Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adrian Hunter | 5365 | 38.49% | 38 | 13.48% |
Linus Walleij | 1803 | 12.93% | 25 | 8.87% |
Russell King | 1399 | 10.04% | 14 | 4.96% |
Andrei Warkentin | 837 | 6.00% | 7 | 2.48% |
John Calixto | 536 | 3.85% | 1 | 0.35% |
Ulf Hansson | 534 | 3.83% | 28 | 9.93% |
Jon Hunter | 482 | 3.46% | 1 | 0.35% |
Christoph Hellwig | 381 | 2.73% | 18 | 6.38% |
Pierre Ossman | 305 | 2.19% | 19 | 6.74% |
Johan Rudholm | 288 | 2.07% | 2 | 0.71% |
Christian Löhle | 247 | 1.77% | 6 | 2.13% |
Baolin Wang | 167 | 1.20% | 1 | 0.35% |
Avri Altman | 86 | 0.62% | 4 | 1.42% |
Håvard Skinnemoen | 78 | 0.56% | 2 | 0.71% |
Per Forlin | 76 | 0.55% | 4 | 1.42% |
Dmitry Osipenko | 74 | 0.53% | 1 | 0.35% |
Loic Pallardy | 73 | 0.52% | 2 | 0.71% |
Bastian Stender | 71 | 0.51% | 1 | 0.35% |
Vincent Whitchurch | 66 | 0.47% | 1 | 0.35% |
Shawn Lin | 64 | 0.46% | 7 | 2.48% |
Olof Johansson | 59 | 0.42% | 1 | 0.35% |
Zachary Hays | 54 | 0.39% | 1 | 0.35% |
Stephen Boyd | 50 | 0.36% | 1 | 0.35% |
Bean Huo | 48 | 0.34% | 2 | 0.71% |
Chris Boot | 45 | 0.32% | 1 | 0.35% |
Wolfram Sang | 39 | 0.28% | 3 | 1.06% |
Ben Dooks | 35 | 0.25% | 1 | 0.35% |
Michael Wu | 34 | 0.24% | 1 | 0.35% |
Arnd Bergmann | 32 | 0.23% | 3 | 1.06% |
Sebastian Andrzej Siewior | 28 | 0.20% | 1 | 0.35% |
Al Viro | 24 | 0.17% | 2 | 0.71% |
Grant Grundler | 22 | 0.16% | 1 | 0.35% |
Namjae Jeon | 22 | 0.16% | 1 | 0.35% |
Nishad Kamdar | 21 | 0.15% | 1 | 0.35% |
Maya Erez | 21 | 0.15% | 1 | 0.35% |
KOBAYASHI Yoshitake | 20 | 0.14% | 1 | 0.35% |
Luis R. Rodriguez | 19 | 0.14% | 1 | 0.35% |
David Brownell | 19 | 0.14% | 1 | 0.35% |
SF Markus Elfring | 17 | 0.12% | 1 | 0.35% |
Luca Porzio | 17 | 0.12% | 1 | 0.35% |
Yibin Ding | 16 | 0.11% | 1 | 0.35% |
Sergey Shtylyov | 16 | 0.11% | 1 | 0.35% |
Sujit Reddy Thumma | 15 | 0.11% | 1 | 0.35% |
Venkat Gopalakrishnan | 14 | 0.10% | 1 | 0.35% |
Ben Hutchings | 14 | 0.10% | 1 | 0.35% |
Heiner Kallweit | 13 | 0.09% | 1 | 0.35% |
Andrew Morton | 12 | 0.09% | 1 | 0.35% |
Veerabhadrarao Badiganti | 12 | 0.09% | 1 | 0.35% |
Akinobu Mita | 12 | 0.09% | 1 | 0.35% |
Marc-André Hébert | 11 | 0.08% | 1 | 0.35% |
Ohad Ben-Cohen | 11 | 0.08% | 2 | 0.71% |
Jarkko Lavinen | 11 | 0.08% | 2 | 0.71% |
Dan J Williams | 10 | 0.07% | 1 | 0.35% |
Yaniv Gardi | 10 | 0.07% | 1 | 0.35% |
Jiebing Li | 10 | 0.07% | 1 | 0.35% |
Daniel Glöckner | 10 | 0.07% | 1 | 0.35% |
Arjan van de Ven | 9 | 0.06% | 1 | 0.35% |
Ville Viinikka | 8 | 0.06% | 1 | 0.35% |
Seunghui Lee | 8 | 0.06% | 1 | 0.35% |
Subhash Jadavani | 8 | 0.06% | 1 | 0.35% |
Geert Uytterhoeven | 8 | 0.06% | 1 | 0.35% |
Eric Biggers | 8 | 0.06% | 1 | 0.35% |
Vladimir Motyka | 7 | 0.05% | 1 | 0.35% |
Yoshihiro Shimoda | 7 | 0.05% | 1 | 0.35% |
David Woodhouse | 6 | 0.04% | 1 | 0.35% |
Kuninori Morimoto | 6 | 0.04% | 1 | 0.35% |
Masahiro Yamada | 6 | 0.04% | 1 | 0.35% |
Saugata Das | 6 | 0.04% | 1 | 0.35% |
Hao Peng | 5 | 0.04% | 1 | 0.35% |
Seungwon Jeon | 5 | 0.04% | 1 | 0.35% |
Andy Whitcroft | 5 | 0.04% | 1 | 0.35% |
Michael Christie | 4 | 0.03% | 1 | 0.35% |
Konstantin Dorfman | 4 | 0.03% | 1 | 0.35% |
Venkatraman Sathiyamoorthy | 4 | 0.03% | 1 | 0.35% |
James Bottomley | 4 | 0.03% | 1 | 0.35% |
Ken Sumrall | 4 | 0.03% | 1 | 0.35% |
Jaehoon Chung | 4 | 0.03% | 1 | 0.35% |
Chris Ball | 3 | 0.02% | 3 | 1.06% |
Baoyou Xie | 3 | 0.02% | 1 | 0.35% |
Yi Li | 3 | 0.02% | 1 | 0.35% |
Anna Lemehova | 3 | 0.02% | 1 | 0.35% |
Yeqi Fu | 3 | 0.02% | 1 | 0.35% |
Lukas Czerner | 3 | 0.02% | 1 | 0.35% |
Juntao Yuan | 3 | 0.02% | 1 | 0.35% |
Yue haibing | 3 | 0.02% | 1 | 0.35% |
Trey Ramsay | 3 | 0.02% | 1 | 0.35% |
Linus Torvalds | 2 | 0.01% | 2 | 0.71% |
Alexey Dobriyan | 2 | 0.01% | 2 | 0.71% |
Girish K.S | 2 | 0.01% | 1 | 0.35% |
Florian Fainelli | 2 | 0.01% | 1 | 0.35% |
Philippe De Swert | 2 | 0.01% | 1 | 0.35% |
Harvey Harrison | 2 | 0.01% | 1 | 0.35% |
Ming Lei | 2 | 0.01% | 1 | 0.35% |
huijin.park | 2 | 0.01% | 1 | 0.35% |
Linus Torvalds (pre-git) | 2 | 0.01% | 1 | 0.35% |
Jens Axboe | 2 | 0.01% | 1 | 0.35% |
Baruch Siach | 1 | 0.01% | 1 | 0.35% |
Colin Cross | 1 | 0.01% | 1 | 0.35% |
Mathieu Malaterre | 1 | 0.01% | 1 | 0.35% |
Andy Shevchenko | 1 | 0.01% | 1 | 0.35% |
Chi Minghao | 1 | 0.01% | 1 | 0.35% |
Yalin Wang | 1 | 0.01% | 1 | 0.35% |
Aviral Gupta | 1 | 0.01% | 1 | 0.35% |
Yoann Padioleau | 1 | 0.01% | 1 | 0.35% |
Tobias Klauser | 1 | 0.01% | 1 | 0.35% |
Asaf Vertz | 1 | 0.01% | 1 | 0.35% |
Chaotian Jing | 1 | 0.01% | 1 | 0.35% |
Hannes Reinecke | 1 | 0.01% | 1 | 0.35% |
Total | 13940 | 282 |
// SPDX-License-Identifier: GPL-2.0 /* * Block driver for media (i.e., flash cards) * * Copyright 2002 Hewlett-Packard Company * Copyright 2005-2008 Pierre Ossman * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS * FITNESS FOR ANY PARTICULAR PURPOSE. * * Many thanks to Alessandro Rubini and Jonathan Corbet! * * Author: Andrew Christian * 28 May 2002 */ #include <linux/moduleparam.h> #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/hdreg.h> #include <linux/kdev_t.h> #include <linux/kref.h> #include <linux/blkdev.h> #include <linux/cdev.h> #include <linux/mutex.h> #include <linux/scatterlist.h> #include <linux/string_helpers.h> #include <linux/delay.h> #include <linux/capability.h> #include <linux/compat.h> #include <linux/pm_runtime.h> #include <linux/idr.h> #include <linux/debugfs.h> #include <linux/mmc/ioctl.h> #include <linux/mmc/card.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sd.h> #include <linux/uaccess.h> #include "queue.h" #include "block.h" #include "core.h" #include "card.h" #include "crypto.h" #include "host.h" #include "bus.h" #include "mmc_ops.h" #include "quirks.h" #include "sd_ops.h" MODULE_ALIAS("mmc:block"); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "mmcblk." /* * Set a 10 second timeout for polling write request busy state. Note, mmc core * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 * second software timer to timeout the whole request, so 10 seconds should be * ample. */ #define MMC_BLK_TIMEOUT_MS (10 * 1000) #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) static DEFINE_MUTEX(block_mutex); /* * The defaults come from config options but can be overriden by module * or bootarg options. */ static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; /* * We've only got one major, so number of mmcblk devices is * limited to (1 << 20) / number of minors per device. It is also * limited by the MAX_DEVICES below. */ static int max_devices; #define MAX_DEVICES 256 static DEFINE_IDA(mmc_blk_ida); static DEFINE_IDA(mmc_rpmb_ida); struct mmc_blk_busy_data { struct mmc_card *card; u32 status; }; /* * There is one mmc_blk_data per slot. */ struct mmc_blk_data { struct device *parent; struct gendisk *disk; struct mmc_queue queue; struct list_head part; struct list_head rpmbs; unsigned int flags; #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ struct kref kref; unsigned int read_only; unsigned int part_type; unsigned int reset_done; #define MMC_BLK_READ BIT(0) #define MMC_BLK_WRITE BIT(1) #define MMC_BLK_DISCARD BIT(2) #define MMC_BLK_SECDISCARD BIT(3) #define MMC_BLK_CQE_RECOVERY BIT(4) #define MMC_BLK_TRIM BIT(5) /* * Only set in main mmc_blk_data associated * with mmc_card with dev_set_drvdata, and keeps * track of the current selected device partition. */ unsigned int part_curr; #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ int area_type; /* debugfs files (only in main mmc_blk_data) */ struct dentry *status_dentry; struct dentry *ext_csd_dentry; }; /* Device type for RPMB character devices */ static dev_t mmc_rpmb_devt; /* Bus type for RPMB character devices */ static struct bus_type mmc_rpmb_bus_type = { .name = "mmc_rpmb", }; /** * struct mmc_rpmb_data - special RPMB device type for these areas * @dev: the device for the RPMB area * @chrdev: character device for the RPMB area * @id: unique device ID number * @part_index: partition index (0 on first) * @md: parent MMC block device * @node: list item, so we can put this device on a list */ struct mmc_rpmb_data { struct device dev; struct cdev chrdev; int id; unsigned int part_index; struct mmc_blk_data *md; struct list_head node; }; static DEFINE_MUTEX(open_lock); module_param(perdev_minors, int, 0444); MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type); static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int recovery_mode, struct mmc_queue *mq); static void mmc_blk_hsq_req_done(struct mmc_request *mrq); static int mmc_spi_err_check(struct mmc_card *card); static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) { struct mmc_blk_data *md; mutex_lock(&open_lock); md = disk->private_data; if (md && !kref_get_unless_zero(&md->kref)) md = NULL; mutex_unlock(&open_lock); return md; } static inline int mmc_get_devidx(struct gendisk *disk) { int devidx = disk->first_minor / perdev_minors; return devidx; } static void mmc_blk_kref_release(struct kref *ref) { struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); int devidx; devidx = mmc_get_devidx(md->disk); ida_simple_remove(&mmc_blk_ida, devidx); mutex_lock(&open_lock); md->disk->private_data = NULL; mutex_unlock(&open_lock); put_disk(md->disk); kfree(md); } static void mmc_blk_put(struct mmc_blk_data *md) { kref_put(&md->kref, mmc_blk_kref_release); } static ssize_t power_ro_lock_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_card *card = md->queue.card; int locked = 0; if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) locked = 2; else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) locked = 1; ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); mmc_blk_put(md); return ret; } static ssize_t power_ro_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct mmc_blk_data *md, *part_md; struct mmc_queue *mq; struct request *req; unsigned long set; if (kstrtoul(buf, 0, &set)) return -EINVAL; if (set != 1) return count; md = mmc_blk_get(dev_to_disk(dev)); mq = &md->queue; /* Dispatch locking to the block layer */ req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); if (IS_ERR(req)) { count = PTR_ERR(req); goto out_put; } req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; req_to_mmc_queue_req(req)->drv_op_result = -EIO; blk_execute_rq(req, false); ret = req_to_mmc_queue_req(req)->drv_op_result; blk_mq_free_request(req); if (!ret) { pr_info("%s: Locking boot partition ro until next power on\n", md->disk->disk_name); set_disk_ro(md->disk, 1); list_for_each_entry(part_md, &md->part, part) if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); set_disk_ro(part_md->disk, 1); } } out_put: mmc_blk_put(md); return count; } static DEVICE_ATTR(ro_lock_until_next_power_on, 0, power_ro_lock_show, power_ro_lock_store); static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); ret = snprintf(buf, PAGE_SIZE, "%d\n", get_disk_ro(dev_to_disk(dev)) ^ md->read_only); mmc_blk_put(md); return ret; } static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; char *end; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); unsigned long set = simple_strtoul(buf, &end, 0); if (end == buf) { ret = -EINVAL; goto out; } set_disk_ro(dev_to_disk(dev), set || md->read_only); ret = count; out: mmc_blk_put(md); return ret; } static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); static struct attribute *mmc_disk_attrs[] = { &dev_attr_force_ro.attr, &dev_attr_ro_lock_until_next_power_on.attr, NULL, }; static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); umode_t mode = a->mode; if (a == &dev_attr_ro_lock_until_next_power_on.attr && (md->area_type & MMC_BLK_DATA_AREA_BOOT) && md->queue.card->ext_csd.boot_ro_lockable) { mode = S_IRUGO; if (!(md->queue.card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) mode |= S_IWUSR; } mmc_blk_put(md); return mode; } static const struct attribute_group mmc_disk_attr_group = { .is_visible = mmc_disk_attrs_is_visible, .attrs = mmc_disk_attrs, }; static const struct attribute_group *mmc_disk_attr_groups[] = { &mmc_disk_attr_group, NULL, }; static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) { struct mmc_blk_data *md = mmc_blk_get(disk); int ret = -ENXIO; mutex_lock(&block_mutex); if (md) { ret = 0; if ((mode & BLK_OPEN_WRITE) && md->read_only) { mmc_blk_put(md); ret = -EROFS; } } mutex_unlock(&block_mutex); return ret; } static void mmc_blk_release(struct gendisk *disk) { struct mmc_blk_data *md = disk->private_data; mutex_lock(&block_mutex); mmc_blk_put(md); mutex_unlock(&block_mutex); } static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); geo->heads = 4; geo->sectors = 16; return 0; } struct mmc_blk_ioc_data { struct mmc_ioc_cmd ic; unsigned char *buf; u64 buf_bytes; struct mmc_rpmb_data *rpmb; }; static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( struct mmc_ioc_cmd __user *user) { struct mmc_blk_ioc_data *idata; int err; idata = kmalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { err = -EFAULT; goto idata_err; } idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { err = -EOVERFLOW; goto idata_err; } if (!idata->buf_bytes) { idata->buf = NULL; return idata; } idata->buf = memdup_user((void __user *)(unsigned long) idata->ic.data_ptr, idata->buf_bytes); if (IS_ERR(idata->buf)) { err = PTR_ERR(idata->buf); goto idata_err; } return idata; idata_err: kfree(idata); out: return ERR_PTR(err); } static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, struct mmc_blk_ioc_data *idata) { struct mmc_ioc_cmd *ic = &idata->ic; if (copy_to_user(&(ic_ptr->response), ic->response, sizeof(ic->response))) return -EFAULT; if (!idata->ic.write_flag) { if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, idata->buf, idata->buf_bytes)) return -EFAULT; } return 0; } static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, struct mmc_blk_ioc_data *idata) { struct mmc_command cmd = {}, sbc = {}; struct mmc_data data = {}; struct mmc_request mrq = {}; struct scatterlist sg; bool r1b_resp, use_r1b_resp = false; unsigned int busy_timeout_ms; int err; unsigned int target_part; if (!card || !md || !idata) return -EINVAL; /* * The RPMB accesses comes in from the character device, so we * need to target these explicitly. Else we just target the * partition type for the block device the ioctl() was issued * on. */ if (idata->rpmb) { /* Support multiple RPMB partitions */ target_part = idata->rpmb->part_index; target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; } else { target_part = md->part_type; } cmd.opcode = idata->ic.opcode; cmd.arg = idata->ic.arg; cmd.flags = idata->ic.flags; if (idata->buf_bytes) { data.sg = &sg; data.sg_len = 1; data.blksz = idata->ic.blksz; data.blocks = idata->ic.blocks; sg_init_one(data.sg, idata->buf, idata->buf_bytes); if (idata->ic.write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* Allow overriding the timeout_ns for empirical tuning. */ if (idata->ic.data_timeout_ns) data.timeout_ns = idata->ic.data_timeout_ns; mrq.data = &data; } mrq.cmd = &cmd; err = mmc_blk_part_switch(card, target_part); if (err) return err; if (idata->ic.is_acmd) { err = mmc_app_cmd(card->host, card); if (err) return err; } if (idata->rpmb) { sbc.opcode = MMC_SET_BLOCK_COUNT; /* * We don't do any blockcount validation because the max size * may be increased by a future standard. We just copy the * 'Reliable Write' bit here. */ sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; mrq.sbc = &sbc; } if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && (cmd.opcode == MMC_SWITCH)) return mmc_sanitize(card, idata->ic.cmd_timeout_ms); /* If it's an R1B response we need some more preparations. */ busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; if (r1b_resp) use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms); mmc_wait_for_req(card->host, &mrq); memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); return cmd.error; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); return data.error; } /* * Make sure the cache of the PARTITION_CONFIG register and * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write * changed it successfully. */ if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && (cmd.opcode == MMC_SWITCH)) { struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); /* * Update cache so the next mmc_blk_part_switch call operates * on up-to-date data. */ card->ext_csd.part_config = value; main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; } /* * Make sure to update CACHE_CTRL in case it was changed. The cache * will get turned back on if the card is re-initialized, e.g. * suspend/resume or hw reset in recovery. */ if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && (cmd.opcode == MMC_SWITCH)) { u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; card->ext_csd.cache_ctrl = value; } /* * According to the SD specs, some commands require a delay after * issuing the command. */ if (idata->ic.postsleep_min_us) usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); /* No need to poll when using HW busy detection. */ if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) return 0; if (mmc_host_is_spi(card->host)) { if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) return mmc_spi_err_check(card); return err; } /* Ensure RPMB/R1B command has completed by polling with CMD13. */ if (idata->rpmb || r1b_resp) err = mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_IO); return err; } static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, struct mmc_ioc_cmd __user *ic_ptr, struct mmc_rpmb_data *rpmb) { struct mmc_blk_ioc_data *idata; struct mmc_blk_ioc_data *idatas[1]; struct mmc_queue *mq; struct mmc_card *card; int err = 0, ioc_err = 0; struct request *req; idata = mmc_blk_ioctl_copy_from_user(ic_ptr); if (IS_ERR(idata)) return PTR_ERR(idata); /* This will be NULL on non-RPMB ioctl():s */ idata->rpmb = rpmb; card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto cmd_done; } /* * Dispatch the ioctl() into the block request queue. */ mq = &md->queue; req = blk_mq_alloc_request(mq->queue, idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); if (IS_ERR(req)) { err = PTR_ERR(req); goto cmd_done; } idatas[0] = idata; req_to_mmc_queue_req(req)->drv_op = rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; req_to_mmc_queue_req(req)->drv_op_result = -EIO; req_to_mmc_queue_req(req)->drv_op_data = idatas; req_to_mmc_queue_req(req)->ioc_count = 1; blk_execute_rq(req, false); ioc_err = req_to_mmc_queue_req(req)->drv_op_result; err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); blk_mq_free_request(req); cmd_done: kfree(idata->buf); kfree(idata); return ioc_err ? ioc_err : err; } static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, struct mmc_ioc_multi_cmd __user *user, struct mmc_rpmb_data *rpmb) { struct mmc_blk_ioc_data **idata = NULL; struct mmc_ioc_cmd __user *cmds = user->cmds; struct mmc_card *card; struct mmc_queue *mq; int err = 0, ioc_err = 0; __u64 num_of_cmds; unsigned int i, n; struct request *req; if (copy_from_user(&num_of_cmds, &user->num_of_cmds, sizeof(num_of_cmds))) return -EFAULT; if (!num_of_cmds) return 0; if (num_of_cmds > MMC_IOC_MAX_CMDS) return -EINVAL; n = num_of_cmds; idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); if (!idata) return -ENOMEM; for (i = 0; i < n; i++) { idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); if (IS_ERR(idata[i])) { err = PTR_ERR(idata[i]); n = i; goto cmd_err; } /* This will be NULL on non-RPMB ioctl():s */ idata[i]->rpmb = rpmb; } card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto cmd_err; } /* * Dispatch the ioctl()s into the block request queue. */ mq = &md->queue; req = blk_mq_alloc_request(mq->queue, idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); if (IS_ERR(req)) { err = PTR_ERR(req); goto cmd_err; } req_to_mmc_queue_req(req)->drv_op = rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; req_to_mmc_queue_req(req)->drv_op_result = -EIO; req_to_mmc_queue_req(req)->drv_op_data = idata; req_to_mmc_queue_req(req)->ioc_count = n; blk_execute_rq(req, false); ioc_err = req_to_mmc_queue_req(req)->drv_op_result; /* copy to user if data and response */ for (i = 0; i < n && !err; i++) err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); blk_mq_free_request(req); cmd_err: for (i = 0; i < n; i++) { kfree(idata[i]->buf); kfree(idata[i]); } kfree(idata); return ioc_err ? ioc_err : err; } static int mmc_blk_check_blkdev(struct block_device *bdev) { /* * The caller must have CAP_SYS_RAWIO, and must be calling this on the * whole block device, not on a partition. This prevents overspray * between sibling partitions. */ if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) return -EPERM; return 0; } static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { struct mmc_blk_data *md; int ret; switch (cmd) { case MMC_IOC_CMD: ret = mmc_blk_check_blkdev(bdev); if (ret) return ret; md = mmc_blk_get(bdev->bd_disk); if (!md) return -EINVAL; ret = mmc_blk_ioctl_cmd(md, (struct mmc_ioc_cmd __user *)arg, NULL); mmc_blk_put(md); return ret; case MMC_IOC_MULTI_CMD: ret = mmc_blk_check_blkdev(bdev); if (ret) return ret; md = mmc_blk_get(bdev->bd_disk); if (!md) return -EINVAL; ret = mmc_blk_ioctl_multi_cmd(md, (struct mmc_ioc_multi_cmd __user *)arg, NULL); mmc_blk_put(md); return ret; default: return -EINVAL; } } #ifdef CONFIG_COMPAT static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); } #endif static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, sector_t *sector) { struct mmc_blk_data *md; int ret; md = mmc_blk_get(disk); if (!md) return -EINVAL; if (md->queue.card) ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); else ret = -ENODEV; mmc_blk_put(md); return ret; } static const struct block_device_operations mmc_bdops = { .open = mmc_blk_open, .release = mmc_blk_release, .getgeo = mmc_blk_getgeo, .owner = THIS_MODULE, .ioctl = mmc_blk_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mmc_blk_compat_ioctl, #endif .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, }; static int mmc_blk_part_switch_pre(struct mmc_card *card, unsigned int part_type) { int ret = 0; if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { if (card->ext_csd.cmdq_en) { ret = mmc_cmdq_disable(card); if (ret) return ret; } mmc_retune_pause(card->host); } return ret; } static int mmc_blk_part_switch_post(struct mmc_card *card, unsigned int part_type) { int ret = 0; if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { mmc_retune_unpause(card->host); if (card->reenable_cmdq && !card->ext_csd.cmdq_en) ret = mmc_cmdq_enable(card); } return ret; } static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type) { int ret = 0; struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); if (main_md->part_curr == part_type) return 0; if (mmc_card_mmc(card)) { u8 part_config = card->ext_csd.part_config; ret = mmc_blk_part_switch_pre(card, part_type); if (ret) return ret; part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= part_type; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (ret) { mmc_blk_part_switch_post(card, part_type); return ret; } card->ext_csd.part_config = part_config; ret = mmc_blk_part_switch_post(card, main_md->part_curr); } main_md->part_curr = part_type; return ret; } static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) { int err; u32 result; __be32 *blocks; struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; cmd.opcode = MMC_APP_CMD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) return err; if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) return -EIO; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = 4; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; mmc_set_data_timeout(&data, card); mrq.cmd = &cmd; mrq.data = &data; blocks = kmalloc(4, GFP_KERNEL); if (!blocks) return -ENOMEM; sg_init_one(&sg, blocks, 4); mmc_wait_for_req(card->host, &mrq); result = ntohl(*blocks); kfree(blocks); if (cmd.error || data.error) return -EIO; *written_blocks = result; return 0; } static unsigned int mmc_blk_clock_khz(struct mmc_host *host) { if (host->actual_clock) return host->actual_clock / 1000; /* Clock may be subject to a divisor, fudge it by a factor of 2. */ if (host->ios.clock) return host->ios.clock / 2000; /* How can there be no clock */ WARN_ON_ONCE(1); return 100; /* 100 kHz is minimum possible value */ } static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, struct mmc_data *data) { unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); unsigned int khz; if (data->timeout_clks) { khz = mmc_blk_clock_khz(host); ms += DIV_ROUND_UP(data->timeout_clks, khz); } return ms; } /* * Attempts to reset the card and get back to the requested partition. * Therefore any error here must result in cancelling the block layer * request, it must not be reattempted without going through the mmc_blk * partition sanity checks. */ static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type) { int err; struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); if (md->reset_done & type) return -EEXIST; md->reset_done |= type; err = mmc_hw_reset(host->card); /* * A successful reset will leave the card in the main partition, but * upon failure it might not be, so set it to MMC_BLK_PART_INVALID * in that case. */ main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; if (err) return err; /* Ensure we switch back to the correct partition */ if (mmc_blk_part_switch(host->card, md->part_type)) /* * We have failed to get back into the correct * partition, so we need to abort the whole request. */ return -ENODEV; return 0; } static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) { md->reset_done &= ~type; } /* * The non-block commands come back from the block layer after it queued it and * processed it with all other requests and then they get issued in this * function. */ static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mq_rq; struct mmc_card *card = mq->card; struct mmc_blk_data *md = mq->blkdata; struct mmc_blk_ioc_data **idata; bool rpmb_ioctl; u8 **ext_csd; u32 status; int ret; int i; mq_rq = req_to_mmc_queue_req(req); rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); switch (mq_rq->drv_op) { case MMC_DRV_OP_IOCTL: if (card->ext_csd.cmdq_en) { ret = mmc_cmdq_disable(card); if (ret) break; } fallthrough; case MMC_DRV_OP_IOCTL_RPMB: idata = mq_rq->drv_op_data; for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); if (ret) break; } /* Always switch back to main area after RPMB access */ if (rpmb_ioctl) mmc_blk_part_switch(card, 0); else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) mmc_cmdq_enable(card); break; case MMC_DRV_OP_BOOT_WP: ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, card->ext_csd.boot_ro_lock | EXT_CSD_BOOT_WP_B_PWR_WP_EN, card->ext_csd.part_time); if (ret) pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); else card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; break; case MMC_DRV_OP_GET_CARD_STATUS: ret = mmc_send_status(card, &status); if (!ret) ret = status; break; case MMC_DRV_OP_GET_EXT_CSD: ext_csd = mq_rq->drv_op_data; ret = mmc_get_ext_csd(card, ext_csd); break; default: pr_err("%s: unknown driver specific operation\n", md->disk->disk_name); ret = -EINVAL; break; } mq_rq->drv_op_result = ret; blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); } static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, int type, unsigned int erase_arg) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; unsigned int from, nr; int err = 0; blk_status_t status = BLK_STS_OK; if (!mmc_can_erase(card)) { status = BLK_STS_NOTSUPP; goto fail; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); do { err = 0; if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, erase_arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, card->ext_csd.generic_cmd6_time); } if (!err) err = mmc_erase(card, from, nr, erase_arg); } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); if (err) status = BLK_STS_IOERR; else mmc_blk_reset_success(md, type); fail: blk_mq_end_request(req, status); } static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) { mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); } static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; unsigned int arg = card->erase_arg; if (mmc_card_broken_sd_discard(card)) arg = SD_ERASE_ARG; mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); } static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_SECDISCARD; blk_status_t status = BLK_STS_OK; if (!(mmc_can_secure_erase_trim(card))) { status = BLK_STS_NOTSUPP; goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, card->ext_csd.generic_cmd6_time); if (err) goto out_retry; } err = mmc_erase(card, from, nr, arg); if (err == -EIO) goto out_retry; if (err) { status = BLK_STS_IOERR; goto out; } if (arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, card->ext_csd.generic_cmd6_time); if (err) goto out_retry; } err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); if (err == -EIO) goto out_retry; if (err) { status = BLK_STS_IOERR; goto out; } } out_retry: if (err && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); out: blk_mq_end_request(req, status); } static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; int ret = 0; ret = mmc_flush_cache(card->host); blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); } /* * Reformat current write as a reliable write, supporting * both legacy and the enhanced reliable write MMC cards. * In each transfer we'll handle only as much as a single * reliable write can handle, thus finish the request in * partial completions. */ static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req) { if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { /* Legacy mode imposes restrictions on transfers. */ if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) brq->data.blocks = 1; if (brq->data.blocks > card->ext_csd.rel_sectors) brq->data.blocks = card->ext_csd.rel_sectors; else if (brq->data.blocks < card->ext_csd.rel_sectors) brq->data.blocks = 1; } } #define CMD_ERRORS_EXCL_OOR \ (R1_ADDRESS_ERROR | /* Misaligned address */ \ R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ R1_WP_VIOLATION | /* Tried to write to protected block */ \ R1_CARD_ECC_FAILED | /* Card ECC failed */ \ R1_CC_ERROR | /* Card controller error */ \ R1_ERROR) /* General/unknown error */ #define CMD_ERRORS \ (CMD_ERRORS_EXCL_OOR | \ R1_OUT_OF_RANGE) /* Command argument out of range */ \ static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) { u32 val; /* * Per the SD specification(physical layer version 4.10)[1], * section 4.3.3, it explicitly states that "When the last * block of user area is read using CMD18, the host should * ignore OUT_OF_RANGE error that may occur even the sequence * is correct". And JESD84-B51 for eMMC also has a similar * statement on section 6.8.3. * * Multiple block read/write could be done by either predefined * method, namely CMD23, or open-ending mode. For open-ending mode, * we should ignore the OUT_OF_RANGE error as it's normal behaviour. * * However the spec[1] doesn't tell us whether we should also * ignore that for predefined method. But per the spec[1], section * 4.15 Set Block Count Command, it says"If illegal block count * is set, out of range error will be indicated during read/write * operation (For example, data transfer is stopped at user area * boundary)." In another word, we could expect a out of range error * in the response for the following CMD18/25. And if argument of * CMD23 + the argument of CMD18/25 exceed the max number of blocks, * we could also expect to get a -ETIMEDOUT or any error number from * the host drivers due to missing data response(for write)/data(for * read), as the cards will stop the data transfer by itself per the * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. */ if (!brq->stop.error) { bool oor_with_open_end; /* If there is no error yet, check R1 response */ val = brq->stop.resp[0] & CMD_ERRORS; oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; if (val && !oor_with_open_end) brq->stop.error = -EIO; } } static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, int recovery_mode, bool *do_rel_wr_p, bool *do_data_tag_p) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mmc_queue_req_to_req(mqrq); bool do_rel_wr, do_data_tag; /* * Reliable writes are used to implement Forced Unit Access and * are supported only on MMCs. */ do_rel_wr = (req->cmd_flags & REQ_FUA) && rq_data_dir(req) == WRITE && (md->flags & MMC_BLK_REL_WR); memset(brq, 0, sizeof(struct mmc_blk_request)); mmc_crypto_prepare_req(mqrq); brq->mrq.data = &brq->data; brq->mrq.tag = req->tag; brq->stop.opcode = MMC_STOP_TRANSMISSION; brq->stop.arg = 0; if (rq_data_dir(req) == READ) { brq->data.flags = MMC_DATA_READ; brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } else { brq->data.flags = MMC_DATA_WRITE; brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; } brq->data.blksz = 512; brq->data.blocks = blk_rq_sectors(req); brq->data.blk_addr = blk_rq_pos(req); /* * The command queue supports 2 priorities: "high" (1) and "simple" (0). * The eMMC will give "high" priority tasks priority over "simple" * priority tasks. Here we always set "simple" priority by not setting * MMC_DATA_PRIO. */ /* * The block layer doesn't support all sector count * restrictions, so we need to be prepared for too big * requests. */ if (brq->data.blocks > card->host->max_blk_count) brq->data.blocks = card->host->max_blk_count; if (brq->data.blocks > 1) { /* * Some SD cards in SPI mode return a CRC error or even lock up * completely when trying to read the last block using a * multiblock read command. */ if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && (blk_rq_pos(req) + blk_rq_sectors(req) == get_capacity(md->disk))) brq->data.blocks--; /* * After a read error, we redo the request one (native) sector * at a time in order to accurately determine which * sectors can be read successfully. */ if (recovery_mode) brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; /* * Some controllers have HW issues while operating * in multiple I/O mode */ if (card->host->ops->multi_io_quirk) brq->data.blocks = card->host->ops->multi_io_quirk(card, (rq_data_dir(req) == READ) ? MMC_DATA_READ : MMC_DATA_WRITE, brq->data.blocks); } if (do_rel_wr) { mmc_apply_rel_rw(brq, card, req); brq->data.flags |= MMC_DATA_REL_WR; } /* * Data tag is used only during writing meta data to speed * up write and any subsequent read of this meta data */ do_data_tag = card->ext_csd.data_tag_unit_size && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) && ((brq->data.blocks * brq->data.blksz) >= card->ext_csd.data_tag_unit_size); if (do_data_tag) brq->data.flags |= MMC_DATA_DAT_TAG; mmc_set_data_timeout(&brq->data, card); brq->data.sg = mqrq->sg; brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (brq->data.blocks != blk_rq_sectors(req)) { int i, data_size = brq->data.blocks << 9; struct scatterlist *sg; for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } brq->data.sg_len = i; } if (do_rel_wr_p) *do_rel_wr_p = do_rel_wr; if (do_data_tag_p) *do_data_tag_p = do_data_tag; } #define MMC_CQE_RETRIES 2 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = &mqrq->brq.mrq; struct request_queue *q = req->q; struct mmc_host *host = mq->card->host; enum mmc_issue_type issue_type = mmc_issue_type(mq, req); unsigned long flags; bool put_card; int err; mmc_cqe_post_req(host, mrq); if (mrq->cmd && mrq->cmd->error) err = mrq->cmd->error; else if (mrq->data && mrq->data->error) err = mrq->data->error; else err = 0; if (err) { if (mqrq->retries++ < MMC_CQE_RETRIES) blk_mq_requeue_request(req, true); else blk_mq_end_request(req, BLK_STS_IOERR); } else if (mrq->data) { if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) blk_mq_requeue_request(req, true); else __blk_mq_end_request(req, BLK_STS_OK); } else { blk_mq_end_request(req, BLK_STS_OK); } spin_lock_irqsave(&mq->lock, flags); mq->in_flight[issue_type] -= 1; put_card = (mmc_tot_in_flight(mq) == 0); mmc_cqe_check_busy(mq); spin_unlock_irqrestore(&mq->lock, flags); if (!mq->cqe_busy) blk_mq_run_hw_queues(q, true); if (put_card) mmc_put_card(mq->card, &mq->ctx); } void mmc_blk_cqe_recovery(struct mmc_queue *mq) { struct mmc_card *card = mq->card; struct mmc_host *host = card->host; int err; pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); err = mmc_cqe_recovery(host); if (err) mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); } static void mmc_blk_cqe_req_done(struct mmc_request *mrq) { struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq); struct request *req = mmc_queue_req_to_req(mqrq); struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; /* * Block layer timeouts race with completions which means the normal * completion path cannot be used during recovery. */ if (mq->in_recovery) mmc_blk_cqe_complete_rq(mq, req); else if (likely(!blk_should_fake_timeout(req->q))) blk_mq_complete_request(req); } static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) { mrq->done = mmc_blk_cqe_req_done; mrq->recovery_notifier = mmc_cqe_recovery_notifier; return mmc_cqe_start_req(host, mrq); } static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, struct request *req) { struct mmc_blk_request *brq = &mqrq->brq; memset(brq, 0, sizeof(*brq)); brq->mrq.cmd = &brq->cmd; brq->mrq.tag = req->tag; return &brq->mrq; } static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); mrq->cmd->opcode = MMC_SWITCH; mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (EXT_CSD_FLUSH_CACHE << 16) | (1 << 8) | EXT_CSD_CMD_SET_NORMAL; mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; return mmc_blk_cqe_start_req(mq->card->host, mrq); } static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_host *host = mq->card->host; int err; mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); mqrq->brq.mrq.done = mmc_blk_hsq_req_done; mmc_pre_req(host, &mqrq->brq.mrq); err = mmc_cqe_start_req(host, &mqrq->brq.mrq); if (err) mmc_post_req(host, &mqrq->brq.mrq, err); return err; } static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_host *host = mq->card->host; if (host->hsq_enabled) return mmc_blk_hsq_issue_rw_rq(mq, req); mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); } static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int recovery_mode, struct mmc_queue *mq) { u32 readcmd, writecmd; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mmc_queue_req_to_req(mqrq); struct mmc_blk_data *md = mq->blkdata; bool do_rel_wr, do_data_tag; mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); brq->mrq.cmd = &brq->cmd; brq->cmd.arg = blk_rq_pos(req); if (!mmc_card_blockaddr(card)) brq->cmd.arg <<= 9; brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; if (brq->data.blocks > 1 || do_rel_wr) { /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) brq->mrq.stop = &brq->stop; readcmd = MMC_READ_MULTIPLE_BLOCK; writecmd = MMC_WRITE_MULTIPLE_BLOCK; } else { brq->mrq.stop = NULL; readcmd = MMC_READ_SINGLE_BLOCK; writecmd = MMC_WRITE_BLOCK; } brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; /* * Pre-defined multi-block transfers are preferable to * open ended-ones (and necessary for reliable writes). * However, it is not sufficient to just send CMD23, * and avoid the final CMD12, as on an error condition * CMD12 (stop) needs to be sent anyway. This, coupled * with Auto-CMD23 enhancements provided by some * hosts, means that the complexity of dealing * with this is best left to the host. If CMD23 is * supported by card and host, we'll fill sbc in and let * the host deal with handling it correctly. This means * that for hosts that don't expose MMC_CAP_CMD23, no * change of behavior will be observed. * * N.B: Some MMC cards experience perf degradation. * We'll avoid using CMD23-bounded multiblock writes for * these, while retaining features like reliable writes. */ if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || do_data_tag)) { brq->sbc.opcode = MMC_SET_BLOCK_COUNT; brq->sbc.arg = brq->data.blocks | (do_rel_wr ? (1 << 31) : 0) | (do_data_tag ? (1 << 29) : 0); brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; brq->mrq.sbc = &brq->sbc; } } #define MMC_MAX_RETRIES 5 #define MMC_DATA_RETRIES 2 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) { struct mmc_command cmd = { .opcode = MMC_STOP_TRANSMISSION, .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, /* Some hosts wait for busy anyway, so provide a busy timeout */ .busy_timeout = timeout, }; return mmc_wait_for_cmd(card->host, &cmd, 5); } static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_blk_request *brq = &mqrq->brq; unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); int err; mmc_retune_hold_now(card->host); mmc_blk_send_stop(card, timeout); err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); mmc_retune_release(card->host); return err; } #define MMC_READ_SINGLE_RETRIES 2 /* Single (native) sector read during recovery */ static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = &mqrq->brq.mrq; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; blk_status_t error = BLK_STS_OK; size_t bytes_per_read = queue_physical_block_size(mq->queue); do { u32 status; int err; int retries = 0; while (retries++ <= MMC_READ_SINGLE_RETRIES) { mmc_blk_rw_rq_prep(mqrq, card, 1, mq); mmc_wait_for_req(host, mrq); err = mmc_send_status(card, &status); if (err) goto error_exit; if (!mmc_host_is_spi(host) && !mmc_ready_for_data(status)) { err = mmc_blk_fix_state(card, req); if (err) goto error_exit; } if (!mrq->cmd->error) break; } if (mrq->cmd->error || mrq->data->error || (!mmc_host_is_spi(host) && (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) error = BLK_STS_IOERR; else error = BLK_STS_OK; } while (blk_update_request(req, error, bytes_per_read)); return; error_exit: mrq->data->bytes_xfered = 0; blk_update_request(req, BLK_STS_IOERR, bytes_per_read); /* Let it try the remaining request again */ if (mqrq->retries > MMC_MAX_RETRIES - 1) mqrq->retries = MMC_MAX_RETRIES - 1; } static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) { return !!brq->mrq.sbc; } static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) { return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; } /* * Check for errors the host controller driver might not have seen such as * response mode errors or invalid card state. */ static bool mmc_blk_status_error(struct request *req, u32 status) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_blk_request *brq = &mqrq->brq; struct mmc_queue *mq = req->q->queuedata; u32 stop_err_bits; if (mmc_host_is_spi(mq->card->host)) return false; stop_err_bits = mmc_blk_stop_err_bits(brq); return brq->cmd.resp[0] & CMD_ERRORS || brq->stop.resp[0] & stop_err_bits || status & stop_err_bits || (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); } static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) { return !brq->sbc.error && !brq->cmd.error && !(brq->cmd.resp[0] & CMD_ERRORS); } /* * Requests are completed by mmc_blk_mq_complete_rq() which sets simple * policy: * 1. A request that has transferred at least some data is considered * successful and will be requeued if there is remaining data to * transfer. * 2. Otherwise the number of retries is incremented and the request * will be requeued if there are remaining retries. * 3. Otherwise the request will be errored out. * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and * mqrq->retries. So there are only 4 possible actions here: * 1. do not accept the bytes_xfered value i.e. set it to zero * 2. change mqrq->retries to determine the number of retries * 3. try to reset the card * 4. read one sector at a time */ static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) { int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_blk_request *brq = &mqrq->brq; struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = mq->card; u32 status; u32 blocks; int err; /* * Some errors the host driver might not have seen. Set the number of * bytes transferred to zero in that case. */ err = __mmc_send_status(card, &status, 0); if (err || mmc_blk_status_error(req, status)) brq->data.bytes_xfered = 0; mmc_retune_release(card->host); /* * Try again to get the status. This also provides an opportunity for * re-tuning. */ if (err) err = __mmc_send_status(card, &status, 0); /* * Nothing more to do after the number of bytes transferred has been * updated and there is no card. */ if (err && mmc_detect_card_removed(card->host)) return; /* Try to get back to "tran" state */ if (!mmc_host_is_spi(mq->card->host) && (err || !mmc_ready_for_data(status))) err = mmc_blk_fix_state(mq->card, req); /* * Special case for SD cards where the card might record the number of * blocks written. */ if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && rq_data_dir(req) == WRITE) { if (mmc_sd_num_wr_blocks(card, &blocks)) brq->data.bytes_xfered = 0; else brq->data.bytes_xfered = blocks << 9; } /* Reset if the card is in a bad state */ if (!mmc_host_is_spi(mq->card->host) && err && mmc_blk_reset(md, card->host, type)) { pr_err("%s: recovery failed!\n", req->q->disk->disk_name); mqrq->retries = MMC_NO_RETRIES; return; } /* * If anything was done, just return and if there is anything remaining * on the request it will get requeued. */ if (brq->data.bytes_xfered) return; /* Reset before last retry */ if (mqrq->retries + 1 == MMC_MAX_RETRIES && mmc_blk_reset(md, card->host, type)) return; /* Command errors fail fast, so use all MMC_MAX_RETRIES */ if (brq->sbc.error || brq->cmd.error) return; /* Reduce the remaining retries for data errors */ if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; return; } if (rq_data_dir(req) == READ && brq->data.blocks > queue_physical_block_size(mq->queue) >> 9) { /* Read one (native) sector at a time */ mmc_blk_read_single(mq, req); return; } } static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) { mmc_blk_eval_resp_error(brq); return brq->sbc.error || brq->cmd.error || brq->stop.error || brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; } static int mmc_spi_err_check(struct mmc_card *card) { u32 status = 0; int err; /* * SPI does not have a TRAN state we have to wait on, instead the * card is ready again when it no longer holds the line LOW. * We still have to ensure two things here before we know the write * was successful: * 1. The card has not disconnected during busy and we actually read our * own pull-up, thinking it was still connected, so ensure it * still responds. * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a * just reconnected card after being disconnected during busy. */ err = __mmc_send_status(card, &status, 0); if (err) return err; /* All R1 and R2 bits of SPI are errors in our case */ if (status) return -EIO; return 0; } static int mmc_blk_busy_cb(void *cb_data, bool *busy) { struct mmc_blk_busy_data *data = cb_data; u32 status = 0; int err; err = mmc_send_status(data->card, &status); if (err) return err; /* Accumulate response error bits. */ data->status |= status; *busy = !mmc_ready_for_data(status); return 0; } static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_blk_busy_data cb_data; int err; if (rq_data_dir(req) == READ) return 0; if (mmc_host_is_spi(card->host)) { err = mmc_spi_err_check(card); if (err) mqrq->brq.data.bytes_xfered = 0; return err; } cb_data.card = card; cb_data.status = 0; err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb, &cb_data); /* * Do not assume data transferred correctly if there are any error bits * set. */ if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { mqrq->brq.data.bytes_xfered = 0; err = err ? err : -EIO; } /* Copy the exception bit so it will be seen later on */ if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; return err; } static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, struct request *req) { int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; mmc_blk_reset_success(mq->blkdata, type); } static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; if (nr_bytes) { if (blk_update_request(req, BLK_STS_OK, nr_bytes)) blk_mq_requeue_request(req, true); else __blk_mq_end_request(req, BLK_STS_OK); } else if (!blk_rq_bytes(req)) { __blk_mq_end_request(req, BLK_STS_IOERR); } else if (mqrq->retries++ < MMC_MAX_RETRIES) { blk_mq_requeue_request(req, true); } else { if (mmc_card_removed(mq->card)) req->rq_flags |= RQF_QUIET; blk_mq_end_request(req, BLK_STS_IOERR); } } static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, struct mmc_queue_req *mqrq) { return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); } static void mmc_blk_urgent_bkops(struct mmc_queue *mq, struct mmc_queue_req *mqrq) { if (mmc_blk_urgent_bkops_needed(mq, mqrq)) mmc_run_bkops(mq->card); } static void mmc_blk_hsq_req_done(struct mmc_request *mrq) { struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq); struct request *req = mmc_queue_req_to_req(mqrq); struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; struct mmc_host *host = mq->card->host; unsigned long flags; if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_urgent_bkops_needed(mq, mqrq)) { spin_lock_irqsave(&mq->lock, flags); mq->recovery_needed = true; mq->recovery_req = req; spin_unlock_irqrestore(&mq->lock, flags); host->cqe_ops->cqe_recovery_start(host); schedule_work(&mq->recovery_work); return; } mmc_blk_rw_reset_success(mq, req); /* * Block layer timeouts race with completions which means the normal * completion path cannot be used during recovery. */ if (mq->in_recovery) mmc_blk_cqe_complete_rq(mq, req); else if (likely(!blk_should_fake_timeout(req->q))) blk_mq_complete_request(req); } void mmc_blk_mq_complete(struct request *req) { struct mmc_queue *mq = req->q->queuedata; struct mmc_host *host = mq->card->host; if (host->cqe_enabled) mmc_blk_cqe_complete_rq(mq, req); else if (likely(!blk_should_fake_timeout(req->q))) mmc_blk_mq_complete_rq(mq, req); } static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_host *host = mq->card->host; if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_card_busy(mq->card, req)) { mmc_blk_mq_rw_recovery(mq, req); } else { mmc_blk_rw_reset_success(mq, req); mmc_retune_release(host); } mmc_blk_urgent_bkops(mq, mqrq); } static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) { unsigned long flags; bool put_card; spin_lock_irqsave(&mq->lock, flags); mq->in_flight[issue_type] -= 1; put_card = (mmc_tot_in_flight(mq) == 0); spin_unlock_irqrestore(&mq->lock, flags); if (put_card) mmc_put_card(mq->card, &mq->ctx); } static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, bool can_sleep) { enum mmc_issue_type issue_type = mmc_issue_type(mq, req); struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = &mqrq->brq.mrq; struct mmc_host *host = mq->card->host; mmc_post_req(host, mrq, 0); /* * Block layer timeouts race with completions which means the normal * completion path cannot be used during recovery. */ if (mq->in_recovery) { mmc_blk_mq_complete_rq(mq, req); } else if (likely(!blk_should_fake_timeout(req->q))) { if (can_sleep) blk_mq_complete_request_direct(req, mmc_blk_mq_complete); else blk_mq_complete_request(req); } mmc_blk_mq_dec_in_flight(mq, issue_type); } void mmc_blk_mq_recovery(struct mmc_queue *mq) { struct request *req = mq->recovery_req; struct mmc_host *host = mq->card->host; struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); mq->recovery_req = NULL; mq->rw_wait = false; if (mmc_blk_rq_error(&mqrq->brq)) { mmc_retune_hold_now(host); mmc_blk_mq_rw_recovery(mq, req); } mmc_blk_urgent_bkops(mq, mqrq); mmc_blk_mq_post_req(mq, req, true); } static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, struct request **prev_req) { if (mmc_host_done_complete(mq->card->host)) return; mutex_lock(&mq->complete_lock); if (!mq->complete_req) goto out_unlock; mmc_blk_mq_poll_completion(mq, mq->complete_req); if (prev_req) *prev_req = mq->complete_req; else mmc_blk_mq_post_req(mq, mq->complete_req, true); mq->complete_req = NULL; out_unlock: mutex_unlock(&mq->complete_lock); } void mmc_blk_mq_complete_work(struct work_struct *work) { struct mmc_queue *mq = container_of(work, struct mmc_queue, complete_work); mmc_blk_mq_complete_prev_req(mq, NULL); } static void mmc_blk_mq_req_done(struct mmc_request *mrq) { struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq); struct request *req = mmc_queue_req_to_req(mqrq); struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; struct mmc_host *host = mq->card->host; unsigned long flags; if (!mmc_host_done_complete(host)) { bool waiting; /* * We cannot complete the request in this context, so record * that there is a request to complete, and that a following * request does not need to wait (although it does need to * complete complete_req first). */ spin_lock_irqsave(&mq->lock, flags); mq->complete_req = req; mq->rw_wait = false; waiting = mq->waiting; spin_unlock_irqrestore(&mq->lock, flags); /* * If 'waiting' then the waiting task will complete this * request, otherwise queue a work to do it. Note that * complete_work may still race with the dispatch of a following * request. */ if (waiting) wake_up(&mq->wait); else queue_work(mq->card->complete_wq, &mq->complete_work); return; } /* Take the recovery path for errors or urgent background operations */ if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_urgent_bkops_needed(mq, mqrq)) { spin_lock_irqsave(&mq->lock, flags); mq->recovery_needed = true; mq->recovery_req = req; spin_unlock_irqrestore(&mq->lock, flags); wake_up(&mq->wait); schedule_work(&mq->recovery_work); return; } mmc_blk_rw_reset_success(mq, req); mq->rw_wait = false; wake_up(&mq->wait); /* context unknown */ mmc_blk_mq_post_req(mq, req, false); } static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) { unsigned long flags; bool done; /* * Wait while there is another request in progress, but not if recovery * is needed. Also indicate whether there is a request waiting to start. */ spin_lock_irqsave(&mq->lock, flags); if (mq->recovery_needed) { *err = -EBUSY; done = true; } else { done = !mq->rw_wait; } mq->waiting = !done; spin_unlock_irqrestore(&mq->lock, flags); return done; } static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) { int err = 0; wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); /* Always complete the previous request if there is one */ mmc_blk_mq_complete_prev_req(mq, prev_req); return err; } static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_host *host = mq->card->host; struct request *prev_req = NULL; int err = 0; mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); mqrq->brq.mrq.done = mmc_blk_mq_req_done; mmc_pre_req(host, &mqrq->brq.mrq); err = mmc_blk_rw_wait(mq, &prev_req); if (err) goto out_post_req; mq->rw_wait = true; err = mmc_start_request(host, &mqrq->brq.mrq); if (prev_req) mmc_blk_mq_post_req(mq, prev_req, true); if (err) mq->rw_wait = false; /* Release re-tuning here where there is no synchronization required */ if (err || mmc_host_done_complete(host)) mmc_retune_release(host); out_post_req: if (err) mmc_post_req(host, &mqrq->brq.mrq, err); return err; } static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) { if (host->cqe_enabled) return host->cqe_ops->cqe_wait_for_idle(host); return mmc_blk_rw_wait(mq, NULL); } enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_host *host = card->host; int ret; ret = mmc_blk_part_switch(card, md->part_type); if (ret) return MMC_REQ_FAILED_TO_START; switch (mmc_issue_type(mq, req)) { case MMC_ISSUE_SYNC: ret = mmc_blk_wait_for_idle(mq, host); if (ret) return MMC_REQ_BUSY; switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: mmc_blk_issue_drv_op(mq, req); break; case REQ_OP_DISCARD: mmc_blk_issue_discard_rq(mq, req); break; case REQ_OP_SECURE_ERASE: mmc_blk_issue_secdiscard_rq(mq, req); break; case REQ_OP_WRITE_ZEROES: mmc_blk_issue_trim_rq(mq, req); break; case REQ_OP_FLUSH: mmc_blk_issue_flush(mq, req); break; default: WARN_ON_ONCE(1); return MMC_REQ_FAILED_TO_START; } return MMC_REQ_FINISHED; case MMC_ISSUE_DCMD: case MMC_ISSUE_ASYNC: switch (req_op(req)) { case REQ_OP_FLUSH: if (!mmc_cache_enabled(host)) { blk_mq_end_request(req, BLK_STS_OK); return MMC_REQ_FINISHED; } ret = mmc_blk_cqe_issue_flush(mq, req); break; case REQ_OP_READ: case REQ_OP_WRITE: if (host->cqe_enabled) ret = mmc_blk_cqe_issue_rw_rq(mq, req); else ret = mmc_blk_mq_issue_rw_rq(mq, req); break; default: WARN_ON_ONCE(1); ret = -EINVAL; } if (!ret) return MMC_REQ_STARTED; return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; default: WARN_ON_ONCE(1); return MMC_REQ_FAILED_TO_START; } } static inline int mmc_blk_readonly(struct mmc_card *card) { return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE); } static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size, bool default_ro, const char *subname, int area_type, unsigned int part_type) { struct mmc_blk_data *md; int devidx, ret; char cap_str[10]; bool cache_enabled = false; bool fua_enabled = false; devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); if (devidx < 0) { /* * We get -ENOSPC because there are no more any available * devidx. The reason may be that, either userspace haven't yet * unmounted the partitions, which postpones mmc_blk_release() * from being called, or the device has more partitions than * what we support. */ if (devidx == -ENOSPC) dev_err(mmc_dev(card->host), "no more device IDs available\n"); return ERR_PTR(devidx); } md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); if (!md) { ret = -ENOMEM; goto out; } md->area_type = area_type; /* * Set the read-only status based on the supported commands * and the write protect switch. */ md->read_only = mmc_blk_readonly(card); md->disk = mmc_init_queue(&md->queue, card); if (IS_ERR(md->disk)) { ret = PTR_ERR(md->disk); goto err_kfree; } INIT_LIST_HEAD(&md->part); INIT_LIST_HEAD(&md->rpmbs); kref_init(&md->kref); md->queue.blkdata = md; md->part_type = part_type; md->disk->major = MMC_BLOCK_MAJOR; md->disk->minors = perdev_minors; md->disk->first_minor = devidx * perdev_minors; md->disk->fops = &mmc_bdops; md->disk->private_data = md; md->parent = parent; set_disk_ro(md->disk, md->read_only || default_ro); if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) md->disk->flags |= GENHD_FL_NO_PART; /* * As discussed on lkml, GENHD_FL_REMOVABLE should: * * - be set for removable media with permanent block devices * - be unset for removable block devices with permanent media * * Since MMC block devices clearly fall under the second * case, we do not set GENHD_FL_REMOVABLE. Userspace * should use the block device creation/destruction hotplug * messages to tell when the card is present. */ snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), "mmcblk%u%s", card->host->index, subname ? subname : ""); set_capacity(md->disk, size); if (mmc_host_cmd23(card->host)) { if ((mmc_card_mmc(card) && card->csd.mmca_vsn >= CSD_SPEC_VER_3) || (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT)) md->flags |= MMC_BLK_CMD23; } if (md->flags & MMC_BLK_CMD23 && ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || card->ext_csd.rel_sectors)) { md->flags |= MMC_BLK_REL_WR; fua_enabled = true; cache_enabled = true; } if (mmc_cache_enabled(card->host)) cache_enabled = true; blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); string_get_size((u64)size, 512, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s %s%s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), cap_str, md->read_only ? " (ro)" : ""); /* used in ->open, must be set before add_disk: */ if (area_type == MMC_BLK_DATA_AREA_MAIN) dev_set_drvdata(&card->dev, md); ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); if (ret) goto err_put_disk; return md; err_put_disk: put_disk(md->disk); blk_mq_free_tag_set(&md->queue.tag_set); err_kfree: kfree(md); out: ida_simple_remove(&mmc_blk_ida, devidx); return ERR_PTR(ret); } static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) { sector_t size; if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { /* * The EXT_CSD sector count is in number or 512 byte * sectors. */ size = card->ext_csd.sectors; } else { /* * The CSD capacity field is in units of read_blkbits. * set_capacity takes units of 512 bytes. */ size = (typeof(sector_t))card->csd.capacity << (card->csd.read_blkbits - 9); } return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, MMC_BLK_DATA_AREA_MAIN, 0); } static int mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size, bool default_ro, const char *subname, int area_type) { struct mmc_blk_data *part_md; part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, subname, area_type, part_type); if (IS_ERR(part_md)) return PTR_ERR(part_md); list_add(&part_md->part, &md->part); return 0; } /** * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev * @filp: the character device file * @cmd: the ioctl() command * @arg: the argument from userspace * * This will essentially just redirect the ioctl()s coming in over to * the main block device spawning the RPMB character device. */ static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct mmc_rpmb_data *rpmb = filp->private_data; int ret; switch (cmd) { case MMC_IOC_CMD: ret = mmc_blk_ioctl_cmd(rpmb->md, (struct mmc_ioc_cmd __user *)arg, rpmb); break; case MMC_IOC_MULTI_CMD: ret = mmc_blk_ioctl_multi_cmd(rpmb->md, (struct mmc_ioc_multi_cmd __user *)arg, rpmb); break; default: ret = -EINVAL; break; } return ret; } #ifdef CONFIG_COMPAT static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, unsigned long arg) { return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); } #endif static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) { struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, struct mmc_rpmb_data, chrdev); get_device(&rpmb->dev); filp->private_data = rpmb; mmc_blk_get(rpmb->md->disk); return nonseekable_open(inode, filp); } static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) { struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, struct mmc_rpmb_data, chrdev); mmc_blk_put(rpmb->md); put_device(&rpmb->dev); return 0; } static const struct file_operations mmc_rpmb_fileops = { .release = mmc_rpmb_chrdev_release, .open = mmc_rpmb_chrdev_open, .owner = THIS_MODULE, .llseek = no_llseek, .unlocked_ioctl = mmc_rpmb_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mmc_rpmb_ioctl_compat, #endif }; static void mmc_blk_rpmb_device_release(struct device *dev) { struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); ida_simple_remove(&mmc_rpmb_ida, rpmb->id); kfree(rpmb); } static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_index, sector_t size, const char *subname) { int devidx, ret; char rpmb_name[DISK_NAME_LEN]; char cap_str[10]; struct mmc_rpmb_data *rpmb; /* This creates the minor number for the RPMB char device */ devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); if (devidx < 0) return devidx; rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); if (!rpmb) { ida_simple_remove(&mmc_rpmb_ida, devidx); return -ENOMEM; } snprintf(rpmb_name, sizeof(rpmb_name), "mmcblk%u%s", card->host->index, subname ? subname : ""); rpmb->id = devidx; rpmb->part_index = part_index; rpmb->dev.init_name = rpmb_name; rpmb->dev.bus = &mmc_rpmb_bus_type; rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); rpmb->dev.parent = &card->dev; rpmb->dev.release = mmc_blk_rpmb_device_release; device_initialize(&rpmb->dev); dev_set_drvdata(&rpmb->dev, rpmb); rpmb->md = md; cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); rpmb->chrdev.owner = THIS_MODULE; ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); if (ret) { pr_err("%s: could not add character device\n", rpmb_name); goto out_put_device; } list_add(&rpmb->node, &md->rpmbs); string_get_size((u64)size, 512, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s %s, chardev (%d:%d)\n", rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, MAJOR(mmc_rpmb_devt), rpmb->id); return 0; out_put_device: put_device(&rpmb->dev); return ret; } static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) { cdev_device_del(&rpmb->chrdev, &rpmb->dev); put_device(&rpmb->dev); } /* MMC Physical partitions consist of two boot partitions and * up to four general purpose partitions. * For each partition enabled in EXT_CSD a block device will be allocatedi * to provide access to the partition. */ static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) { int idx, ret; if (!mmc_card_mmc(card)) return 0; for (idx = 0; idx < card->nr_parts; idx++) { if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { /* * RPMB partitions does not provide block access, they * are only accessed using ioctl():s. Thus create * special RPMB block devices that do not have a * backing block queue for these. */ ret = mmc_blk_alloc_rpmb_part(card, md, card->part[idx].part_cfg, card->part[idx].size >> 9, card->part[idx].name); if (ret) return ret; } else if (card->part[idx].size) { ret = mmc_blk_alloc_part(card, md, card->part[idx].part_cfg, card->part[idx].size >> 9, card->part[idx].force_ro, card->part[idx].name, card->part[idx].area_type); if (ret) return ret; } } return 0; } static void mmc_blk_remove_req(struct mmc_blk_data *md) { /* * Flush remaining requests and free queues. It is freeing the queue * that stops new requests from being accepted. */ del_gendisk(md->disk); mmc_cleanup_queue(&md->queue); mmc_blk_put(md); } static void mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md) { struct list_head *pos, *q; struct mmc_blk_data *part_md; struct mmc_rpmb_data *rpmb; /* Remove RPMB partitions */ list_for_each_safe(pos, q, &md->rpmbs) { rpmb = list_entry(pos, struct mmc_rpmb_data, node); list_del(pos); mmc_blk_remove_rpmb_part(rpmb); } /* Remove block partitions */ list_for_each_safe(pos, q, &md->part) { part_md = list_entry(pos, struct mmc_blk_data, part); list_del(pos); mmc_blk_remove_req(part_md); } } #ifdef CONFIG_DEBUG_FS static int mmc_dbg_card_status_get(void *data, u64 *val) { struct mmc_card *card = data; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); struct mmc_queue *mq = &md->queue; struct request *req; int ret; /* Ask the block layer about the card status */ req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); if (IS_ERR(req)) return PTR_ERR(req); req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; req_to_mmc_queue_req(req)->drv_op_result = -EIO; blk_execute_rq(req, false); ret = req_to_mmc_queue_req(req)->drv_op_result; if (ret >= 0) { *val = ret; ret = 0; } blk_mq_free_request(req); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, NULL, "%08llx\n"); /* That is two digits * 512 + 1 for newline */ #define EXT_CSD_STR_LEN 1025 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) { struct mmc_card *card = inode->i_private; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); struct mmc_queue *mq = &md->queue; struct request *req; char *buf; ssize_t n = 0; u8 *ext_csd; int err, i; buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); if (!buf) return -ENOMEM; /* Ask the block layer for the EXT CSD */ req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); if (IS_ERR(req)) { err = PTR_ERR(req); goto out_free; } req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; req_to_mmc_queue_req(req)->drv_op_result = -EIO; req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; blk_execute_rq(req, false); err = req_to_mmc_queue_req(req)->drv_op_result; blk_mq_free_request(req); if (err) { pr_err("FAILED %d\n", err); goto out_free; } for (i = 0; i < 512; i++) n += sprintf(buf + n, "%02x", ext_csd[i]); n += sprintf(buf + n, "\n"); if (n != EXT_CSD_STR_LEN) { err = -EINVAL; kfree(ext_csd); goto out_free; } filp->private_data = buf; kfree(ext_csd); return 0; out_free: kfree(buf); return err; } static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { char *buf = filp->private_data; return simple_read_from_buffer(ubuf, cnt, ppos, buf, EXT_CSD_STR_LEN); } static int mmc_ext_csd_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static const struct file_operations mmc_dbg_ext_csd_fops = { .open = mmc_ext_csd_open, .read = mmc_ext_csd_read, .release = mmc_ext_csd_release, .llseek = default_llseek, }; static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { struct dentry *root; if (!card->debugfs_root) return; root = card->debugfs_root; if (mmc_card_mmc(card) || mmc_card_sd(card)) { md->status_dentry = debugfs_create_file_unsafe("status", 0400, root, card, &mmc_dbg_card_status_fops); } if (mmc_card_mmc(card)) { md->ext_csd_dentry = debugfs_create_file("ext_csd", S_IRUSR, root, card, &mmc_dbg_ext_csd_fops); } } static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { if (!card->debugfs_root) return; debugfs_remove(md->status_dentry); md->status_dentry = NULL; debugfs_remove(md->ext_csd_dentry); md->ext_csd_dentry = NULL; } #else static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { } static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { } #endif /* CONFIG_DEBUG_FS */ static int mmc_blk_probe(struct mmc_card *card) { struct mmc_blk_data *md; int ret = 0; /* * Check that the card supports the command class(es) we need. */ if (!(card->csd.cmdclass & CCC_BLOCK_READ)) return -ENODEV; mmc_fixup_device(card, mmc_blk_fixups); card->complete_wq = alloc_workqueue("mmc_complete", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); if (!card->complete_wq) { pr_err("Failed to create mmc completion workqueue"); return -ENOMEM; } md = mmc_blk_alloc(card); if (IS_ERR(md)) { ret = PTR_ERR(md); goto out_free; } ret = mmc_blk_alloc_parts(card, md); if (ret) goto out; /* Add two debugfs entries */ mmc_blk_add_debugfs(card, md); pm_runtime_set_autosuspend_delay(&card->dev, 3000); pm_runtime_use_autosuspend(&card->dev); /* * Don't enable runtime PM for SD-combo cards here. Leave that * decision to be taken during the SDIO init sequence instead. */ if (!mmc_card_sd_combo(card)) { pm_runtime_set_active(&card->dev); pm_runtime_enable(&card->dev); } return 0; out: mmc_blk_remove_parts(card, md); mmc_blk_remove_req(md); out_free: destroy_workqueue(card->complete_wq); return ret; } static void mmc_blk_remove(struct mmc_card *card) { struct mmc_blk_data *md = dev_get_drvdata(&card->dev); mmc_blk_remove_debugfs(card, md); mmc_blk_remove_parts(card, md); pm_runtime_get_sync(&card->dev); if (md->part_curr != md->part_type) { mmc_claim_host(card->host); mmc_blk_part_switch(card, md->part_type); mmc_release_host(card->host); } if (!mmc_card_sd_combo(card)) pm_runtime_disable(&card->dev); pm_runtime_put_noidle(&card->dev); mmc_blk_remove_req(md); dev_set_drvdata(&card->dev, NULL); destroy_workqueue(card->complete_wq); } static int _mmc_blk_suspend(struct mmc_card *card) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); if (md) { mmc_queue_suspend(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_suspend(&part_md->queue); } } return 0; } static void mmc_blk_shutdown(struct mmc_card *card) { _mmc_blk_suspend(card); } #ifdef CONFIG_PM_SLEEP static int mmc_blk_suspend(struct device *dev) { struct mmc_card *card = mmc_dev_to_card(dev); return _mmc_blk_suspend(card); } static int mmc_blk_resume(struct device *dev) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = dev_get_drvdata(dev); if (md) { /* * Resume involves the card going into idle state, * so current partition is always the main one. */ md->part_curr = md->part_type; mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } } return 0; } #endif static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); static struct mmc_driver mmc_driver = { .drv = { .name = "mmcblk", .pm = &mmc_blk_pm_ops, }, .probe = mmc_blk_probe, .remove = mmc_blk_remove, .shutdown = mmc_blk_shutdown, }; static int __init mmc_blk_init(void) { int res; res = bus_register(&mmc_rpmb_bus_type); if (res < 0) { pr_err("mmcblk: could not register RPMB bus type\n"); return res; } res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); if (res < 0) { pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); goto out_bus_unreg; } if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) pr_info("mmcblk: using %d minors per device\n", perdev_minors); max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); if (res) goto out_chrdev_unreg; res = mmc_register_driver(&mmc_driver); if (res) goto out_blkdev_unreg; return 0; out_blkdev_unreg: unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); out_chrdev_unreg: unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); out_bus_unreg: bus_unregister(&mmc_rpmb_bus_type); return res; } static void __exit mmc_blk_exit(void) { mmc_unregister_driver(&mmc_driver); unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); bus_unregister(&mmc_rpmb_bus_type); } module_init(mmc_blk_init); module_exit(mmc_blk_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1