Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Zapolskiy | 940 | 41.23% | 10 | 28.57% |
Heiko Stübner | 485 | 21.27% | 2 | 5.71% |
Philipp Zabel | 359 | 15.75% | 1 | 2.86% |
Mikko Perttunen | 207 | 9.08% | 2 | 5.71% |
Alexandre Belloni | 99 | 4.34% | 1 | 2.86% |
Dave Gerlach | 43 | 1.89% | 2 | 5.71% |
Uwe Kleine-König | 31 | 1.36% | 2 | 5.71% |
Bartosz Golaszewski | 25 | 1.10% | 1 | 2.86% |
Marcin Wojtas | 23 | 1.01% | 1 | 2.86% |
Linus Walleij | 17 | 0.75% | 2 | 5.71% |
Johan Hovold | 14 | 0.61% | 2 | 5.71% |
Rob Herring | 14 | 0.61% | 2 | 5.71% |
Pan Bian | 7 | 0.31% | 1 | 2.86% |
Abhilash Kesavan | 7 | 0.31% | 1 | 2.86% |
Kees Cook | 4 | 0.18% | 2 | 5.71% |
Sami Tolvanen | 2 | 0.09% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.09% | 1 | 2.86% |
Fabian Frederick | 1 | 0.04% | 1 | 2.86% |
Total | 2280 | 35 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Generic on-chip SRAM allocation driver * * Copyright (C) 2012 Philipp Zabel, Pengutronix */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/genalloc.h> #include <linux/io.h> #include <linux/list_sort.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/mfd/syscon.h> #include <soc/at91/atmel-secumod.h> #include "sram.h" #define SRAM_GRANULARITY 32 static ssize_t sram_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count) { struct sram_partition *part; part = container_of(attr, struct sram_partition, battr); mutex_lock(&part->lock); memcpy_fromio(buf, part->base + pos, count); mutex_unlock(&part->lock); return count; } static ssize_t sram_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count) { struct sram_partition *part; part = container_of(attr, struct sram_partition, battr); mutex_lock(&part->lock); memcpy_toio(part->base + pos, buf, count); mutex_unlock(&part->lock); return count; } static int sram_add_pool(struct sram_dev *sram, struct sram_reserve *block, phys_addr_t start, struct sram_partition *part) { int ret; part->pool = devm_gen_pool_create(sram->dev, ilog2(SRAM_GRANULARITY), NUMA_NO_NODE, block->label); if (IS_ERR(part->pool)) return PTR_ERR(part->pool); ret = gen_pool_add_virt(part->pool, (unsigned long)part->base, start, block->size, NUMA_NO_NODE); if (ret < 0) { dev_err(sram->dev, "failed to register subpool: %d\n", ret); return ret; } return 0; } static int sram_add_export(struct sram_dev *sram, struct sram_reserve *block, phys_addr_t start, struct sram_partition *part) { sysfs_bin_attr_init(&part->battr); part->battr.attr.name = devm_kasprintf(sram->dev, GFP_KERNEL, "%llx.sram", (unsigned long long)start); if (!part->battr.attr.name) return -ENOMEM; part->battr.attr.mode = S_IRUSR | S_IWUSR; part->battr.read = sram_read; part->battr.write = sram_write; part->battr.size = block->size; return device_create_bin_file(sram->dev, &part->battr); } static int sram_add_partition(struct sram_dev *sram, struct sram_reserve *block, phys_addr_t start) { int ret; struct sram_partition *part = &sram->partition[sram->partitions]; mutex_init(&part->lock); if (sram->config && sram->config->map_only_reserved) { void __iomem *virt_base; if (sram->no_memory_wc) virt_base = devm_ioremap_resource(sram->dev, &block->res); else virt_base = devm_ioremap_resource_wc(sram->dev, &block->res); if (IS_ERR(virt_base)) { dev_err(sram->dev, "could not map SRAM at %pr\n", &block->res); return PTR_ERR(virt_base); } part->base = virt_base; } else { part->base = sram->virt_base + block->start; } if (block->pool) { ret = sram_add_pool(sram, block, start, part); if (ret) return ret; } if (block->export) { ret = sram_add_export(sram, block, start, part); if (ret) return ret; } if (block->protect_exec) { ret = sram_check_protect_exec(sram, block, part); if (ret) return ret; ret = sram_add_pool(sram, block, start, part); if (ret) return ret; sram_add_protect_exec(part); } sram->partitions++; return 0; } static void sram_free_partitions(struct sram_dev *sram) { struct sram_partition *part; if (!sram->partitions) return; part = &sram->partition[sram->partitions - 1]; for (; sram->partitions; sram->partitions--, part--) { if (part->battr.size) device_remove_bin_file(sram->dev, &part->battr); if (part->pool && gen_pool_avail(part->pool) < gen_pool_size(part->pool)) dev_err(sram->dev, "removed pool while SRAM allocated\n"); } } static int sram_reserve_cmp(void *priv, const struct list_head *a, const struct list_head *b) { struct sram_reserve *ra = list_entry(a, struct sram_reserve, list); struct sram_reserve *rb = list_entry(b, struct sram_reserve, list); return ra->start - rb->start; } static int sram_reserve_regions(struct sram_dev *sram, struct resource *res) { struct device_node *np = sram->dev->of_node, *child; unsigned long size, cur_start, cur_size; struct sram_reserve *rblocks, *block; struct list_head reserve_list; unsigned int nblocks, exports = 0; const char *label; int ret = 0; INIT_LIST_HEAD(&reserve_list); size = resource_size(res); /* * We need an additional block to mark the end of the memory region * after the reserved blocks from the dt are processed. */ nblocks = (np) ? of_get_available_child_count(np) + 1 : 1; rblocks = kcalloc(nblocks, sizeof(*rblocks), GFP_KERNEL); if (!rblocks) return -ENOMEM; block = &rblocks[0]; for_each_available_child_of_node(np, child) { struct resource child_res; ret = of_address_to_resource(child, 0, &child_res); if (ret < 0) { dev_err(sram->dev, "could not get address for node %pOF\n", child); goto err_chunks; } if (child_res.start < res->start || child_res.end > res->end) { dev_err(sram->dev, "reserved block %pOF outside the sram area\n", child); ret = -EINVAL; goto err_chunks; } block->start = child_res.start - res->start; block->size = resource_size(&child_res); block->res = child_res; list_add_tail(&block->list, &reserve_list); block->export = of_property_read_bool(child, "export"); block->pool = of_property_read_bool(child, "pool"); block->protect_exec = of_property_read_bool(child, "protect-exec"); if ((block->export || block->pool || block->protect_exec) && block->size) { exports++; label = NULL; ret = of_property_read_string(child, "label", &label); if (ret && ret != -EINVAL) { dev_err(sram->dev, "%pOF has invalid label name\n", child); goto err_chunks; } if (!label) block->label = devm_kasprintf(sram->dev, GFP_KERNEL, "%s", of_node_full_name(child)); else block->label = devm_kstrdup(sram->dev, label, GFP_KERNEL); if (!block->label) { ret = -ENOMEM; goto err_chunks; } dev_dbg(sram->dev, "found %sblock '%s' 0x%x-0x%x\n", block->export ? "exported " : "", block->label, block->start, block->start + block->size); } else { dev_dbg(sram->dev, "found reserved block 0x%x-0x%x\n", block->start, block->start + block->size); } block++; } child = NULL; /* the last chunk marks the end of the region */ rblocks[nblocks - 1].start = size; rblocks[nblocks - 1].size = 0; list_add_tail(&rblocks[nblocks - 1].list, &reserve_list); list_sort(NULL, &reserve_list, sram_reserve_cmp); if (exports) { sram->partition = devm_kcalloc(sram->dev, exports, sizeof(*sram->partition), GFP_KERNEL); if (!sram->partition) { ret = -ENOMEM; goto err_chunks; } } cur_start = 0; list_for_each_entry(block, &reserve_list, list) { /* can only happen if sections overlap */ if (block->start < cur_start) { dev_err(sram->dev, "block at 0x%x starts after current offset 0x%lx\n", block->start, cur_start); ret = -EINVAL; sram_free_partitions(sram); goto err_chunks; } if ((block->export || block->pool || block->protect_exec) && block->size) { ret = sram_add_partition(sram, block, res->start + block->start); if (ret) { sram_free_partitions(sram); goto err_chunks; } } /* current start is in a reserved block, so continue after it */ if (block->start == cur_start) { cur_start = block->start + block->size; continue; } /* * allocate the space between the current starting * address and the following reserved block, or the * end of the region. */ cur_size = block->start - cur_start; if (sram->pool) { dev_dbg(sram->dev, "adding chunk 0x%lx-0x%lx\n", cur_start, cur_start + cur_size); ret = gen_pool_add_virt(sram->pool, (unsigned long)sram->virt_base + cur_start, res->start + cur_start, cur_size, -1); if (ret < 0) { sram_free_partitions(sram); goto err_chunks; } } /* next allocation after this reserved block */ cur_start = block->start + block->size; } err_chunks: of_node_put(child); kfree(rblocks); return ret; } static int atmel_securam_wait(void) { struct regmap *regmap; u32 val; regmap = syscon_regmap_lookup_by_compatible("atmel,sama5d2-secumod"); if (IS_ERR(regmap)) return -ENODEV; return regmap_read_poll_timeout(regmap, AT91_SECUMOD_RAMRDY, val, val & AT91_SECUMOD_RAMRDY_READY, 10000, 500000); } static const struct sram_config atmel_securam_config = { .init = atmel_securam_wait, }; /* * SYSRAM contains areas that are not accessible by the * kernel, such as the first 256K that is reserved for TZ. * Accesses to those areas (including speculative accesses) * trigger SErrors. As such we must map only the areas of * SYSRAM specified in the device tree. */ static const struct sram_config tegra_sysram_config = { .map_only_reserved = true, }; static const struct of_device_id sram_dt_ids[] = { { .compatible = "mmio-sram" }, { .compatible = "atmel,sama5d2-securam", .data = &atmel_securam_config }, { .compatible = "nvidia,tegra186-sysram", .data = &tegra_sysram_config }, { .compatible = "nvidia,tegra194-sysram", .data = &tegra_sysram_config }, { .compatible = "nvidia,tegra234-sysram", .data = &tegra_sysram_config }, {} }; static int sram_probe(struct platform_device *pdev) { const struct sram_config *config; struct sram_dev *sram; int ret; struct resource *res; struct clk *clk; config = of_device_get_match_data(&pdev->dev); sram = devm_kzalloc(&pdev->dev, sizeof(*sram), GFP_KERNEL); if (!sram) return -ENOMEM; sram->dev = &pdev->dev; sram->no_memory_wc = of_property_read_bool(pdev->dev.of_node, "no-memory-wc"); sram->config = config; if (!config || !config->map_only_reserved) { res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (sram->no_memory_wc) sram->virt_base = devm_ioremap_resource(&pdev->dev, res); else sram->virt_base = devm_ioremap_resource_wc(&pdev->dev, res); if (IS_ERR(sram->virt_base)) { dev_err(&pdev->dev, "could not map SRAM registers\n"); return PTR_ERR(sram->virt_base); } sram->pool = devm_gen_pool_create(sram->dev, ilog2(SRAM_GRANULARITY), NUMA_NO_NODE, NULL); if (IS_ERR(sram->pool)) return PTR_ERR(sram->pool); } clk = devm_clk_get_optional_enabled(sram->dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); ret = sram_reserve_regions(sram, platform_get_resource(pdev, IORESOURCE_MEM, 0)); if (ret) return ret; platform_set_drvdata(pdev, sram); if (config && config->init) { ret = config->init(); if (ret) goto err_free_partitions; } if (sram->pool) dev_dbg(sram->dev, "SRAM pool: %zu KiB @ 0x%p\n", gen_pool_size(sram->pool) / 1024, sram->virt_base); return 0; err_free_partitions: sram_free_partitions(sram); return ret; } static int sram_remove(struct platform_device *pdev) { struct sram_dev *sram = platform_get_drvdata(pdev); sram_free_partitions(sram); if (sram->pool && gen_pool_avail(sram->pool) < gen_pool_size(sram->pool)) dev_err(sram->dev, "removed while SRAM allocated\n"); return 0; } static struct platform_driver sram_driver = { .driver = { .name = "sram", .of_match_table = sram_dt_ids, }, .probe = sram_probe, .remove = sram_remove, }; static int __init sram_init(void) { return platform_driver_register(&sram_driver); } postcore_initcall(sram_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1