Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adrian Hunter | 3223 | 36.20% | 41 | 14.59% |
Russell King | 1262 | 14.17% | 14 | 4.98% |
Pierre Ossman | 1037 | 11.65% | 40 | 14.23% |
Ulf Hansson | 682 | 7.66% | 45 | 16.01% |
Johan Rudholm | 297 | 3.34% | 7 | 2.49% |
Baolin Wang | 295 | 3.31% | 4 | 1.42% |
Anton Vorontsov | 214 | 2.40% | 2 | 0.71% |
Per Forlin | 158 | 1.77% | 2 | 0.71% |
Jaehoon Chung | 114 | 1.28% | 4 | 1.42% |
Dmitry Osipenko | 102 | 1.15% | 1 | 0.36% |
Arindam Nath | 101 | 1.13% | 2 | 0.71% |
Shawn Lin | 99 | 1.11% | 8 | 2.85% |
Sascha Hauer | 98 | 1.10% | 3 | 1.07% |
Andy Ross | 95 | 1.07% | 1 | 0.36% |
Hans de Goede | 68 | 0.76% | 1 | 0.36% |
David Jander | 66 | 0.74% | 1 | 0.36% |
David Brownell | 57 | 0.64% | 3 | 1.07% |
Wolfram Sang | 55 | 0.62% | 7 | 2.49% |
Wolfgang Mües | 55 | 0.62% | 1 | 0.36% |
Michał Mirosław | 50 | 0.56% | 2 | 0.71% |
Hein Tibosch | 50 | 0.56% | 1 | 0.36% |
Kyungmin Park | 44 | 0.49% | 2 | 0.71% |
Andrew Gabbasov | 41 | 0.46% | 2 | 0.71% |
Kevin Liu | 39 | 0.44% | 1 | 0.36% |
Nico Pitre | 38 | 0.43% | 4 | 1.42% |
Jorg Schummer | 34 | 0.38% | 2 | 0.71% |
Avri Altman | 30 | 0.34% | 3 | 1.07% |
Linus Walleij | 27 | 0.30% | 4 | 1.42% |
Andrei Warkentin | 26 | 0.29% | 2 | 0.71% |
Stefan Nilsson XK | 26 | 0.29% | 1 | 0.36% |
Christian Löhle | 25 | 0.28% | 1 | 0.36% |
Adrian Bunk | 24 | 0.27% | 1 | 0.36% |
Carlo Caione | 23 | 0.26% | 1 | 0.36% |
Jarkko Lavinen | 21 | 0.24% | 1 | 0.36% |
Maxim Levitsky | 21 | 0.24% | 1 | 0.36% |
Shaik Sajida Bhanu | 19 | 0.21% | 1 | 0.36% |
Richard Purdie | 19 | 0.21% | 1 | 0.36% |
Robin van der Gracht | 17 | 0.19% | 1 | 0.36% |
Stefan Wahren | 15 | 0.17% | 1 | 0.36% |
Ohad Ben-Cohen | 15 | 0.17% | 3 | 1.07% |
Aries Lee | 13 | 0.15% | 1 | 0.36% |
David Howells | 13 | 0.15% | 1 | 0.36% |
Lukas Czerner | 11 | 0.12% | 1 | 0.36% |
Daniel Drake | 11 | 0.12% | 2 | 0.71% |
Marc Gonzalez | 11 | 0.12% | 1 | 0.36% |
Guennadi Liakhovetski | 11 | 0.12% | 5 | 1.78% |
Ziyuan Xu | 10 | 0.11% | 1 | 0.36% |
Philip Langdale | 10 | 0.11% | 2 | 0.71% |
Chuanxiao Dong | 9 | 0.10% | 1 | 0.36% |
Jiajie Hao | 8 | 0.09% | 1 | 0.36% |
Eric Biggers | 8 | 0.09% | 1 | 0.36% |
Mika Westerberg | 7 | 0.08% | 1 | 0.36% |
Chaotian Jing | 6 | 0.07% | 1 | 0.36% |
Jason A. Donenfeld | 6 | 0.07% | 2 | 0.71% |
Yann Gautier | 5 | 0.06% | 1 | 0.36% |
Doug Anderson | 5 | 0.06% | 1 | 0.36% |
Jiong Wu | 4 | 0.04% | 1 | 0.36% |
Ritesh Harjani | 4 | 0.04% | 1 | 0.36% |
Masahiro Yamada | 4 | 0.04% | 1 | 0.36% |
Balaji Rao | 4 | 0.04% | 1 | 0.36% |
ChanWoo Lee | 4 | 0.04% | 1 | 0.36% |
Martin Hicks | 4 | 0.04% | 1 | 0.36% |
Zheng Yongjun | 4 | 0.04% | 1 | 0.36% |
Trey Ramsay | 3 | 0.03% | 1 | 0.36% |
Gwendal Grignou | 3 | 0.03% | 2 | 0.71% |
Tim Kryger | 3 | 0.03% | 1 | 0.36% |
Girish K.S | 3 | 0.03% | 1 | 0.36% |
Philip Rakity | 3 | 0.03% | 2 | 0.71% |
Haijun Zhang | 3 | 0.03% | 1 | 0.36% |
Américo Wang | 3 | 0.03% | 1 | 0.36% |
Timo Teräs | 3 | 0.03% | 2 | 0.71% |
DooHyun Hwang | 3 | 0.03% | 1 | 0.36% |
Chris Ball | 3 | 0.03% | 2 | 0.71% |
Dennis Zhou | 2 | 0.02% | 1 | 0.36% |
Konstantin Dorfman | 2 | 0.02% | 1 | 0.36% |
Matt Gumbel | 2 | 0.02% | 1 | 0.36% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.36% |
Paul Walmsley | 2 | 0.02% | 1 | 0.36% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.36% |
Denis Karpov | 1 | 0.01% | 1 | 0.36% |
Seungwon Jeon | 1 | 0.01% | 1 | 0.36% |
Rusty Russell | 1 | 0.01% | 1 | 0.36% |
Sujit Reddy Thumma | 1 | 0.01% | 1 | 0.36% |
Matt Fleming | 1 | 0.01% | 1 | 0.36% |
Joe Perches | 1 | 0.01% | 1 | 0.36% |
Linus Torvalds | 1 | 0.01% | 1 | 0.36% |
Aaron Lu | 1 | 0.01% | 1 | 0.36% |
Total | 8904 | 281 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/mmc/core/core.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/pagemap.h> #include <linux/err.h> #include <linux/leds.h> #include <linux/scatterlist.h> #include <linux/log2.h> #include <linux/pm_runtime.h> #include <linux/pm_wakeup.h> #include <linux/suspend.h> #include <linux/fault-inject.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/mmc/card.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sd.h> #include <linux/mmc/slot-gpio.h> #define CREATE_TRACE_POINTS #include <trace/events/mmc.h> #include "core.h" #include "card.h" #include "crypto.h" #include "bus.h" #include "host.h" #include "sdio_bus.h" #include "pwrseq.h" #include "mmc_ops.h" #include "sd_ops.h" #include "sdio_ops.h" /* The max erase timeout, used when host->max_busy_timeout isn't specified */ #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ #define SD_DISCARD_TIMEOUT_MS (250) static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; /* * Enabling software CRCs on the data blocks can be a significant (30%) * performance cost, and for other reasons may not always be desired. * So we allow it to be disabled. */ bool use_spi_crc = 1; module_param(use_spi_crc, bool, 0); static int mmc_schedule_delayed_work(struct delayed_work *work, unsigned long delay) { /* * We use the system_freezable_wq, because of two reasons. * First, it allows several works (not the same work item) to be * executed simultaneously. Second, the queue becomes frozen when * userspace becomes frozen during system PM. */ return queue_delayed_work(system_freezable_wq, work, delay); } #ifdef CONFIG_FAIL_MMC_REQUEST /* * Internal function. Inject random data errors. * If mmc_data is NULL no errors are injected. */ static void mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; struct mmc_data *data = mrq->data; static const int data_errors[] = { -ETIMEDOUT, -EILSEQ, -EIO, }; if (!data) return; if ((cmd && cmd->error) || data->error || !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) return; data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))]; data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9; } #else /* CONFIG_FAIL_MMC_REQUEST */ static inline void mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq) { } #endif /* CONFIG_FAIL_MMC_REQUEST */ static inline void mmc_complete_cmd(struct mmc_request *mrq) { if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) complete_all(&mrq->cmd_completion); } void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) { if (!mrq->cap_cmd_during_tfr) return; mmc_complete_cmd(mrq); pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", mmc_hostname(host), mrq->cmd->opcode); } EXPORT_SYMBOL(mmc_command_done); /** * mmc_request_done - finish processing an MMC request * @host: MMC host which completed request * @mrq: MMC request which request * * MMC drivers should call this function when they have completed * their processing of a request. */ void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; int err = cmd->error; /* Flag re-tuning needed on CRC errors */ if (!mmc_op_tuning(cmd->opcode) && !host->retune_crc_disable && (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || (mrq->data && mrq->data->error == -EILSEQ) || (mrq->stop && mrq->stop->error == -EILSEQ))) mmc_retune_needed(host); if (err && cmd->retries && mmc_host_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) cmd->retries = 0; } if (host->ongoing_mrq == mrq) host->ongoing_mrq = NULL; mmc_complete_cmd(mrq); trace_mmc_request_done(host, mrq); /* * We list various conditions for the command to be considered * properly done: * * - There was no error, OK fine then * - We are not doing some kind of retry * - The card was removed (...so just complete everything no matter * if there are errors or retries) */ if (!err || !cmd->retries || mmc_card_removed(host->card)) { mmc_should_fail_request(host, mrq); if (!host->ongoing_mrq) led_trigger_event(host->led, LED_OFF); if (mrq->sbc) { pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", mmc_hostname(host), mrq->sbc->opcode, mrq->sbc->error, mrq->sbc->resp[0], mrq->sbc->resp[1], mrq->sbc->resp[2], mrq->sbc->resp[3]); } pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", mmc_hostname(host), cmd->opcode, err, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]); if (mrq->data) { pr_debug("%s: %d bytes transferred: %d\n", mmc_hostname(host), mrq->data->bytes_xfered, mrq->data->error); } if (mrq->stop) { pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", mmc_hostname(host), mrq->stop->opcode, mrq->stop->error, mrq->stop->resp[0], mrq->stop->resp[1], mrq->stop->resp[2], mrq->stop->resp[3]); } } /* * Request starter must handle retries - see * mmc_wait_for_req_done(). */ if (mrq->done) mrq->done(mrq); } EXPORT_SYMBOL(mmc_request_done); static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) { int err; /* Assumes host controller has been runtime resumed by mmc_claim_host */ err = mmc_retune(host); if (err) { mrq->cmd->error = err; mmc_request_done(host, mrq); return; } /* * For sdio rw commands we must wait for card busy otherwise some * sdio devices won't work properly. * And bypass I/O abort, reset and bus suspend operations. */ if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && host->ops->card_busy) { int tries = 500; /* Wait aprox 500ms at maximum */ while (host->ops->card_busy(host) && --tries) mmc_delay(1); if (tries == 0) { mrq->cmd->error = -EBUSY; mmc_request_done(host, mrq); return; } } if (mrq->cap_cmd_during_tfr) { host->ongoing_mrq = mrq; /* * Retry path could come through here without having waiting on * cmd_completion, so ensure it is reinitialised. */ reinit_completion(&mrq->cmd_completion); } trace_mmc_request_start(host, mrq); if (host->cqe_on) host->cqe_ops->cqe_off(host); host->ops->request(host, mrq); } static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, bool cqe) { if (mrq->sbc) { pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", mmc_hostname(host), mrq->sbc->opcode, mrq->sbc->arg, mrq->sbc->flags); } if (mrq->cmd) { pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", mmc_hostname(host), cqe ? "CQE direct " : "", mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); } else if (cqe) { pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", mmc_hostname(host), mrq->tag, mrq->data->blk_addr); } if (mrq->data) { pr_debug("%s: blksz %d blocks %d flags %08x " "tsac %d ms nsac %d\n", mmc_hostname(host), mrq->data->blksz, mrq->data->blocks, mrq->data->flags, mrq->data->timeout_ns / 1000000, mrq->data->timeout_clks); } if (mrq->stop) { pr_debug("%s: CMD%u arg %08x flags %08x\n", mmc_hostname(host), mrq->stop->opcode, mrq->stop->arg, mrq->stop->flags); } } static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) { unsigned int i, sz = 0; struct scatterlist *sg; if (mrq->cmd) { mrq->cmd->error = 0; mrq->cmd->mrq = mrq; mrq->cmd->data = mrq->data; } if (mrq->sbc) { mrq->sbc->error = 0; mrq->sbc->mrq = mrq; } if (mrq->data) { if (mrq->data->blksz > host->max_blk_size || mrq->data->blocks > host->max_blk_count || mrq->data->blocks * mrq->data->blksz > host->max_req_size) return -EINVAL; for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) sz += sg->length; if (sz != mrq->data->blocks * mrq->data->blksz) return -EINVAL; mrq->data->error = 0; mrq->data->mrq = mrq; if (mrq->stop) { mrq->data->stop = mrq->stop; mrq->stop->error = 0; mrq->stop->mrq = mrq; } } return 0; } int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) { int err; init_completion(&mrq->cmd_completion); mmc_retune_hold(host); if (mmc_card_removed(host->card)) return -ENOMEDIUM; mmc_mrq_pr_debug(host, mrq, false); WARN_ON(!host->claimed); err = mmc_mrq_prep(host, mrq); if (err) return err; led_trigger_event(host->led, LED_FULL); __mmc_start_request(host, mrq); return 0; } EXPORT_SYMBOL(mmc_start_request); static void mmc_wait_done(struct mmc_request *mrq) { complete(&mrq->completion); } static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) { struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); /* * If there is an ongoing transfer, wait for the command line to become * available. */ if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) wait_for_completion(&ongoing_mrq->cmd_completion); } static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) { int err; mmc_wait_ongoing_tfr_cmd(host); init_completion(&mrq->completion); mrq->done = mmc_wait_done; err = mmc_start_request(host, mrq); if (err) { mrq->cmd->error = err; mmc_complete_cmd(mrq); complete(&mrq->completion); } return err; } void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd; while (1) { wait_for_completion(&mrq->completion); cmd = mrq->cmd; if (!cmd->error || !cmd->retries || mmc_card_removed(host->card)) break; mmc_retune_recheck(host); pr_debug("%s: req failed (CMD%u): %d, retrying...\n", mmc_hostname(host), cmd->opcode, cmd->error); cmd->retries--; cmd->error = 0; __mmc_start_request(host, mrq); } mmc_retune_release(host); } EXPORT_SYMBOL(mmc_wait_for_req_done); /* * mmc_cqe_start_req - Start a CQE request. * @host: MMC host to start the request * @mrq: request to start * * Start the request, re-tuning if needed and it is possible. Returns an error * code if the request fails to start or -EBUSY if CQE is busy. */ int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) { int err; /* * CQE cannot process re-tuning commands. Caller must hold retuning * while CQE is in use. Re-tuning can happen here only when CQE has no * active requests i.e. this is the first. Note, re-tuning will call * ->cqe_off(). */ err = mmc_retune(host); if (err) goto out_err; mrq->host = host; mmc_mrq_pr_debug(host, mrq, true); err = mmc_mrq_prep(host, mrq); if (err) goto out_err; err = host->cqe_ops->cqe_request(host, mrq); if (err) goto out_err; trace_mmc_request_start(host, mrq); return 0; out_err: if (mrq->cmd) { pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", mmc_hostname(host), mrq->cmd->opcode, err); } else { pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", mmc_hostname(host), mrq->tag, err); } return err; } EXPORT_SYMBOL(mmc_cqe_start_req); /** * mmc_cqe_request_done - CQE has finished processing an MMC request * @host: MMC host which completed request * @mrq: MMC request which completed * * CQE drivers should call this function when they have completed * their processing of a request. */ void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) { mmc_should_fail_request(host, mrq); /* Flag re-tuning needed on CRC errors */ if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || (mrq->data && mrq->data->error == -EILSEQ)) mmc_retune_needed(host); trace_mmc_request_done(host, mrq); if (mrq->cmd) { pr_debug("%s: CQE req done (direct CMD%u): %d\n", mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); } else { pr_debug("%s: CQE transfer done tag %d\n", mmc_hostname(host), mrq->tag); } if (mrq->data) { pr_debug("%s: %d bytes transferred: %d\n", mmc_hostname(host), mrq->data->bytes_xfered, mrq->data->error); } mrq->done(mrq); } EXPORT_SYMBOL(mmc_cqe_request_done); /** * mmc_cqe_post_req - CQE post process of a completed MMC request * @host: MMC host * @mrq: MMC request to be processed */ void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) { if (host->cqe_ops->cqe_post_req) host->cqe_ops->cqe_post_req(host, mrq); } EXPORT_SYMBOL(mmc_cqe_post_req); /* Arbitrary 1 second timeout */ #define MMC_CQE_RECOVERY_TIMEOUT 1000 /* * mmc_cqe_recovery - Recover from CQE errors. * @host: MMC host to recover * * Recovery consists of stopping CQE, stopping eMMC, discarding the queue * in eMMC, and discarding the queue in CQE. CQE must call * mmc_cqe_request_done() on all requests. An error is returned if the eMMC * fails to discard its queue. */ int mmc_cqe_recovery(struct mmc_host *host) { struct mmc_command cmd; int err; mmc_retune_hold_now(host); /* * Recovery is expected seldom, if at all, but it reduces performance, * so make sure it is not completely silent. */ pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); host->cqe_ops->cqe_recovery_start(host); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = MMC_STOP_TRANSMISSION; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; mmc_wait_for_cmd(host, &cmd, 0); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = MMC_CMDQ_TASK_MGMT; cmd.arg = 1; /* Discard entire queue */ cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; err = mmc_wait_for_cmd(host, &cmd, 0); host->cqe_ops->cqe_recovery_finish(host); mmc_retune_release(host); return err; } EXPORT_SYMBOL(mmc_cqe_recovery); /** * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done * @host: MMC host * @mrq: MMC request * * mmc_is_req_done() is used with requests that have * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after * starting a request and before waiting for it to complete. That is, * either in between calls to mmc_start_req(), or after mmc_wait_for_req() * and before mmc_wait_for_req_done(). If it is called at other times the * result is not meaningful. */ bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) { return completion_done(&mrq->completion); } EXPORT_SYMBOL(mmc_is_req_done); /** * mmc_wait_for_req - start a request and wait for completion * @host: MMC host to start command * @mrq: MMC request to start * * Start a new MMC custom command request for a host, and wait * for the command to complete. In the case of 'cap_cmd_during_tfr' * requests, the transfer is ongoing and the caller can issue further * commands that do not use the data lines, and then wait by calling * mmc_wait_for_req_done(). * Does not attempt to parse the response. */ void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) { __mmc_start_req(host, mrq); if (!mrq->cap_cmd_during_tfr) mmc_wait_for_req_done(host, mrq); } EXPORT_SYMBOL(mmc_wait_for_req); /** * mmc_wait_for_cmd - start a command and wait for completion * @host: MMC host to start command * @cmd: MMC command to start * @retries: maximum number of retries * * Start a new MMC command for a host, and wait for the command * to complete. Return any error that occurred while the command * was executing. Do not attempt to parse the response. */ int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) { struct mmc_request mrq = {}; WARN_ON(!host->claimed); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = retries; mrq.cmd = cmd; cmd->data = NULL; mmc_wait_for_req(host, &mrq); return cmd->error; } EXPORT_SYMBOL(mmc_wait_for_cmd); /** * mmc_set_data_timeout - set the timeout for a data command * @data: data phase for command * @card: the MMC card associated with the data transfer * * Computes the data timeout parameters according to the * correct algorithm given the card type. */ void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) { unsigned int mult; /* * SDIO cards only define an upper 1 s limit on access. */ if (mmc_card_sdio(card)) { data->timeout_ns = 1000000000; data->timeout_clks = 0; return; } /* * SD cards use a 100 multiplier rather than 10 */ mult = mmc_card_sd(card) ? 100 : 10; /* * Scale up the multiplier (and therefore the timeout) by * the r2w factor for writes. */ if (data->flags & MMC_DATA_WRITE) mult <<= card->csd.r2w_factor; data->timeout_ns = card->csd.taac_ns * mult; data->timeout_clks = card->csd.taac_clks * mult; /* * SD cards also have an upper limit on the timeout. */ if (mmc_card_sd(card)) { unsigned int timeout_us, limit_us; timeout_us = data->timeout_ns / 1000; if (card->host->ios.clock) timeout_us += data->timeout_clks * 1000 / (card->host->ios.clock / 1000); if (data->flags & MMC_DATA_WRITE) /* * The MMC spec "It is strongly recommended * for hosts to implement more than 500ms * timeout value even if the card indicates * the 250ms maximum busy length." Even the * previous value of 300ms is known to be * insufficient for some cards. */ limit_us = 3000000; else limit_us = 100000; /* * SDHC cards always use these fixed values. */ if (timeout_us > limit_us) { data->timeout_ns = limit_us * 1000; data->timeout_clks = 0; } /* assign limit value if invalid */ if (timeout_us == 0) data->timeout_ns = limit_us * 1000; } /* * Some cards require longer data read timeout than indicated in CSD. * Address this by setting the read timeout to a "reasonably high" * value. For the cards tested, 600ms has proven enough. If necessary, * this value can be increased if other problematic cards require this. */ if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { data->timeout_ns = 600000000; data->timeout_clks = 0; } /* * Some cards need very high timeouts if driven in SPI mode. * The worst observed timeout was 900ms after writing a * continuous stream of data until the internal logic * overflowed. */ if (mmc_host_is_spi(card->host)) { if (data->flags & MMC_DATA_WRITE) { if (data->timeout_ns < 1000000000) data->timeout_ns = 1000000000; /* 1s */ } else { if (data->timeout_ns < 100000000) data->timeout_ns = 100000000; /* 100ms */ } } } EXPORT_SYMBOL(mmc_set_data_timeout); /* * Allow claiming an already claimed host if the context is the same or there is * no context but the task is the same. */ static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task) { return host->claimer == ctx || (!ctx && task && host->claimer->task == task); } static inline void mmc_ctx_set_claimer(struct mmc_host *host, struct mmc_ctx *ctx, struct task_struct *task) { if (!host->claimer) { if (ctx) host->claimer = ctx; else host->claimer = &host->default_ctx; } if (task) host->claimer->task = task; } /** * __mmc_claim_host - exclusively claim a host * @host: mmc host to claim * @ctx: context that claims the host or NULL in which case the default * context will be used * @abort: whether or not the operation should be aborted * * Claim a host for a set of operations. If @abort is non null and * dereference a non-zero value then this will return prematurely with * that non-zero value without acquiring the lock. Returns zero * with the lock held otherwise. */ int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, atomic_t *abort) { struct task_struct *task = ctx ? NULL : current; DECLARE_WAITQUEUE(wait, current); unsigned long flags; int stop; bool pm = false; might_sleep(); add_wait_queue(&host->wq, &wait); spin_lock_irqsave(&host->lock, flags); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); stop = abort ? atomic_read(abort) : 0; if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) break; spin_unlock_irqrestore(&host->lock, flags); schedule(); spin_lock_irqsave(&host->lock, flags); } set_current_state(TASK_RUNNING); if (!stop) { host->claimed = 1; mmc_ctx_set_claimer(host, ctx, task); host->claim_cnt += 1; if (host->claim_cnt == 1) pm = true; } else wake_up(&host->wq); spin_unlock_irqrestore(&host->lock, flags); remove_wait_queue(&host->wq, &wait); if (pm) pm_runtime_get_sync(mmc_dev(host)); return stop; } EXPORT_SYMBOL(__mmc_claim_host); /** * mmc_release_host - release a host * @host: mmc host to release * * Release a MMC host, allowing others to claim the host * for their operations. */ void mmc_release_host(struct mmc_host *host) { unsigned long flags; WARN_ON(!host->claimed); spin_lock_irqsave(&host->lock, flags); if (--host->claim_cnt) { /* Release for nested claim */ spin_unlock_irqrestore(&host->lock, flags); } else { host->claimed = 0; host->claimer->task = NULL; host->claimer = NULL; spin_unlock_irqrestore(&host->lock, flags); wake_up(&host->wq); pm_runtime_mark_last_busy(mmc_dev(host)); if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) pm_runtime_put_sync_suspend(mmc_dev(host)); else pm_runtime_put_autosuspend(mmc_dev(host)); } } EXPORT_SYMBOL(mmc_release_host); /* * This is a helper function, which fetches a runtime pm reference for the * card device and also claims the host. */ void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) { pm_runtime_get_sync(&card->dev); __mmc_claim_host(card->host, ctx, NULL); } EXPORT_SYMBOL(mmc_get_card); /* * This is a helper function, which releases the host and drops the runtime * pm reference for the card device. */ void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) { struct mmc_host *host = card->host; WARN_ON(ctx && host->claimer != ctx); mmc_release_host(host); pm_runtime_mark_last_busy(&card->dev); pm_runtime_put_autosuspend(&card->dev); } EXPORT_SYMBOL(mmc_put_card); /* * Internal function that does the actual ios call to the host driver, * optionally printing some debug output. */ static inline void mmc_set_ios(struct mmc_host *host) { struct mmc_ios *ios = &host->ios; pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " "width %u timing %u\n", mmc_hostname(host), ios->clock, ios->bus_mode, ios->power_mode, ios->chip_select, ios->vdd, 1 << ios->bus_width, ios->timing); host->ops->set_ios(host, ios); } /* * Control chip select pin on a host. */ void mmc_set_chip_select(struct mmc_host *host, int mode) { host->ios.chip_select = mode; mmc_set_ios(host); } /* * Sets the host clock to the highest possible frequency that * is below "hz". */ void mmc_set_clock(struct mmc_host *host, unsigned int hz) { WARN_ON(hz && hz < host->f_min); if (hz > host->f_max) hz = host->f_max; host->ios.clock = hz; mmc_set_ios(host); } int mmc_execute_tuning(struct mmc_card *card) { struct mmc_host *host = card->host; u32 opcode; int err; if (!host->ops->execute_tuning) return 0; if (host->cqe_on) host->cqe_ops->cqe_off(host); if (mmc_card_mmc(card)) opcode = MMC_SEND_TUNING_BLOCK_HS200; else opcode = MMC_SEND_TUNING_BLOCK; err = host->ops->execute_tuning(host, opcode); if (!err) { mmc_retune_clear(host); mmc_retune_enable(host); return 0; } /* Only print error when we don't check for card removal */ if (!host->detect_change) { pr_err("%s: tuning execution failed: %d\n", mmc_hostname(host), err); mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING); } return err; } /* * Change the bus mode (open drain/push-pull) of a host. */ void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) { host->ios.bus_mode = mode; mmc_set_ios(host); } /* * Change data bus width of a host. */ void mmc_set_bus_width(struct mmc_host *host, unsigned int width) { host->ios.bus_width = width; mmc_set_ios(host); } /* * Set initial state after a power cycle or a hw_reset. */ void mmc_set_initial_state(struct mmc_host *host) { if (host->cqe_on) host->cqe_ops->cqe_off(host); mmc_retune_disable(host); if (mmc_host_is_spi(host)) host->ios.chip_select = MMC_CS_HIGH; else host->ios.chip_select = MMC_CS_DONTCARE; host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; host->ios.drv_type = 0; host->ios.enhanced_strobe = false; /* * Make sure we are in non-enhanced strobe mode before we * actually enable it in ext_csd. */ if ((host->caps2 & MMC_CAP2_HS400_ES) && host->ops->hs400_enhanced_strobe) host->ops->hs400_enhanced_strobe(host, &host->ios); mmc_set_ios(host); mmc_crypto_set_initial_state(host); } /** * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number * @vdd: voltage (mV) * @low_bits: prefer low bits in boundary cases * * This function returns the OCR bit number according to the provided @vdd * value. If conversion is not possible a negative errno value returned. * * Depending on the @low_bits flag the function prefers low or high OCR bits * on boundary voltages. For example, * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); * * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). */ static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) { const int max_bit = ilog2(MMC_VDD_35_36); int bit; if (vdd < 1650 || vdd > 3600) return -EINVAL; if (vdd >= 1650 && vdd <= 1950) return ilog2(MMC_VDD_165_195); if (low_bits) vdd -= 1; /* Base 2000 mV, step 100 mV, bit's base 8. */ bit = (vdd - 2000) / 100 + 8; if (bit > max_bit) return max_bit; return bit; } /** * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask * @vdd_min: minimum voltage value (mV) * @vdd_max: maximum voltage value (mV) * * This function returns the OCR mask bits according to the provided @vdd_min * and @vdd_max values. If conversion is not possible the function returns 0. * * Notes wrt boundary cases: * This function sets the OCR bits for all boundary voltages, for example * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | * MMC_VDD_34_35 mask. */ u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) { u32 mask = 0; if (vdd_max < vdd_min) return 0; /* Prefer high bits for the boundary vdd_max values. */ vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); if (vdd_max < 0) return 0; /* Prefer low bits for the boundary vdd_min values. */ vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); if (vdd_min < 0) return 0; /* Fill the mask, from max bit to min bit. */ while (vdd_max >= vdd_min) mask |= 1 << vdd_max--; return mask; } static int mmc_of_get_func_num(struct device_node *node) { u32 reg; int ret; ret = of_property_read_u32(node, "reg", ®); if (ret < 0) return ret; return reg; } struct device_node *mmc_of_find_child_device(struct mmc_host *host, unsigned func_num) { struct device_node *node; if (!host->parent || !host->parent->of_node) return NULL; for_each_child_of_node(host->parent->of_node, node) { if (mmc_of_get_func_num(node) == func_num) return node; } return NULL; } /* * Mask off any voltages we don't support and select * the lowest voltage */ u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) { int bit; /* * Sanity check the voltages that the card claims to * support. */ if (ocr & 0x7F) { dev_warn(mmc_dev(host), "card claims to support voltages below defined range\n"); ocr &= ~0x7F; } ocr &= host->ocr_avail; if (!ocr) { dev_warn(mmc_dev(host), "no support for card's volts\n"); return 0; } if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { bit = ffs(ocr) - 1; ocr &= 3 << bit; mmc_power_cycle(host, ocr); } else { bit = fls(ocr) - 1; /* * The bit variable represents the highest voltage bit set in * the OCR register. * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), * we must shift the mask '3' with (bit - 1). */ ocr &= 3 << (bit - 1); if (bit != host->ios.vdd) dev_warn(mmc_dev(host), "exceeding card's volts\n"); } return ocr; } int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) { int err = 0; int old_signal_voltage = host->ios.signal_voltage; host->ios.signal_voltage = signal_voltage; if (host->ops->start_signal_voltage_switch) err = host->ops->start_signal_voltage_switch(host, &host->ios); if (err) host->ios.signal_voltage = old_signal_voltage; return err; } void mmc_set_initial_signal_voltage(struct mmc_host *host) { /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); } int mmc_host_set_uhs_voltage(struct mmc_host *host) { u32 clock; /* * During a signal voltage level switch, the clock must be gated * for 5 ms according to the SD spec */ clock = host->ios.clock; host->ios.clock = 0; mmc_set_ios(host); if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) return -EAGAIN; /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ mmc_delay(10); host->ios.clock = clock; mmc_set_ios(host); return 0; } int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) { struct mmc_command cmd = {}; int err = 0; /* * If we cannot switch voltages, return failure so the caller * can continue without UHS mode */ if (!host->ops->start_signal_voltage_switch) return -EPERM; if (!host->ops->card_busy) pr_warn("%s: cannot verify signal voltage switch\n", mmc_hostname(host)); cmd.opcode = SD_SWITCH_VOLTAGE; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, 0); if (err) goto power_cycle; if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) return -EIO; /* * The card should drive cmd and dat[0:3] low immediately * after the response of cmd11, but wait 1 ms to be sure */ mmc_delay(1); if (host->ops->card_busy && !host->ops->card_busy(host)) { err = -EAGAIN; goto power_cycle; } if (mmc_host_set_uhs_voltage(host)) { /* * Voltages may not have been switched, but we've already * sent CMD11, so a power cycle is required anyway */ err = -EAGAIN; goto power_cycle; } /* Wait for at least 1 ms according to spec */ mmc_delay(1); /* * Failure to switch is indicated by the card holding * dat[0:3] low */ if (host->ops->card_busy && host->ops->card_busy(host)) err = -EAGAIN; power_cycle: if (err) { pr_debug("%s: Signal voltage switch failed, " "power cycling card\n", mmc_hostname(host)); mmc_power_cycle(host, ocr); } return err; } /* * Select timing parameters for host. */ void mmc_set_timing(struct mmc_host *host, unsigned int timing) { host->ios.timing = timing; mmc_set_ios(host); } /* * Select appropriate driver type for host. */ void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) { host->ios.drv_type = drv_type; mmc_set_ios(host); } int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int card_drv_type, int *drv_type) { struct mmc_host *host = card->host; int host_drv_type = SD_DRIVER_TYPE_B; *drv_type = 0; if (!host->ops->select_drive_strength) return 0; /* Use SD definition of driver strength for hosts */ if (host->caps & MMC_CAP_DRIVER_TYPE_A) host_drv_type |= SD_DRIVER_TYPE_A; if (host->caps & MMC_CAP_DRIVER_TYPE_C) host_drv_type |= SD_DRIVER_TYPE_C; if (host->caps & MMC_CAP_DRIVER_TYPE_D) host_drv_type |= SD_DRIVER_TYPE_D; /* * The drive strength that the hardware can support * depends on the board design. Pass the appropriate * information and let the hardware specific code * return what is possible given the options */ return host->ops->select_drive_strength(card, max_dtr, host_drv_type, card_drv_type, drv_type); } /* * Apply power to the MMC stack. This is a two-stage process. * First, we enable power to the card without the clock running. * We then wait a bit for the power to stabilise. Finally, * enable the bus drivers and clock to the card. * * We must _NOT_ enable the clock prior to power stablising. * * If a host does all the power sequencing itself, ignore the * initial MMC_POWER_UP stage. */ void mmc_power_up(struct mmc_host *host, u32 ocr) { if (host->ios.power_mode == MMC_POWER_ON) return; mmc_pwrseq_pre_power_on(host); host->ios.vdd = fls(ocr) - 1; host->ios.power_mode = MMC_POWER_UP; /* Set initial state and call mmc_set_ios */ mmc_set_initial_state(host); mmc_set_initial_signal_voltage(host); /* * This delay should be sufficient to allow the power supply * to reach the minimum voltage. */ mmc_delay(host->ios.power_delay_ms); mmc_pwrseq_post_power_on(host); host->ios.clock = host->f_init; host->ios.power_mode = MMC_POWER_ON; mmc_set_ios(host); /* * This delay must be at least 74 clock sizes, or 1 ms, or the * time required to reach a stable voltage. */ mmc_delay(host->ios.power_delay_ms); } void mmc_power_off(struct mmc_host *host) { if (host->ios.power_mode == MMC_POWER_OFF) return; mmc_pwrseq_power_off(host); host->ios.clock = 0; host->ios.vdd = 0; host->ios.power_mode = MMC_POWER_OFF; /* Set initial state and call mmc_set_ios */ mmc_set_initial_state(host); /* * Some configurations, such as the 802.11 SDIO card in the OLPC * XO-1.5, require a short delay after poweroff before the card * can be successfully turned on again. */ mmc_delay(1); } void mmc_power_cycle(struct mmc_host *host, u32 ocr) { mmc_power_off(host); /* Wait at least 1 ms according to SD spec */ mmc_delay(1); mmc_power_up(host, ocr); } /* * Assign a mmc bus handler to a host. Only one bus handler may control a * host at any given time. */ void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) { host->bus_ops = ops; } /* * Remove the current bus handler from a host. */ void mmc_detach_bus(struct mmc_host *host) { host->bus_ops = NULL; } void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) { /* * Prevent system sleep for 5s to allow user space to consume the * corresponding uevent. This is especially useful, when CD irq is used * as a system wakeup, but doesn't hurt in other cases. */ if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) __pm_wakeup_event(host->ws, 5000); host->detect_change = 1; mmc_schedule_delayed_work(&host->detect, delay); } /** * mmc_detect_change - process change of state on a MMC socket * @host: host which changed state. * @delay: optional delay to wait before detection (jiffies) * * MMC drivers should call this when they detect a card has been * inserted or removed. The MMC layer will confirm that any * present card is still functional, and initialize any newly * inserted. */ void mmc_detect_change(struct mmc_host *host, unsigned long delay) { _mmc_detect_change(host, delay, true); } EXPORT_SYMBOL(mmc_detect_change); void mmc_init_erase(struct mmc_card *card) { unsigned int sz; if (is_power_of_2(card->erase_size)) card->erase_shift = ffs(card->erase_size) - 1; else card->erase_shift = 0; /* * It is possible to erase an arbitrarily large area of an SD or MMC * card. That is not desirable because it can take a long time * (minutes) potentially delaying more important I/O, and also the * timeout calculations become increasingly hugely over-estimated. * Consequently, 'pref_erase' is defined as a guide to limit erases * to that size and alignment. * * For SD cards that define Allocation Unit size, limit erases to one * Allocation Unit at a time. * For MMC, have a stab at ai good value and for modern cards it will * end up being 4MiB. Note that if the value is too small, it can end * up taking longer to erase. Also note, erase_size is already set to * High Capacity Erase Size if available when this function is called. */ if (mmc_card_sd(card) && card->ssr.au) { card->pref_erase = card->ssr.au; card->erase_shift = ffs(card->ssr.au) - 1; } else if (card->erase_size) { sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; if (sz < 128) card->pref_erase = 512 * 1024 / 512; else if (sz < 512) card->pref_erase = 1024 * 1024 / 512; else if (sz < 1024) card->pref_erase = 2 * 1024 * 1024 / 512; else card->pref_erase = 4 * 1024 * 1024 / 512; if (card->pref_erase < card->erase_size) card->pref_erase = card->erase_size; else { sz = card->pref_erase % card->erase_size; if (sz) card->pref_erase += card->erase_size - sz; } } else card->pref_erase = 0; } static bool is_trim_arg(unsigned int arg) { return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG; } static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { unsigned int erase_timeout; if (arg == MMC_DISCARD_ARG || (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { erase_timeout = card->ext_csd.trim_timeout; } else if (card->ext_csd.erase_group_def & 1) { /* High Capacity Erase Group Size uses HC timeouts */ if (arg == MMC_TRIM_ARG) erase_timeout = card->ext_csd.trim_timeout; else erase_timeout = card->ext_csd.hc_erase_timeout; } else { /* CSD Erase Group Size uses write timeout */ unsigned int mult = (10 << card->csd.r2w_factor); unsigned int timeout_clks = card->csd.taac_clks * mult; unsigned int timeout_us; /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ if (card->csd.taac_ns < 1000000) timeout_us = (card->csd.taac_ns * mult) / 1000; else timeout_us = (card->csd.taac_ns / 1000) * mult; /* * ios.clock is only a target. The real clock rate might be * less but not that much less, so fudge it by multiplying by 2. */ timeout_clks <<= 1; timeout_us += (timeout_clks * 1000) / (card->host->ios.clock / 1000); erase_timeout = timeout_us / 1000; /* * Theoretically, the calculation could underflow so round up * to 1ms in that case. */ if (!erase_timeout) erase_timeout = 1; } /* Multiplier for secure operations */ if (arg & MMC_SECURE_ARGS) { if (arg == MMC_SECURE_ERASE_ARG) erase_timeout *= card->ext_csd.sec_erase_mult; else erase_timeout *= card->ext_csd.sec_trim_mult; } erase_timeout *= qty; /* * Ensure at least a 1 second timeout for SPI as per * 'mmc_set_data_timeout()' */ if (mmc_host_is_spi(card->host) && erase_timeout < 1000) erase_timeout = 1000; return erase_timeout; } static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { unsigned int erase_timeout; /* for DISCARD none of the below calculation applies. * the busy timeout is 250msec per discard command. */ if (arg == SD_DISCARD_ARG) return SD_DISCARD_TIMEOUT_MS; if (card->ssr.erase_timeout) { /* Erase timeout specified in SD Status Register (SSR) */ erase_timeout = card->ssr.erase_timeout * qty + card->ssr.erase_offset; } else { /* * Erase timeout not specified in SD Status Register (SSR) so * use 250ms per write block. */ erase_timeout = 250 * qty; } /* Must not be less than 1 second */ if (erase_timeout < 1000) erase_timeout = 1000; return erase_timeout; } static unsigned int mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { if (mmc_card_sd(card)) return mmc_sd_erase_timeout(card, arg, qty); else return mmc_mmc_erase_timeout(card, arg, qty); } static int mmc_do_erase(struct mmc_card *card, unsigned int from, unsigned int to, unsigned int arg) { struct mmc_command cmd = {}; unsigned int qty = 0, busy_timeout = 0; bool use_r1b_resp; int err; mmc_retune_hold(card->host); /* * qty is used to calculate the erase timeout which depends on how many * erase groups (or allocation units in SD terminology) are affected. * We count erasing part of an erase group as one erase group. * For SD, the allocation units are always a power of 2. For MMC, the * erase group size is almost certainly also power of 2, but it does not * seem to insist on that in the JEDEC standard, so we fall back to * division in that case. SD may not specify an allocation unit size, * in which case the timeout is based on the number of write blocks. * * Note that the timeout for secure trim 2 will only be correct if the * number of erase groups specified is the same as the total of all * preceding secure trim 1 commands. Since the power may have been * lost since the secure trim 1 commands occurred, it is generally * impossible to calculate the secure trim 2 timeout correctly. */ if (card->erase_shift) qty += ((to >> card->erase_shift) - (from >> card->erase_shift)) + 1; else if (mmc_card_sd(card)) qty += to - from + 1; else qty += ((to / card->erase_size) - (from / card->erase_size)) + 1; if (!mmc_card_blockaddr(card)) { from <<= 9; to <<= 9; } if (mmc_card_sd(card)) cmd.opcode = SD_ERASE_WR_BLK_START; else cmd.opcode = MMC_ERASE_GROUP_START; cmd.arg = from; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: group start error %d, " "status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } memset(&cmd, 0, sizeof(struct mmc_command)); if (mmc_card_sd(card)) cmd.opcode = SD_ERASE_WR_BLK_END; else cmd.opcode = MMC_ERASE_GROUP_END; cmd.arg = to; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: group end error %d, status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_ERASE; cmd.arg = arg; busy_timeout = mmc_erase_timeout(card, arg, qty); use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: erase error %d, status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } if (mmc_host_is_spi(card->host)) goto out; /* * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling * shall be avoided. */ if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) goto out; /* Let's poll to find out when the erase operation completes. */ err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); out: mmc_retune_release(card->host); return err; } static unsigned int mmc_align_erase_size(struct mmc_card *card, unsigned int *from, unsigned int *to, unsigned int nr) { unsigned int from_new = *from, nr_new = nr, rem; /* * When the 'card->erase_size' is power of 2, we can use round_up/down() * to align the erase size efficiently. */ if (is_power_of_2(card->erase_size)) { unsigned int temp = from_new; from_new = round_up(temp, card->erase_size); rem = from_new - temp; if (nr_new > rem) nr_new -= rem; else return 0; nr_new = round_down(nr_new, card->erase_size); } else { rem = from_new % card->erase_size; if (rem) { rem = card->erase_size - rem; from_new += rem; if (nr_new > rem) nr_new -= rem; else return 0; } rem = nr_new % card->erase_size; if (rem) nr_new -= rem; } if (nr_new == 0) return 0; *to = from_new + nr_new; *from = from_new; return nr_new; } /** * mmc_erase - erase sectors. * @card: card to erase * @from: first sector to erase * @nr: number of sectors to erase * @arg: erase command argument * * Caller must claim host before calling this function. */ int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, unsigned int arg) { unsigned int rem, to = from + nr; int err; if (!(card->csd.cmdclass & CCC_ERASE)) return -EOPNOTSUPP; if (!card->erase_size) return -EOPNOTSUPP; if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) return -EOPNOTSUPP; if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) return -EOPNOTSUPP; if (mmc_card_mmc(card) && is_trim_arg(arg) && !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) return -EOPNOTSUPP; if (arg == MMC_SECURE_ERASE_ARG) { if (from % card->erase_size || nr % card->erase_size) return -EINVAL; } if (arg == MMC_ERASE_ARG) nr = mmc_align_erase_size(card, &from, &to, nr); if (nr == 0) return 0; if (to <= from) return -EINVAL; /* 'from' and 'to' are inclusive */ to -= 1; /* * Special case where only one erase-group fits in the timeout budget: * If the region crosses an erase-group boundary on this particular * case, we will be trimming more than one erase-group which, does not * fit in the timeout budget of the controller, so we need to split it * and call mmc_do_erase() twice if necessary. This special case is * identified by the card->eg_boundary flag. */ rem = card->erase_size - (from % card->erase_size); if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) { err = mmc_do_erase(card, from, from + rem - 1, arg); from += rem; if ((err) || (to <= from)) return err; } return mmc_do_erase(card, from, to, arg); } EXPORT_SYMBOL(mmc_erase); int mmc_can_erase(struct mmc_card *card) { if (card->csd.cmdclass & CCC_ERASE && card->erase_size) return 1; return 0; } EXPORT_SYMBOL(mmc_can_erase); int mmc_can_trim(struct mmc_card *card) { if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) return 1; return 0; } EXPORT_SYMBOL(mmc_can_trim); int mmc_can_discard(struct mmc_card *card) { /* * As there's no way to detect the discard support bit at v4.5 * use the s/w feature support filed. */ if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) return 1; return 0; } EXPORT_SYMBOL(mmc_can_discard); int mmc_can_sanitize(struct mmc_card *card) { if (!mmc_can_trim(card) && !mmc_can_erase(card)) return 0; if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) return 1; return 0; } int mmc_can_secure_erase_trim(struct mmc_card *card) { if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) return 1; return 0; } EXPORT_SYMBOL(mmc_can_secure_erase_trim); int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, unsigned int nr) { if (!card->erase_size) return 0; if (from % card->erase_size || nr % card->erase_size) return 0; return 1; } EXPORT_SYMBOL(mmc_erase_group_aligned); static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, unsigned int arg) { struct mmc_host *host = card->host; unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; unsigned int last_timeout = 0; unsigned int max_busy_timeout = host->max_busy_timeout ? host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; if (card->erase_shift) { max_qty = UINT_MAX >> card->erase_shift; min_qty = card->pref_erase >> card->erase_shift; } else if (mmc_card_sd(card)) { max_qty = UINT_MAX; min_qty = card->pref_erase; } else { max_qty = UINT_MAX / card->erase_size; min_qty = card->pref_erase / card->erase_size; } /* * We should not only use 'host->max_busy_timeout' as the limitation * when deciding the max discard sectors. We should set a balance value * to improve the erase speed, and it can not get too long timeout at * the same time. * * Here we set 'card->pref_erase' as the minimal discard sectors no * matter what size of 'host->max_busy_timeout', but if the * 'host->max_busy_timeout' is large enough for more discard sectors, * then we can continue to increase the max discard sectors until we * get a balance value. In cases when the 'host->max_busy_timeout' * isn't specified, use the default max erase timeout. */ do { y = 0; for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { timeout = mmc_erase_timeout(card, arg, qty + x); if (qty + x > min_qty && timeout > max_busy_timeout) break; if (timeout < last_timeout) break; last_timeout = timeout; y = x; } qty += y; } while (y); if (!qty) return 0; /* * When specifying a sector range to trim, chances are we might cross * an erase-group boundary even if the amount of sectors is less than * one erase-group. * If we can only fit one erase-group in the controller timeout budget, * we have to care that erase-group boundaries are not crossed by a * single trim operation. We flag that special case with "eg_boundary". * In all other cases we can just decrement qty and pretend that we * always touch (qty + 1) erase-groups as a simple optimization. */ if (qty == 1) card->eg_boundary = 1; else qty--; /* Convert qty to sectors */ if (card->erase_shift) max_discard = qty << card->erase_shift; else if (mmc_card_sd(card)) max_discard = qty + 1; else max_discard = qty * card->erase_size; return max_discard; } unsigned int mmc_calc_max_discard(struct mmc_card *card) { struct mmc_host *host = card->host; unsigned int max_discard, max_trim; /* * Without erase_group_def set, MMC erase timeout depends on clock * frequence which can change. In that case, the best choice is * just the preferred erase size. */ if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) return card->pref_erase; max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); if (mmc_can_trim(card)) { max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); if (max_trim < max_discard || max_discard == 0) max_discard = max_trim; } else if (max_discard < card->erase_size) { max_discard = 0; } pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", mmc_hostname(host), max_discard, host->max_busy_timeout ? host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); return max_discard; } EXPORT_SYMBOL(mmc_calc_max_discard); bool mmc_card_is_blockaddr(struct mmc_card *card) { return card ? mmc_card_blockaddr(card) : false; } EXPORT_SYMBOL(mmc_card_is_blockaddr); int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) { struct mmc_command cmd = {}; if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || mmc_card_hs400(card) || mmc_card_hs400es(card)) return 0; cmd.opcode = MMC_SET_BLOCKLEN; cmd.arg = blocklen; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; return mmc_wait_for_cmd(card->host, &cmd, 5); } EXPORT_SYMBOL(mmc_set_blocklen); static void mmc_hw_reset_for_init(struct mmc_host *host) { mmc_pwrseq_reset(host); if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) return; host->ops->card_hw_reset(host); } /** * mmc_hw_reset - reset the card in hardware * @card: card to be reset * * Hard reset the card. This function is only for upper layers, like the * block layer or card drivers. You cannot use it in host drivers (struct * mmc_card might be gone then). * * Return: 0 on success, -errno on failure */ int mmc_hw_reset(struct mmc_card *card) { struct mmc_host *host = card->host; int ret; ret = host->bus_ops->hw_reset(host); if (ret < 0) pr_warn("%s: tried to HW reset card, got error %d\n", mmc_hostname(host), ret); return ret; } EXPORT_SYMBOL(mmc_hw_reset); int mmc_sw_reset(struct mmc_card *card) { struct mmc_host *host = card->host; int ret; if (!host->bus_ops->sw_reset) return -EOPNOTSUPP; ret = host->bus_ops->sw_reset(host); if (ret) pr_warn("%s: tried to SW reset card, got error %d\n", mmc_hostname(host), ret); return ret; } EXPORT_SYMBOL(mmc_sw_reset); static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) { host->f_init = freq; pr_debug("%s: %s: trying to init card at %u Hz\n", mmc_hostname(host), __func__, host->f_init); mmc_power_up(host, host->ocr_avail); /* * Some eMMCs (with VCCQ always on) may not be reset after power up, so * do a hardware reset if possible. */ mmc_hw_reset_for_init(host); /* * sdio_reset sends CMD52 to reset card. Since we do not know * if the card is being re-initialized, just send it. CMD52 * should be ignored by SD/eMMC cards. * Skip it if we already know that we do not support SDIO commands */ if (!(host->caps2 & MMC_CAP2_NO_SDIO)) sdio_reset(host); mmc_go_idle(host); if (!(host->caps2 & MMC_CAP2_NO_SD)) { if (mmc_send_if_cond_pcie(host, host->ocr_avail)) goto out; if (mmc_card_sd_express(host)) return 0; } /* Order's important: probe SDIO, then SD, then MMC */ if (!(host->caps2 & MMC_CAP2_NO_SDIO)) if (!mmc_attach_sdio(host)) return 0; if (!(host->caps2 & MMC_CAP2_NO_SD)) if (!mmc_attach_sd(host)) return 0; if (!(host->caps2 & MMC_CAP2_NO_MMC)) if (!mmc_attach_mmc(host)) return 0; out: mmc_power_off(host); return -EIO; } int _mmc_detect_card_removed(struct mmc_host *host) { int ret; if (!host->card || mmc_card_removed(host->card)) return 1; ret = host->bus_ops->alive(host); /* * Card detect status and alive check may be out of sync if card is * removed slowly, when card detect switch changes while card/slot * pads are still contacted in hardware (refer to "SD Card Mechanical * Addendum, Appendix C: Card Detection Switch"). So reschedule a * detect work 200ms later for this case. */ if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { mmc_detect_change(host, msecs_to_jiffies(200)); pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); } if (ret) { mmc_card_set_removed(host->card); pr_debug("%s: card remove detected\n", mmc_hostname(host)); } return ret; } int mmc_detect_card_removed(struct mmc_host *host) { struct mmc_card *card = host->card; int ret; WARN_ON(!host->claimed); if (!card) return 1; if (!mmc_card_is_removable(host)) return 0; ret = mmc_card_removed(card); /* * The card will be considered unchanged unless we have been asked to * detect a change or host requires polling to provide card detection. */ if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) return ret; host->detect_change = 0; if (!ret) { ret = _mmc_detect_card_removed(host); if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { /* * Schedule a detect work as soon as possible to let a * rescan handle the card removal. */ cancel_delayed_work(&host->detect); _mmc_detect_change(host, 0, false); } } return ret; } EXPORT_SYMBOL(mmc_detect_card_removed); int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) { unsigned int boot_sectors_num; if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) return -EOPNOTSUPP; /* filter out unrelated cards */ if (card->ext_csd.rev < 3 || !mmc_card_mmc(card) || !mmc_card_is_blockaddr(card) || mmc_card_is_removable(card->host)) return -ENOENT; /* * eMMC storage has two special boot partitions in addition to the * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main * accesses, this means that the partition table addresses are shifted * by the size of boot partitions. In accordance with the eMMC * specification, the boot partition size is calculated as follows: * * boot partition size = 128K byte x BOOT_SIZE_MULT * * Calculate number of sectors occupied by the both boot partitions. */ boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / SZ_512 * MMC_NUM_BOOT_PARTITION; /* Defined by NVIDIA and used by Android devices. */ *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; return 0; } EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); void mmc_rescan(struct work_struct *work) { struct mmc_host *host = container_of(work, struct mmc_host, detect.work); int i; if (host->rescan_disable) return; /* If there is a non-removable card registered, only scan once */ if (!mmc_card_is_removable(host) && host->rescan_entered) return; host->rescan_entered = 1; if (host->trigger_card_event && host->ops->card_event) { mmc_claim_host(host); host->ops->card_event(host); mmc_release_host(host); host->trigger_card_event = false; } /* Verify a registered card to be functional, else remove it. */ if (host->bus_ops) host->bus_ops->detect(host); host->detect_change = 0; /* if there still is a card present, stop here */ if (host->bus_ops != NULL) goto out; mmc_claim_host(host); if (mmc_card_is_removable(host) && host->ops->get_cd && host->ops->get_cd(host) == 0) { mmc_power_off(host); mmc_release_host(host); goto out; } /* If an SD express card is present, then leave it as is. */ if (mmc_card_sd_express(host)) { mmc_release_host(host); goto out; } for (i = 0; i < ARRAY_SIZE(freqs); i++) { unsigned int freq = freqs[i]; if (freq > host->f_max) { if (i + 1 < ARRAY_SIZE(freqs)) continue; freq = host->f_max; } if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) break; if (freqs[i] <= host->f_min) break; } /* A non-removable card should have been detected by now. */ if (!mmc_card_is_removable(host) && !host->bus_ops) pr_info("%s: Failed to initialize a non-removable card", mmc_hostname(host)); /* * Ignore the command timeout errors observed during * the card init as those are excepted. */ host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; mmc_release_host(host); out: if (host->caps & MMC_CAP_NEEDS_POLL) mmc_schedule_delayed_work(&host->detect, HZ); } void mmc_start_host(struct mmc_host *host) { host->f_init = max(min(freqs[0], host->f_max), host->f_min); host->rescan_disable = 0; if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { mmc_claim_host(host); mmc_power_up(host, host->ocr_avail); mmc_release_host(host); } mmc_gpiod_request_cd_irq(host); _mmc_detect_change(host, 0, false); } void __mmc_stop_host(struct mmc_host *host) { if (host->slot.cd_irq >= 0) { mmc_gpio_set_cd_wake(host, false); disable_irq(host->slot.cd_irq); } host->rescan_disable = 1; cancel_delayed_work_sync(&host->detect); } void mmc_stop_host(struct mmc_host *host) { __mmc_stop_host(host); /* clear pm flags now and let card drivers set them as needed */ host->pm_flags = 0; if (host->bus_ops) { /* Calling bus_ops->remove() with a claimed host can deadlock */ host->bus_ops->remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); return; } mmc_claim_host(host); mmc_power_off(host); mmc_release_host(host); } static int __init mmc_init(void) { int ret; ret = mmc_register_bus(); if (ret) return ret; ret = mmc_register_host_class(); if (ret) goto unregister_bus; ret = sdio_register_bus(); if (ret) goto unregister_host_class; return 0; unregister_host_class: mmc_unregister_host_class(); unregister_bus: mmc_unregister_bus(); return ret; } static void __exit mmc_exit(void) { sdio_unregister_bus(); mmc_unregister_host_class(); mmc_unregister_bus(); } subsys_initcall(mmc_init); module_exit(mmc_exit); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1