdbg("Failed to download firmware file %s\n", fw_name); goto rel; } sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); ret = fm_download_firmware(fmdev, fw_name); if (ret < 0) { fmdbg("Failed to download firmware file %s\n", fw_name); goto rel; } else return ret; rel: return fmc_release(fmdev); } /* Set FM Modes(TX, RX, OFF) */ int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) { int ret = 0; if (fm_mode >= FM_MODE_ENTRY_MAX) { fmerr("Invalid FM mode\n"); return -EINVAL; } if (fmdev->curr_fmmode == fm_mode) { fmdbg("Already fm is in mode(%d)\n", fm_mode); return ret; } switch (fm_mode) { case FM_MODE_OFF: /* OFF Mode */ ret = fm_power_down(fmdev); if (ret < 0) { fmerr("Failed to set OFF mode\n"); return ret; } break; case FM_MODE_TX: /* TX Mode */ case FM_MODE_RX: /* RX Mode */ /* Power down before switching to TX or RX mode */ if (fmdev->curr_fmmode != FM_MODE_OFF) { ret = fm_power_down(fmdev); if (ret < 0) { fmerr("Failed to set OFF mode\n"); return ret; } msleep(30); } ret = fm_power_up(fmdev, fm_mode); if (ret < 0) { fmerr("Failed to load firmware\n"); return ret; } } fmdev->curr_fmmode = fm_mode; /* Set default configuration */ if (fmdev->curr_fmmode == FM_MODE_RX) { fmdbg("Loading default rx configuration..\n"); ret = load_default_rx_configuration(fmdev); if (ret < 0) fmerr("Failed to load default values\n"); } return ret; } /* Returns current FM mode (TX, RX, OFF) */ int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) { if (!test_bit(FM_CORE_READY, &fmdev->flag)) { fmerr("FM core is not ready\n"); return -EPERM; } if (fmmode == NULL) { fmerr("Invalid memory\n"); return -ENOMEM; } *fmmode = fmdev->curr_fmmode; return 0; } /* Called by ST layer when FM packet is available */ static long fm_st_receive(void *arg, struct sk_buff *skb) { struct fmdev *fmdev; fmdev = arg; if (skb == NULL) { fmerr("Invalid SKB received from ST\n"); return -EFAULT; } if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); return -EINVAL; } memcpy(skb_push(skb, 1), &skb->cb[0], 1); skb_queue_tail(&fmdev->rx_q, skb); tasklet_schedule(&fmdev->rx_task); return 0; } /* * Called by ST layer to indicate protocol registration completion * status. */ static void fm_st_reg_comp_cb(void *arg, int data) { struct fmdev *fmdev; fmdev = (struct fmdev *)arg; fmdev->streg_cbdata = data; complete(&wait_for_fmdrv_reg_comp); } /* * This function will be called from FM V4L2 open function. * Register with ST driver and initialize driver data. */ int fmc_prepare(struct fmdev *fmdev) { static struct st_proto_s fm_st_proto; int ret; if (test_bit(FM_CORE_READY, &fmdev->flag)) { fmdbg("FM Core is already up\n"); return 0; } memset(&fm_st_proto, 0, sizeof(fm_st_proto)); fm_st_proto.recv = fm_st_receive; fm_st_proto.match_packet = NULL; fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ fm_st_proto.priv_data = fmdev; fm_st_proto.chnl_id = 0x08; fm_st_proto.max_frame_size = 0xff; fm_st_proto.hdr_len = 1; fm_st_proto.offset_len_in_hdr = 0; fm_st_proto.len_size = 1; fm_st_proto.reserve = 1; ret = st_register(&fm_st_proto); if (ret == -EINPROGRESS) { init_completion(&wait_for_fmdrv_reg_comp); fmdev->streg_cbdata = -EINPROGRESS; fmdbg("%s waiting for ST reg completion signal\n", __func__); if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, FM_ST_REG_TIMEOUT)) { fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n", jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); return -ETIMEDOUT; } if (fmdev->streg_cbdata != 0) { fmerr("ST reg comp CB called with error status %d\n", fmdev->streg_cbdata); return -EAGAIN; } ret = 0; } else if (ret < 0) { fmerr("st_register failed %d\n", ret); return -EAGAIN; } if (fm_st_proto.write != NULL) { g_st_write = fm_st_proto.write; } else { fmerr("Failed to get ST write func pointer\n"); ret = st_unregister(&fm_st_proto); if (ret < 0) fmerr("st_unregister failed %d\n", ret); return -EAGAIN; } spin_lock_init(&fmdev->rds_buff_lock); spin_lock_init(&fmdev->resp_skb_lock); /* Initialize TX queue and TX tasklet */ skb_queue_head_init(&fmdev->tx_q); tasklet_setup(&fmdev->tx_task, send_tasklet); /* Initialize RX Queue and RX tasklet */ skb_queue_head_init(&fmdev->rx_q); tasklet_setup(&fmdev->rx_task, recv_tasklet); fmdev->irq_info.stage = 0; atomic_set(&fmdev->tx_cnt, 1); fmdev->resp_comp = NULL; timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0); /*TODO: add FM_STIC_EVENT later */ fmdev->irq_info.mask = FM_MAL_EVENT; /* Region info */ fmdev->rx.region = region_configs[default_radio_region]; fmdev->rx.mute_mode = FM_MUTE_OFF; fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; fmdev->rx.rds.flag = FM_RDS_DISABLE; fmdev->rx.freq = FM_UNDEFINED_FREQ; fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; fmdev->irq_info.retry = 0; fm_rx_reset_rds_cache(fmdev); init_waitqueue_head(&fmdev->rx.rds.read_queue); fm_rx_reset_station_info(fmdev); set_bit(FM_CORE_READY, &fmdev->flag); return ret; } /* * This function will be called from FM V4L2 release function. * Unregister from ST driver. */ int fmc_release(struct fmdev *fmdev) { static struct st_proto_s fm_st_proto; int ret; if (!test_bit(FM_CORE_READY, &fmdev->flag)) { fmdbg("FM Core is already down\n"); return 0; } /* Service pending read */ wake_up_interruptible(&fmdev->rx.rds.read_queue); tasklet_kill(&fmdev->tx_task); tasklet_kill(&fmdev->rx_task); skb_queue_purge(&fmdev->tx_q); skb_queue_purge(&fmdev->rx_q); fmdev->resp_comp = NULL; fmdev->rx.freq = 0; memset(&fm_st_proto, 0, sizeof(fm_st_proto)); fm_st_proto.chnl_id = 0x08; ret = st_unregister(&fm_st_proto); if (ret < 0) fmerr("Failed to de-register FM from ST %d\n", ret); else fmdbg("Successfully unregistered from ST\n"); clear_bit(FM_CORE_READY, &fmdev->flag); return ret; } /* * Module init function. Ask FM V4L module to register video device. * Allocate memory for FM driver context and RX RDS buffer. */ static int __init fm_drv_init(void) { struct fmdev *fmdev = NULL; int ret = -ENOMEM; fmdbg("FM driver version %s\n", FM_DRV_VERSION); fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); if (NULL == fmdev) { fmerr("Can't allocate operation structure memory\n"); return ret; } fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); if (NULL == fmdev->rx.rds.buff) { fmerr("Can't allocate rds ring buffer\n"); goto rel_dev; } ret = fm_v4l2_init_video_device(fmdev, radio_nr); if (ret < 0) goto rel_rdsbuf; fmdev->irq_info.handlers = int_handler_table; fmdev->curr_fmmode = FM_MODE_OFF; fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; return ret; rel_rdsbuf: kfree(fmdev->rx.rds.buff); rel_dev: kfree(fmdev); return ret; } /* Module exit function. Ask FM V4L module to unregister video device */ static void __exit fm_drv_exit(void) { struct fmdev *fmdev = NULL; fmdev = fm_v4l2_deinit_video_device(); if (fmdev != NULL) { kfree(fmdev->rx.rds.buff); kfree(fmdev); } } module_init(fm_drv_init); module_exit(fm_drv_exit); /* ------------- Module Info ------------- */ MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); MODULE_VERSION(FM_DRV_VERSION); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1