Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antti Palosaari | 8108 | 95.71% | 68 | 66.02% |
Jiri Slaby | 88 | 1.04% | 3 | 2.91% |
Jochen Friedrich | 80 | 0.94% | 1 | 0.97% |
Ian Armstrong | 53 | 0.63% | 1 | 0.97% |
Sean Young | 22 | 0.26% | 2 | 1.94% |
David Härdeman | 14 | 0.17% | 1 | 0.97% |
Michael Ira Krufky | 11 | 0.13% | 1 | 0.97% |
Marc Schneider | 10 | 0.12% | 1 | 0.97% |
Ignacio de Miguel Diaz | 9 | 0.11% | 1 | 0.97% |
Wen-chien Jesse Sung | 8 | 0.09% | 1 | 0.97% |
Herbert Graeber | 8 | 0.09% | 1 | 0.97% |
Marcel Jueling | 8 | 0.09% | 1 | 0.97% |
Emilio David Diaus Lopez | 7 | 0.08% | 1 | 0.97% |
Mauro Carvalho Chehab | 7 | 0.08% | 3 | 2.91% |
Mart Raudsepp | 4 | 0.05% | 1 | 0.97% |
Matthew Wilcox | 4 | 0.05% | 1 | 0.97% |
Stefan Lippers-Hollmann | 4 | 0.05% | 1 | 0.97% |
Gustavo A. R. Silva | 3 | 0.04% | 2 | 1.94% |
Andy Shevchenko | 3 | 0.04% | 1 | 0.97% |
Hans Verkuil | 3 | 0.04% | 2 | 1.94% |
Nils Kassube | 3 | 0.04% | 1 | 0.97% |
Mikko Ohtamaa | 3 | 0.04% | 1 | 0.97% |
Gordon Hecker | 2 | 0.02% | 1 | 0.97% |
Yann E. MORIN | 2 | 0.02% | 1 | 0.97% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.97% |
Greg Kroah-Hartman | 2 | 0.02% | 1 | 0.97% |
Masanari Iida | 1 | 0.01% | 1 | 0.97% |
Jonathan Nieder | 1 | 0.01% | 1 | 0.97% |
Rik Van Riel | 1 | 0.01% | 1 | 0.97% |
Total | 8471 | 103 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver * * Copyright (C) 2007 Antti Palosaari <crope@iki.fi> * * Thanks to Afatech who kindly provided information. */ #include "af9015.h" static int dvb_usb_af9015_remote; module_param_named(remote, dvb_usb_af9015_remote, int, 0644); MODULE_PARM_DESC(remote, "select remote"); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static int af9015_ctrl_msg(struct dvb_usb_device *d, struct req_t *req) { #define REQ_HDR_LEN 8 /* send header size */ #define ACK_HDR_LEN 2 /* rece header size */ struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, wlen, rlen; u8 write = 1; mutex_lock(&d->usb_mutex); state->buf[0] = req->cmd; state->buf[1] = state->seq++; state->buf[2] = req->i2c_addr << 1; state->buf[3] = req->addr >> 8; state->buf[4] = req->addr & 0xff; state->buf[5] = req->mbox; state->buf[6] = req->addr_len; state->buf[7] = req->data_len; switch (req->cmd) { case GET_CONFIG: case READ_MEMORY: case RECONNECT_USB: write = 0; break; case READ_I2C: write = 0; state->buf[2] |= 0x01; /* set I2C direction */ fallthrough; case WRITE_I2C: state->buf[0] = READ_WRITE_I2C; break; case WRITE_MEMORY: if (((req->addr & 0xff00) == 0xff00) || ((req->addr & 0xff00) == 0xae00)) state->buf[0] = WRITE_VIRTUAL_MEMORY; break; case WRITE_VIRTUAL_MEMORY: case COPY_FIRMWARE: case DOWNLOAD_FIRMWARE: case BOOT: break; default: dev_err(&intf->dev, "unknown cmd %d\n", req->cmd); ret = -EIO; goto error; } /* Buffer overflow check */ if ((write && (req->data_len > BUF_LEN - REQ_HDR_LEN)) || (!write && (req->data_len > BUF_LEN - ACK_HDR_LEN))) { dev_err(&intf->dev, "too much data, cmd %u, len %u\n", req->cmd, req->data_len); ret = -EINVAL; goto error; } /* * Write receives seq + status = 2 bytes * Read receives seq + status + data = 2 + N bytes */ wlen = REQ_HDR_LEN; rlen = ACK_HDR_LEN; if (write) { wlen += req->data_len; memcpy(&state->buf[REQ_HDR_LEN], req->data, req->data_len); } else { rlen += req->data_len; } /* no ack for these packets */ if (req->cmd == DOWNLOAD_FIRMWARE || req->cmd == RECONNECT_USB) rlen = 0; ret = dvb_usbv2_generic_rw_locked(d, state->buf, wlen, state->buf, rlen); if (ret) goto error; /* check status */ if (rlen && state->buf[1]) { dev_err(&intf->dev, "cmd failed %u\n", state->buf[1]); ret = -EIO; goto error; } /* read request, copy returned data to return buf */ if (!write) memcpy(req->data, &state->buf[ACK_HDR_LEN], req->data_len); error: mutex_unlock(&d->usb_mutex); return ret; } static int af9015_write_reg_i2c(struct dvb_usb_device *d, u8 addr, u16 reg, u8 val) { struct af9015_state *state = d_to_priv(d); struct req_t req = {WRITE_I2C, addr, reg, 1, 1, 1, &val}; if (addr == state->af9013_i2c_addr[0] || addr == state->af9013_i2c_addr[1]) req.addr_len = 3; return af9015_ctrl_msg(d, &req); } static int af9015_read_reg_i2c(struct dvb_usb_device *d, u8 addr, u16 reg, u8 *val) { struct af9015_state *state = d_to_priv(d); struct req_t req = {READ_I2C, addr, reg, 0, 1, 1, val}; if (addr == state->af9013_i2c_addr[0] || addr == state->af9013_i2c_addr[1]) req.addr_len = 3; return af9015_ctrl_msg(d, &req); } static int af9015_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; u16 addr; u8 mbox, addr_len; struct req_t req; /* * I2C multiplexing: * There could be two tuners, both using same I2C address. Demodulator * I2C-gate is only possibility to select correct tuner. * * ........................................... * . AF9015 integrates AF9013 demodulator . * . ____________ ____________ . ____________ * .| USB IF | | demod |. | tuner | * .|------------| |------------|. |------------| * .| AF9015 | | AF9013 |. | MXL5003 | * .| |--+--I2C-----|-----/ -----|.----I2C-----| | * .| | | | addr 0x1c |. | addr 0x63 | * .|____________| | |____________|. |____________| * .................|......................... * | ____________ ____________ * | | demod | | tuner | * | |------------| |------------| * | | AF9013 | | MXL5003 | * +--I2C-----|-----/ -----|-----I2C-----| | * | addr 0x1d | | addr 0x63 | * |____________| |____________| */ if (msg[0].len == 0 || msg[0].flags & I2C_M_RD) { addr = 0x0000; mbox = 0; addr_len = 0; } else if (msg[0].len == 1) { addr = msg[0].buf[0]; mbox = 0; addr_len = 1; } else if (msg[0].len == 2) { addr = msg[0].buf[0] << 8 | msg[0].buf[1] << 0; mbox = 0; addr_len = 2; } else { addr = msg[0].buf[0] << 8 | msg[0].buf[1] << 0; mbox = msg[0].buf[2]; addr_len = 3; } if (num == 1 && !(msg[0].flags & I2C_M_RD)) { /* i2c write */ if (msg[0].len > 21) { ret = -EOPNOTSUPP; goto err; } if (msg[0].addr == state->af9013_i2c_addr[0]) req.cmd = WRITE_MEMORY; else req.cmd = WRITE_I2C; req.i2c_addr = msg[0].addr; req.addr = addr; req.mbox = mbox; req.addr_len = addr_len; req.data_len = msg[0].len - addr_len; req.data = &msg[0].buf[addr_len]; ret = af9015_ctrl_msg(d, &req); } else if (num == 2 && !(msg[0].flags & I2C_M_RD) && (msg[1].flags & I2C_M_RD)) { /* i2c write + read */ if (msg[0].len > 3 || msg[1].len > 61) { ret = -EOPNOTSUPP; goto err; } if (msg[0].addr == state->af9013_i2c_addr[0]) req.cmd = READ_MEMORY; else req.cmd = READ_I2C; req.i2c_addr = msg[0].addr; req.addr = addr; req.mbox = mbox; req.addr_len = addr_len; req.data_len = msg[1].len; req.data = &msg[1].buf[0]; ret = af9015_ctrl_msg(d, &req); } else if (num == 1 && (msg[0].flags & I2C_M_RD)) { /* i2c read */ if (msg[0].len > 61) { ret = -EOPNOTSUPP; goto err; } if (msg[0].addr == state->af9013_i2c_addr[0]) { ret = -EINVAL; goto err; } req.cmd = READ_I2C; req.i2c_addr = msg[0].addr; req.addr = addr; req.mbox = mbox; req.addr_len = addr_len; req.data_len = msg[0].len; req.data = &msg[0].buf[0]; ret = af9015_ctrl_msg(d, &req); } else { ret = -EOPNOTSUPP; dev_dbg(&intf->dev, "unknown msg, num %u\n", num); } if (ret) goto err; return num; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static u32 af9015_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm af9015_i2c_algo = { .master_xfer = af9015_i2c_xfer, .functionality = af9015_i2c_func, }; static int af9015_identify_state(struct dvb_usb_device *d, const char **name) { struct usb_interface *intf = d->intf; int ret; u8 reply; struct req_t req = {GET_CONFIG, 0, 0, 0, 0, 1, &reply}; ret = af9015_ctrl_msg(d, &req); if (ret) return ret; dev_dbg(&intf->dev, "reply %02x\n", reply); if (reply == 0x02) ret = WARM; else ret = COLD; return ret; } static int af9015_download_firmware(struct dvb_usb_device *d, const struct firmware *firmware) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, i, rem; struct req_t req = {DOWNLOAD_FIRMWARE, 0, 0, 0, 0, 0, NULL}; u16 checksum; dev_dbg(&intf->dev, "\n"); /* Calc checksum, we need it when copy firmware to slave demod */ for (i = 0, checksum = 0; i < firmware->size; i++) checksum += firmware->data[i]; state->firmware_size = firmware->size; state->firmware_checksum = checksum; #define LEN_MAX (BUF_LEN - REQ_HDR_LEN) /* Max payload size */ for (rem = firmware->size; rem > 0; rem -= LEN_MAX) { req.data_len = min(LEN_MAX, rem); req.data = (u8 *)&firmware->data[firmware->size - rem]; req.addr = 0x5100 + firmware->size - rem; ret = af9015_ctrl_msg(d, &req); if (ret) { dev_err(&intf->dev, "firmware download failed %d\n", ret); goto err; } } req.cmd = BOOT; req.data_len = 0; ret = af9015_ctrl_msg(d, &req); if (ret) { dev_err(&intf->dev, "firmware boot failed %d\n", ret); goto err; } return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } #define AF9015_EEPROM_SIZE 256 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ #define GOLDEN_RATIO_PRIME_32 0x9e370001UL /* hash (and dump) eeprom */ static int af9015_eeprom_hash(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, i; u8 buf[AF9015_EEPROM_SIZE]; struct req_t req = {READ_I2C, AF9015_I2C_EEPROM, 0, 0, 1, 1, NULL}; /* read eeprom */ for (i = 0; i < AF9015_EEPROM_SIZE; i++) { req.addr = i; req.data = &buf[i]; ret = af9015_ctrl_msg(d, &req); if (ret < 0) goto err; } /* calculate checksum */ for (i = 0; i < AF9015_EEPROM_SIZE / sizeof(u32); i++) { state->eeprom_sum *= GOLDEN_RATIO_PRIME_32; state->eeprom_sum += le32_to_cpu(((__le32 *)buf)[i]); } for (i = 0; i < AF9015_EEPROM_SIZE; i += 16) dev_dbg(&intf->dev, "%*ph\n", 16, buf + i); dev_dbg(&intf->dev, "eeprom sum %.8x\n", state->eeprom_sum); return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_read_config(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; u8 val, i, offset = 0; struct req_t req = {READ_I2C, AF9015_I2C_EEPROM, 0, 0, 1, 1, &val}; dev_dbg(&intf->dev, "\n"); /* IR remote controller */ req.addr = AF9015_EEPROM_IR_MODE; /* first message will timeout often due to possible hw bug */ for (i = 0; i < 4; i++) { ret = af9015_ctrl_msg(d, &req); if (!ret) break; } if (ret) goto error; ret = af9015_eeprom_hash(d); if (ret) goto error; state->ir_mode = val; dev_dbg(&intf->dev, "ir mode %02x\n", val); /* TS mode - one or two receivers */ req.addr = AF9015_EEPROM_TS_MODE; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->dual_mode = val; dev_dbg(&intf->dev, "ts mode %02x\n", state->dual_mode); state->af9013_i2c_addr[0] = AF9015_I2C_DEMOD; if (state->dual_mode) { /* read 2nd demodulator I2C address */ req.addr = AF9015_EEPROM_DEMOD2_I2C; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->af9013_i2c_addr[1] = val >> 1; } for (i = 0; i < state->dual_mode + 1; i++) { if (i == 1) offset = AF9015_EEPROM_OFFSET; /* xtal */ req.addr = AF9015_EEPROM_XTAL_TYPE1 + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; switch (val) { case 0: state->af9013_pdata[i].clk = 28800000; break; case 1: state->af9013_pdata[i].clk = 20480000; break; case 2: state->af9013_pdata[i].clk = 28000000; break; case 3: state->af9013_pdata[i].clk = 25000000; break; } dev_dbg(&intf->dev, "[%d] xtal %02x, clk %u\n", i, val, state->af9013_pdata[i].clk); /* IF frequency */ req.addr = AF9015_EEPROM_IF1H + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->af9013_pdata[i].if_frequency = val << 8; req.addr = AF9015_EEPROM_IF1L + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->af9013_pdata[i].if_frequency += val; state->af9013_pdata[i].if_frequency *= 1000; dev_dbg(&intf->dev, "[%d] if frequency %u\n", i, state->af9013_pdata[i].if_frequency); /* MT2060 IF1 */ req.addr = AF9015_EEPROM_MT2060_IF1H + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->mt2060_if1[i] = val << 8; req.addr = AF9015_EEPROM_MT2060_IF1L + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; state->mt2060_if1[i] += val; dev_dbg(&intf->dev, "[%d] MT2060 IF1 %u\n", i, state->mt2060_if1[i]); /* tuner */ req.addr = AF9015_EEPROM_TUNER_ID1 + offset; ret = af9015_ctrl_msg(d, &req); if (ret) goto error; switch (val) { case AF9013_TUNER_ENV77H11D5: case AF9013_TUNER_MT2060: case AF9013_TUNER_QT1010: case AF9013_TUNER_UNKNOWN: case AF9013_TUNER_MT2060_2: case AF9013_TUNER_TDA18271: case AF9013_TUNER_QT1010A: case AF9013_TUNER_TDA18218: state->af9013_pdata[i].spec_inv = 1; break; case AF9013_TUNER_MXL5003D: case AF9013_TUNER_MXL5005D: case AF9013_TUNER_MXL5005R: case AF9013_TUNER_MXL5007T: state->af9013_pdata[i].spec_inv = 0; break; case AF9013_TUNER_MC44S803: state->af9013_pdata[i].gpio[1] = AF9013_GPIO_LO; state->af9013_pdata[i].spec_inv = 1; break; default: dev_err(&intf->dev, "tuner id %02x not supported, please report!\n", val); return -ENODEV; } state->af9013_pdata[i].tuner = val; dev_dbg(&intf->dev, "[%d] tuner id %02x\n", i, val); } error: if (ret) dev_err(&intf->dev, "eeprom read failed %d\n", ret); /* * AverMedia AVerTV Volar Black HD (A850) device have bad EEPROM * content :-( Override some wrong values here. Ditto for the * AVerTV Red HD+ (A850T) device. */ if (le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA && ((le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_AVERMEDIA_A850) || (le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_AVERMEDIA_A850T))) { dev_dbg(&intf->dev, "AverMedia A850: overriding config\n"); /* disable dual mode */ state->dual_mode = 0; /* set correct IF */ state->af9013_pdata[0].if_frequency = 4570000; } return ret; } static int af9015_get_stream_config(struct dvb_frontend *fe, u8 *ts_type, struct usb_data_stream_properties *stream) { struct dvb_usb_device *d = fe_to_d(fe); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "adap %u\n", fe_to_adap(fe)->id); if (d->udev->speed == USB_SPEED_FULL) stream->u.bulk.buffersize = 5 * 188; return 0; } static int af9015_streaming_ctrl(struct dvb_frontend *fe, int onoff) { struct dvb_usb_device *d = fe_to_d(fe); struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; unsigned int utmp1, utmp2, reg1, reg2; u8 buf[2]; const unsigned int adap_id = fe_to_adap(fe)->id; dev_dbg(&intf->dev, "adap id %d, onoff %d\n", adap_id, onoff); if (!state->usb_ts_if_configured[adap_id]) { dev_dbg(&intf->dev, "set usb and ts interface\n"); /* USB IF stream settings */ utmp1 = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4; utmp2 = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4; buf[0] = (utmp1 >> 0) & 0xff; buf[1] = (utmp1 >> 8) & 0xff; if (adap_id == 0) { /* 1st USB IF (EP4) stream settings */ reg1 = 0xdd88; reg2 = 0xdd0c; } else { /* 2nd USB IF (EP5) stream settings */ reg1 = 0xdd8a; reg2 = 0xdd0d; } ret = regmap_bulk_write(state->regmap, reg1, buf, 2); if (ret) goto err; ret = regmap_write(state->regmap, reg2, utmp2); if (ret) goto err; /* TS IF settings */ if (state->dual_mode) { utmp1 = 0x01; utmp2 = 0x10; } else { utmp1 = 0x00; utmp2 = 0x00; } ret = regmap_update_bits(state->regmap, 0xd50b, 0x01, utmp1); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xd520, 0x10, utmp2); if (ret) goto err; state->usb_ts_if_configured[adap_id] = true; } if (adap_id == 0 && onoff) { /* Adapter 0 stream on. EP4: clear NAK, enable, clear reset */ ret = regmap_update_bits(state->regmap, 0xdd13, 0x20, 0x00); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd11, 0x20, 0x20); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xd507, 0x04, 0x00); if (ret) goto err; } else if (adap_id == 1 && onoff) { /* Adapter 1 stream on. EP5: clear NAK, enable, clear reset */ ret = regmap_update_bits(state->regmap, 0xdd13, 0x40, 0x00); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd11, 0x40, 0x40); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xd50b, 0x02, 0x00); if (ret) goto err; } else if (adap_id == 0 && !onoff) { /* Adapter 0 stream off. EP4: set reset, disable, set NAK */ ret = regmap_update_bits(state->regmap, 0xd507, 0x04, 0x04); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd11, 0x20, 0x00); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd13, 0x20, 0x20); if (ret) goto err; } else if (adap_id == 1 && !onoff) { /* Adapter 1 stream off. EP5: set reset, disable, set NAK */ ret = regmap_update_bits(state->regmap, 0xd50b, 0x02, 0x02); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd11, 0x40, 0x00); if (ret) goto err; ret = regmap_update_bits(state->regmap, 0xdd13, 0x40, 0x40); if (ret) goto err; } return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_get_adapter_count(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); return state->dual_mode + 1; } /* override demod callbacks for resource locking */ static int af9015_af9013_set_frontend(struct dvb_frontend *fe) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->set_frontend[fe_to_adap(fe)->id](fe); mutex_unlock(&state->fe_mutex); return ret; } /* override demod callbacks for resource locking */ static int af9015_af9013_read_status(struct dvb_frontend *fe, enum fe_status *status) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->read_status[fe_to_adap(fe)->id](fe, status); mutex_unlock(&state->fe_mutex); return ret; } /* override demod callbacks for resource locking */ static int af9015_af9013_init(struct dvb_frontend *fe) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->init[fe_to_adap(fe)->id](fe); mutex_unlock(&state->fe_mutex); return ret; } /* override demod callbacks for resource locking */ static int af9015_af9013_sleep(struct dvb_frontend *fe) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->sleep[fe_to_adap(fe)->id](fe); mutex_unlock(&state->fe_mutex); return ret; } /* override tuner callbacks for resource locking */ static int af9015_tuner_init(struct dvb_frontend *fe) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->tuner_init[fe_to_adap(fe)->id](fe); mutex_unlock(&state->fe_mutex); return ret; } /* override tuner callbacks for resource locking */ static int af9015_tuner_sleep(struct dvb_frontend *fe) { int ret; struct af9015_state *state = fe_to_priv(fe); if (mutex_lock_interruptible(&state->fe_mutex)) return -EAGAIN; ret = state->tuner_sleep[fe_to_adap(fe)->id](fe); mutex_unlock(&state->fe_mutex); return ret; } static int af9015_copy_firmware(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; unsigned long timeout; u8 val, firmware_info[4]; struct req_t req = {COPY_FIRMWARE, 0, 0x5100, 0, 0, 4, firmware_info}; dev_dbg(&intf->dev, "\n"); firmware_info[0] = (state->firmware_size >> 8) & 0xff; firmware_info[1] = (state->firmware_size >> 0) & 0xff; firmware_info[2] = (state->firmware_checksum >> 8) & 0xff; firmware_info[3] = (state->firmware_checksum >> 0) & 0xff; /* Check whether firmware is already running */ ret = af9015_read_reg_i2c(d, state->af9013_i2c_addr[1], 0x98be, &val); if (ret) goto err; dev_dbg(&intf->dev, "firmware status %02x\n", val); if (val == 0x0c) return 0; /* Set i2c clock to 625kHz to speed up firmware copy */ ret = regmap_write(state->regmap, 0xd416, 0x04); if (ret) goto err; /* Copy firmware from master demod to slave demod */ ret = af9015_ctrl_msg(d, &req); if (ret) { dev_err(&intf->dev, "firmware copy cmd failed %d\n", ret); goto err; } /* Set i2c clock to 125kHz */ ret = regmap_write(state->regmap, 0xd416, 0x14); if (ret) goto err; /* Boot firmware */ ret = af9015_write_reg_i2c(d, state->af9013_i2c_addr[1], 0xe205, 0x01); if (ret) goto err; /* Poll firmware ready */ for (val = 0x00, timeout = jiffies + msecs_to_jiffies(1000); !time_after(jiffies, timeout) && val != 0x0c && val != 0x04;) { msleep(20); /* Check firmware status. 0c=OK, 04=fail */ ret = af9015_read_reg_i2c(d, state->af9013_i2c_addr[1], 0x98be, &val); if (ret) goto err; dev_dbg(&intf->dev, "firmware status %02x\n", val); } dev_dbg(&intf->dev, "firmware boot took %u ms\n", jiffies_to_msecs(jiffies) - (jiffies_to_msecs(timeout) - 1000)); if (val == 0x04) { ret = -ENODEV; dev_err(&intf->dev, "firmware did not run\n"); goto err; } else if (val != 0x0c) { ret = -ETIMEDOUT; dev_err(&intf->dev, "firmware boot timeout\n"); goto err; } return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_af9013_frontend_attach(struct dvb_usb_adapter *adap) { struct af9015_state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; struct i2c_client *client; int ret; dev_dbg(&intf->dev, "adap id %u\n", adap->id); if (adap->id == 0) { state->af9013_pdata[0].ts_mode = AF9013_TS_MODE_USB; memcpy(state->af9013_pdata[0].api_version, "\x0\x1\x9\x0", 4); state->af9013_pdata[0].gpio[0] = AF9013_GPIO_HI; state->af9013_pdata[0].gpio[3] = AF9013_GPIO_TUNER_ON; } else if (adap->id == 1) { state->af9013_pdata[1].ts_mode = AF9013_TS_MODE_SERIAL; state->af9013_pdata[1].ts_output_pin = 7; memcpy(state->af9013_pdata[1].api_version, "\x0\x1\x9\x0", 4); state->af9013_pdata[1].gpio[0] = AF9013_GPIO_TUNER_ON; state->af9013_pdata[1].gpio[1] = AF9013_GPIO_LO; /* copy firmware to 2nd demodulator */ if (state->dual_mode) { /* Wait 2nd demodulator ready */ msleep(100); ret = af9015_copy_firmware(adap_to_d(adap)); if (ret) { dev_err(&intf->dev, "firmware copy to 2nd frontend failed, will disable it\n"); state->dual_mode = 0; goto err; } } else { ret = -ENODEV; goto err; } } /* Add I2C demod */ client = dvb_module_probe("af9013", NULL, &d->i2c_adap, state->af9013_i2c_addr[adap->id], &state->af9013_pdata[adap->id]); if (!client) { ret = -ENODEV; goto err; } adap->fe[0] = state->af9013_pdata[adap->id].get_dvb_frontend(client); state->demod_i2c_client[adap->id] = client; /* * AF9015 firmware does not like if it gets interrupted by I2C adapter * request on some critical phases. During normal operation I2C adapter * is used only 2nd demodulator and tuner on dual tuner devices. * Override demodulator callbacks and use mutex for limit access to * those "critical" paths to keep AF9015 happy. */ if (adap->fe[0]) { state->set_frontend[adap->id] = adap->fe[0]->ops.set_frontend; adap->fe[0]->ops.set_frontend = af9015_af9013_set_frontend; state->read_status[adap->id] = adap->fe[0]->ops.read_status; adap->fe[0]->ops.read_status = af9015_af9013_read_status; state->init[adap->id] = adap->fe[0]->ops.init; adap->fe[0]->ops.init = af9015_af9013_init; state->sleep[adap->id] = adap->fe[0]->ops.sleep; adap->fe[0]->ops.sleep = af9015_af9013_sleep; } return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_frontend_detach(struct dvb_usb_adapter *adap) { struct af9015_state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; struct i2c_client *client; dev_dbg(&intf->dev, "adap id %u\n", adap->id); /* Remove I2C demod */ client = state->demod_i2c_client[adap->id]; dvb_module_release(client); return 0; } static struct mt2060_config af9015_mt2060_config = { .i2c_address = 0x60, .clock_out = 0, }; static struct qt1010_config af9015_qt1010_config = { .i2c_address = 0x62, }; static struct tda18271_config af9015_tda18271_config = { .gate = TDA18271_GATE_DIGITAL, .small_i2c = TDA18271_16_BYTE_CHUNK_INIT, }; static struct mxl5005s_config af9015_mxl5003_config = { .i2c_address = 0x63, .if_freq = IF_FREQ_4570000HZ, .xtal_freq = CRYSTAL_FREQ_16000000HZ, .agc_mode = MXL_SINGLE_AGC, .tracking_filter = MXL_TF_DEFAULT, .rssi_enable = MXL_RSSI_ENABLE, .cap_select = MXL_CAP_SEL_ENABLE, .div_out = MXL_DIV_OUT_4, .clock_out = MXL_CLOCK_OUT_DISABLE, .output_load = MXL5005S_IF_OUTPUT_LOAD_200_OHM, .top = MXL5005S_TOP_25P2, .mod_mode = MXL_DIGITAL_MODE, .if_mode = MXL_ZERO_IF, .AgcMasterByte = 0x00, }; static struct mxl5005s_config af9015_mxl5005_config = { .i2c_address = 0x63, .if_freq = IF_FREQ_4570000HZ, .xtal_freq = CRYSTAL_FREQ_16000000HZ, .agc_mode = MXL_SINGLE_AGC, .tracking_filter = MXL_TF_OFF, .rssi_enable = MXL_RSSI_ENABLE, .cap_select = MXL_CAP_SEL_ENABLE, .div_out = MXL_DIV_OUT_4, .clock_out = MXL_CLOCK_OUT_DISABLE, .output_load = MXL5005S_IF_OUTPUT_LOAD_200_OHM, .top = MXL5005S_TOP_25P2, .mod_mode = MXL_DIGITAL_MODE, .if_mode = MXL_ZERO_IF, .AgcMasterByte = 0x00, }; static struct mc44s803_config af9015_mc44s803_config = { .i2c_address = 0x60, .dig_out = 1, }; static struct tda18218_config af9015_tda18218_config = { .i2c_address = 0x60, .i2c_wr_max = 21, /* max wr bytes AF9015 I2C adap can handle at once */ }; static struct mxl5007t_config af9015_mxl5007t_config = { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, }; static int af9015_tuner_attach(struct dvb_usb_adapter *adap) { struct dvb_usb_device *d = adap_to_d(adap); struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; struct i2c_client *client; struct i2c_adapter *adapter; int ret; dev_dbg(&intf->dev, "adap id %u\n", adap->id); client = state->demod_i2c_client[adap->id]; adapter = state->af9013_pdata[adap->id].get_i2c_adapter(client); switch (state->af9013_pdata[adap->id].tuner) { case AF9013_TUNER_MT2060: case AF9013_TUNER_MT2060_2: ret = dvb_attach(mt2060_attach, adap->fe[0], adapter, &af9015_mt2060_config, state->mt2060_if1[adap->id]) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_QT1010: case AF9013_TUNER_QT1010A: ret = dvb_attach(qt1010_attach, adap->fe[0], adapter, &af9015_qt1010_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_TDA18271: ret = dvb_attach(tda18271_attach, adap->fe[0], 0x60, adapter, &af9015_tda18271_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_TDA18218: ret = dvb_attach(tda18218_attach, adap->fe[0], adapter, &af9015_tda18218_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_MXL5003D: ret = dvb_attach(mxl5005s_attach, adap->fe[0], adapter, &af9015_mxl5003_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_MXL5005D: case AF9013_TUNER_MXL5005R: ret = dvb_attach(mxl5005s_attach, adap->fe[0], adapter, &af9015_mxl5005_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_ENV77H11D5: ret = dvb_attach(dvb_pll_attach, adap->fe[0], 0x60, adapter, DVB_PLL_TDA665X) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_MC44S803: ret = dvb_attach(mc44s803_attach, adap->fe[0], adapter, &af9015_mc44s803_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_MXL5007T: ret = dvb_attach(mxl5007t_attach, adap->fe[0], adapter, 0x60, &af9015_mxl5007t_config) == NULL ? -ENODEV : 0; break; case AF9013_TUNER_UNKNOWN: default: dev_err(&intf->dev, "unknown tuner, tuner id %02x\n", state->af9013_pdata[adap->id].tuner); ret = -ENODEV; } if (adap->fe[0]->ops.tuner_ops.init) { state->tuner_init[adap->id] = adap->fe[0]->ops.tuner_ops.init; adap->fe[0]->ops.tuner_ops.init = af9015_tuner_init; } if (adap->fe[0]->ops.tuner_ops.sleep) { state->tuner_sleep[adap->id] = adap->fe[0]->ops.tuner_ops.sleep; adap->fe[0]->ops.tuner_ops.sleep = af9015_tuner_sleep; } return ret; } static int af9015_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff) { struct af9015_state *state = adap_to_priv(adap); struct af9013_platform_data *pdata = &state->af9013_pdata[adap->id]; int ret; mutex_lock(&state->fe_mutex); ret = pdata->pid_filter_ctrl(adap->fe[0], onoff); mutex_unlock(&state->fe_mutex); return ret; } static int af9015_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid, int onoff) { struct af9015_state *state = adap_to_priv(adap); struct af9013_platform_data *pdata = &state->af9013_pdata[adap->id]; int ret; mutex_lock(&state->fe_mutex); ret = pdata->pid_filter(adap->fe[0], index, pid, onoff); mutex_unlock(&state->fe_mutex); return ret; } static int af9015_init(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; dev_dbg(&intf->dev, "\n"); mutex_init(&state->fe_mutex); /* init RC canary */ ret = regmap_write(state->regmap, 0x98e9, 0xff); if (ret) goto error; error: return ret; } #if IS_ENABLED(CONFIG_RC_CORE) struct af9015_rc_setup { unsigned int id; char *rc_codes; }; static char *af9015_rc_setup_match(unsigned int id, const struct af9015_rc_setup *table) { for (; table->rc_codes; table++) if (table->id == id) return table->rc_codes; return NULL; } static const struct af9015_rc_setup af9015_rc_setup_modparam[] = { { AF9015_REMOTE_A_LINK_DTU_M, RC_MAP_ALINK_DTU_M }, { AF9015_REMOTE_MSI_DIGIVOX_MINI_II_V3, RC_MAP_MSI_DIGIVOX_II }, { AF9015_REMOTE_MYGICTV_U718, RC_MAP_TOTAL_MEDIA_IN_HAND }, { AF9015_REMOTE_DIGITTRADE_DVB_T, RC_MAP_DIGITTRADE }, { AF9015_REMOTE_AVERMEDIA_KS, RC_MAP_AVERMEDIA_RM_KS }, { } }; static const struct af9015_rc_setup af9015_rc_setup_hashes[] = { { 0xb8feb708, RC_MAP_MSI_DIGIVOX_II }, { 0xa3703d00, RC_MAP_ALINK_DTU_M }, { 0x9b7dc64e, RC_MAP_TOTAL_MEDIA_IN_HAND }, /* MYGICTV U718 */ { 0x5d49e3db, RC_MAP_DIGITTRADE }, /* LC-Power LC-USB-DVBT */ { } }; static int af9015_rc_query(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret; u8 buf[17]; /* read registers needed to detect remote controller code */ ret = regmap_bulk_read(state->regmap, 0x98d9, buf, sizeof(buf)); if (ret) goto error; /* If any of these are non-zero, assume invalid data */ if (buf[1] || buf[2] || buf[3]) { dev_dbg(&intf->dev, "invalid data\n"); return 0; } /* Check for repeat of previous code */ if ((state->rc_repeat != buf[6] || buf[0]) && !memcmp(&buf[12], state->rc_last, 4)) { dev_dbg(&intf->dev, "key repeated\n"); rc_repeat(d->rc_dev); state->rc_repeat = buf[6]; return 0; } /* Only process key if canary killed */ if (buf[16] != 0xff && buf[0] != 0x01) { enum rc_proto proto; dev_dbg(&intf->dev, "key pressed %*ph\n", 4, buf + 12); /* Reset the canary */ ret = regmap_write(state->regmap, 0x98e9, 0xff); if (ret) goto error; /* Remember this key */ memcpy(state->rc_last, &buf[12], 4); if (buf[14] == (u8)~buf[15]) { if (buf[12] == (u8)~buf[13]) { /* NEC */ state->rc_keycode = RC_SCANCODE_NEC(buf[12], buf[14]); proto = RC_PROTO_NEC; } else { /* NEC extended*/ state->rc_keycode = RC_SCANCODE_NECX(buf[12] << 8 | buf[13], buf[14]); proto = RC_PROTO_NECX; } } else { /* 32 bit NEC */ state->rc_keycode = RC_SCANCODE_NEC32(buf[12] << 24 | buf[13] << 16 | buf[14] << 8 | buf[15]); proto = RC_PROTO_NEC32; } rc_keydown(d->rc_dev, proto, state->rc_keycode, 0); } else { dev_dbg(&intf->dev, "no key press\n"); /* Invalidate last keypress */ /* Not really needed, but helps with debug */ state->rc_last[2] = state->rc_last[3]; } state->rc_repeat = buf[6]; state->rc_failed = false; error: if (ret) { dev_warn(&intf->dev, "rc query failed %d\n", ret); /* allow random errors as dvb-usb will stop polling on error */ if (!state->rc_failed) ret = 0; state->rc_failed = true; } return ret; } static int af9015_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc) { struct af9015_state *state = d_to_priv(d); u16 vid = le16_to_cpu(d->udev->descriptor.idVendor); if (state->ir_mode == AF9015_IR_MODE_DISABLED) return 0; /* try to load remote based module param */ if (!rc->map_name) rc->map_name = af9015_rc_setup_match(dvb_usb_af9015_remote, af9015_rc_setup_modparam); /* try to load remote based eeprom hash */ if (!rc->map_name) rc->map_name = af9015_rc_setup_match(state->eeprom_sum, af9015_rc_setup_hashes); /* try to load remote based USB iManufacturer string */ if (!rc->map_name && vid == USB_VID_AFATECH) { /* * Check USB manufacturer and product strings and try * to determine correct remote in case of chip vendor * reference IDs are used. * DO NOT ADD ANYTHING NEW HERE. Use hashes instead. */ char manufacturer[10]; memset(manufacturer, 0, sizeof(manufacturer)); usb_string(d->udev, d->udev->descriptor.iManufacturer, manufacturer, sizeof(manufacturer)); if (!strcmp("MSI", manufacturer)) { /* * iManufacturer 1 MSI * iProduct 2 MSI K-VOX */ rc->map_name = af9015_rc_setup_match(AF9015_REMOTE_MSI_DIGIVOX_MINI_II_V3, af9015_rc_setup_modparam); } } /* load empty to enable rc */ if (!rc->map_name) rc->map_name = RC_MAP_EMPTY; rc->allowed_protos = RC_PROTO_BIT_NEC | RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32; rc->query = af9015_rc_query; rc->interval = 500; return 0; } #else #define af9015_get_rc_config NULL #endif static int af9015_regmap_write(void *context, const void *data, size_t count) { struct dvb_usb_device *d = context; struct usb_interface *intf = d->intf; int ret; u16 reg = ((u8 *)data)[0] << 8 | ((u8 *)data)[1] << 0; u8 *val = &((u8 *)data)[2]; const unsigned int len = count - 2; struct req_t req = {WRITE_MEMORY, 0, reg, 0, 0, len, val}; ret = af9015_ctrl_msg(d, &req); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_regmap_read(void *context, const void *reg_buf, size_t reg_size, void *val_buf, size_t val_size) { struct dvb_usb_device *d = context; struct usb_interface *intf = d->intf; int ret; u16 reg = ((u8 *)reg_buf)[0] << 8 | ((u8 *)reg_buf)[1] << 0; u8 *val = &((u8 *)val_buf)[0]; const unsigned int len = val_size; struct req_t req = {READ_MEMORY, 0, reg, 0, 0, len, val}; ret = af9015_ctrl_msg(d, &req); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static int af9015_probe(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; struct usb_device *udev = interface_to_usbdev(intf); int ret; char manufacturer[sizeof("ITE Technologies, Inc.")]; static const struct regmap_config regmap_config = { .reg_bits = 16, .val_bits = 8, }; static const struct regmap_bus regmap_bus = { .read = af9015_regmap_read, .write = af9015_regmap_write, }; dev_dbg(&intf->dev, "\n"); memset(manufacturer, 0, sizeof(manufacturer)); usb_string(udev, udev->descriptor.iManufacturer, manufacturer, sizeof(manufacturer)); /* * There is two devices having same ID but different chipset. One uses * AF9015 and the other IT9135 chipset. Only difference seen on lsusb * is iManufacturer string. * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 Afatech * iProduct 2 DVB-T 2 * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 ITE Technologies, Inc. * iProduct 2 DVB-T TV Stick */ if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) && (le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) { if (!strcmp("ITE Technologies, Inc.", manufacturer)) { ret = -ENODEV; dev_dbg(&intf->dev, "rejecting device\n"); goto err; } } state->regmap = regmap_init(&intf->dev, ®map_bus, d, ®map_config); if (IS_ERR(state->regmap)) { ret = PTR_ERR(state->regmap); goto err; } return 0; err: dev_dbg(&intf->dev, "failed %d\n", ret); return ret; } static void af9015_disconnect(struct dvb_usb_device *d) { struct af9015_state *state = d_to_priv(d); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "\n"); regmap_exit(state->regmap); } /* * Interface 0 is used by DVB-T receiver and * interface 1 is for remote controller (HID) */ static const struct dvb_usb_device_properties af9015_props = { .driver_name = KBUILD_MODNAME, .owner = THIS_MODULE, .adapter_nr = adapter_nr, .size_of_priv = sizeof(struct af9015_state), .generic_bulk_ctrl_endpoint = 0x02, .generic_bulk_ctrl_endpoint_response = 0x81, .probe = af9015_probe, .disconnect = af9015_disconnect, .identify_state = af9015_identify_state, .firmware = AF9015_FIRMWARE, .download_firmware = af9015_download_firmware, .i2c_algo = &af9015_i2c_algo, .read_config = af9015_read_config, .frontend_attach = af9015_af9013_frontend_attach, .frontend_detach = af9015_frontend_detach, .tuner_attach = af9015_tuner_attach, .init = af9015_init, .get_rc_config = af9015_get_rc_config, .get_stream_config = af9015_get_stream_config, .streaming_ctrl = af9015_streaming_ctrl, .get_adapter_count = af9015_get_adapter_count, .adapter = { { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter = af9015_pid_filter, .pid_filter_ctrl = af9015_pid_filter_ctrl, .stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188), }, { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter = af9015_pid_filter, .pid_filter_ctrl = af9015_pid_filter_ctrl, .stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188), }, }, }; static const struct usb_device_id af9015_id_table[] = { { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9015_9015, &af9015_props, "Afatech AF9015 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9015_9016, &af9015_props, "Afatech AF9015 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_LEADTEK, USB_PID_WINFAST_DTV_DONGLE_GOLD, &af9015_props, "Leadtek WinFast DTV Dongle Gold", RC_MAP_LEADTEK_Y04G0051) }, { DVB_USB_DEVICE(USB_VID_PINNACLE, USB_PID_PINNACLE_PCTV71E, &af9015_props, "Pinnacle PCTV 71e", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_399U, &af9015_props, "KWorld PlusTV Dual DVB-T Stick (DVB-T 399U)", NULL) }, { DVB_USB_DEVICE(USB_VID_VISIONPLUS, USB_PID_TINYTWIN, &af9015_props, "DigitalNow TinyTwin", RC_MAP_AZUREWAVE_AD_TU700) }, { DVB_USB_DEVICE(USB_VID_VISIONPLUS, USB_PID_AZUREWAVE_AD_TU700, &af9015_props, "TwinHan AzureWave AD-TU700(704J)", RC_MAP_AZUREWAVE_AD_TU700) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_USB_XE_REV2, &af9015_props, "TerraTec Cinergy T USB XE", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_PC160_2T, &af9015_props, "KWorld PlusTV Dual DVB-T PCI (DVB-T PC160-2T)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_VOLAR_X, &af9015_props, "AVerMedia AVerTV DVB-T Volar X", RC_MAP_AVERMEDIA_M135A) }, { DVB_USB_DEVICE(USB_VID_XTENSIONS, USB_PID_XTENSIONS_XD_380, &af9015_props, "Xtensions XD-380", NULL) }, { DVB_USB_DEVICE(USB_VID_MSI_2, USB_PID_MSI_DIGIVOX_DUO, &af9015_props, "MSI DIGIVOX Duo", RC_MAP_MSI_DIGIVOX_III) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_VOLAR_X_2, &af9015_props, "Fujitsu-Siemens Slim Mobile USB DVB-T", NULL) }, { DVB_USB_DEVICE(USB_VID_TELESTAR, USB_PID_TELESTAR_STARSTICK_2, &af9015_props, "Telestar Starstick 2", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A309, &af9015_props, "AVerMedia A309", NULL) }, { DVB_USB_DEVICE(USB_VID_MSI_2, USB_PID_MSI_DIGI_VOX_MINI_III, &af9015_props, "MSI Digi VOX mini III", RC_MAP_MSI_DIGIVOX_III) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_395U, &af9015_props, "KWorld USB DVB-T TV Stick II (VS-DVB-T 395U)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_395U_2, &af9015_props, "KWorld USB DVB-T TV Stick II (VS-DVB-T 395U)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_395U_3, &af9015_props, "KWorld USB DVB-T TV Stick II (VS-DVB-T 395U)", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_TREKSTOR_DVBT, &af9015_props, "TrekStor DVB-T USB Stick", RC_MAP_TREKSTOR) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A850, &af9015_props, "AverMedia AVerTV Volar Black HD (A850)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A805, &af9015_props, "AverMedia AVerTV Volar GPS 805 (A805)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_CONCEPTRONIC_CTVDIGRCU, &af9015_props, "Conceptronic USB2.0 DVB-T CTVDIGRCU V3.0", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_MC810, &af9015_props, "KWorld Digital MC-810", NULL) }, { DVB_USB_DEVICE(USB_VID_KYE, USB_PID_GENIUS_TVGO_DVB_T03, &af9015_props, "Genius TVGo DVB-T03", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_399U_2, &af9015_props, "KWorld PlusTV Dual DVB-T Stick (DVB-T 399U)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_PC160_T, &af9015_props, "KWorld PlusTV DVB-T PCI Pro Card (DVB-T PC160-T)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV20, &af9015_props, "Sveon STV20 Tuner USB DVB-T HDTV", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_TINYTWIN_2, &af9015_props, "DigitalNow TinyTwin v2", RC_MAP_DIGITALNOW_TINYTWIN) }, { DVB_USB_DEVICE(USB_VID_LEADTEK, USB_PID_WINFAST_DTV2000DS, &af9015_props, "Leadtek WinFast DTV2000DS", RC_MAP_LEADTEK_Y04G0051) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_UB383_T, &af9015_props, "KWorld USB DVB-T Stick Mobile (UB383-T)", NULL) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_395U_4, &af9015_props, "KWorld USB DVB-T TV Stick II (VS-DVB-T 395U)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A815M, &af9015_props, "AverMedia AVerTV Volar M (A815Mac)", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK_RC, &af9015_props, "TerraTec Cinergy T Stick RC", RC_MAP_TERRATEC_SLIM_2) }, /* XXX: that same ID [0ccd:0099] is used by af9035 driver too */ { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK_DUAL_RC, &af9015_props, "TerraTec Cinergy T Stick Dual RC", RC_MAP_TERRATEC_SLIM) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A850T, &af9015_props, "AverMedia AVerTV Red HD+ (A850T)", NULL) }, { DVB_USB_DEVICE(USB_VID_GTEK, USB_PID_TINYTWIN_3, &af9015_props, "DigitalNow TinyTwin v3", RC_MAP_DIGITALNOW_TINYTWIN) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV22, &af9015_props, "Sveon STV22 Dual USB DVB-T Tuner HDTV", RC_MAP_MSI_DIGIVOX_III) }, { } }; MODULE_DEVICE_TABLE(usb, af9015_id_table); /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver af9015_usb_driver = { .name = KBUILD_MODNAME, .id_table = af9015_id_table, .probe = dvb_usbv2_probe, .disconnect = dvb_usbv2_disconnect, .suspend = dvb_usbv2_suspend, .resume = dvb_usbv2_resume, .reset_resume = dvb_usbv2_reset_resume, .no_dynamic_id = 1, .soft_unbind = 1, }; module_usb_driver(af9015_usb_driver); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_DESCRIPTION("Afatech AF9015 driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(AF9015_FIRMWARE);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1