Contributors: 38
Author Tokens Token Proportion Commits Commit Proportion
Adrian Hunter 1450 63.21% 17 20.99%
Russell King 203 8.85% 5 6.17%
Christoph Hellwig 131 5.71% 10 12.35%
Yoshihiro Shimoda 86 3.75% 2 2.47%
Baolin Wang 62 2.70% 1 1.23%
Linus Walleij 58 2.53% 4 4.94%
Pierre Ossman 52 2.27% 5 6.17%
Ming Lei 33 1.44% 1 1.23%
Per Forlin 26 1.13% 3 3.70%
ChanWoo Lee 23 1.00% 2 2.47%
Andreas Koop 18 0.78% 1 1.23%
Konstantin Dorfman 18 0.78% 1 1.23%
Vincent Whitchurch 17 0.74% 2 2.47%
Peter Collingbourne 14 0.61% 1 1.23%
Sarthak Garg 14 0.61% 1 1.23%
Eric Biggers 12 0.52% 1 1.23%
Luca Porzio 10 0.44% 1 1.23%
Ulf Hansson 9 0.39% 3 3.70%
Mike Snitzer 8 0.35% 1 1.23%
Greg Kroah-Hartman 7 0.31% 1 1.23%
Håvard Skinnemoen 6 0.26% 1 1.23%
Jens Axboe 5 0.22% 1 1.23%
Seungwon Jeon 4 0.17% 1 1.23%
Christian Löhle 4 0.17% 1 1.23%
Santosh Shilimkar 3 0.13% 1 1.23%
Andrew Morton 3 0.13% 1 1.23%
Bart Van Assche 2 0.09% 1 1.23%
SF Markus Elfring 2 0.09% 1 1.23%
David Brownell 2 0.09% 1 1.23%
Johan Rudholm 2 0.09% 1 1.23%
Thomas Gleixner 2 0.09% 1 1.23%
Linus Torvalds (pre-git) 2 0.09% 1 1.23%
Coly Li 1 0.04% 1 1.23%
Linus Torvalds 1 0.04% 1 1.23%
David Härdeman 1 0.04% 1 1.23%
Venkatraman Sathiyamoorthy 1 0.04% 1 1.23%
Joel Stanley 1 0.04% 1 1.23%
Colin Ian King 1 0.04% 1 1.23%
Total 2294 81


// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Copyright (C) 2003 Russell King, All Rights Reserved.
 *  Copyright 2006-2007 Pierre Ossman
 */
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/freezer.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/backing-dev.h>

#include <linux/mmc/card.h>
#include <linux/mmc/host.h>

#include "queue.h"
#include "block.h"
#include "core.h"
#include "card.h"
#include "crypto.h"
#include "host.h"

#define MMC_DMA_MAP_MERGE_SEGMENTS	512

static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
{
	/* Allow only 1 DCMD at a time */
	return mq->in_flight[MMC_ISSUE_DCMD];
}

void mmc_cqe_check_busy(struct mmc_queue *mq)
{
	if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
		mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
}

static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
{
	return host->caps2 & MMC_CAP2_CQE_DCMD;
}

static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
					      struct request *req)
{
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
		return MMC_ISSUE_SYNC;
	case REQ_OP_FLUSH:
		return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
	default:
		return MMC_ISSUE_ASYNC;
	}
}

enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
{
	struct mmc_host *host = mq->card->host;

	if (host->cqe_enabled && !host->hsq_enabled)
		return mmc_cqe_issue_type(host, req);

	if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
		return MMC_ISSUE_ASYNC;

	return MMC_ISSUE_SYNC;
}

static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
{
	if (!mq->recovery_needed) {
		mq->recovery_needed = true;
		schedule_work(&mq->recovery_work);
	}
}

void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
{
	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
						  brq.mrq);
	struct request *req = mmc_queue_req_to_req(mqrq);
	struct request_queue *q = req->q;
	struct mmc_queue *mq = q->queuedata;
	unsigned long flags;

	spin_lock_irqsave(&mq->lock, flags);
	__mmc_cqe_recovery_notifier(mq);
	spin_unlock_irqrestore(&mq->lock, flags);
}

static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
{
	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
	struct mmc_request *mrq = &mqrq->brq.mrq;
	struct mmc_queue *mq = req->q->queuedata;
	struct mmc_host *host = mq->card->host;
	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
	bool recovery_needed = false;

	switch (issue_type) {
	case MMC_ISSUE_ASYNC:
	case MMC_ISSUE_DCMD:
		if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
			if (recovery_needed)
				mmc_cqe_recovery_notifier(mrq);
			return BLK_EH_RESET_TIMER;
		}
		/* The request has gone already */
		return BLK_EH_DONE;
	default:
		/* Timeout is handled by mmc core */
		return BLK_EH_RESET_TIMER;
	}
}

static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req)
{
	struct request_queue *q = req->q;
	struct mmc_queue *mq = q->queuedata;
	struct mmc_card *card = mq->card;
	struct mmc_host *host = card->host;
	unsigned long flags;
	bool ignore_tout;

	spin_lock_irqsave(&mq->lock, flags);
	ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled;
	spin_unlock_irqrestore(&mq->lock, flags);

	return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
}

static void mmc_mq_recovery_handler(struct work_struct *work)
{
	struct mmc_queue *mq = container_of(work, struct mmc_queue,
					    recovery_work);
	struct request_queue *q = mq->queue;
	struct mmc_host *host = mq->card->host;

	mmc_get_card(mq->card, &mq->ctx);

	mq->in_recovery = true;

	if (host->cqe_enabled && !host->hsq_enabled)
		mmc_blk_cqe_recovery(mq);
	else
		mmc_blk_mq_recovery(mq);

	mq->in_recovery = false;

	spin_lock_irq(&mq->lock);
	mq->recovery_needed = false;
	spin_unlock_irq(&mq->lock);

	if (host->hsq_enabled)
		host->cqe_ops->cqe_recovery_finish(host);

	mmc_put_card(mq->card, &mq->ctx);

	blk_mq_run_hw_queues(q, true);
}

static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp)
{
	struct scatterlist *sg;

	sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
	if (sg)
		sg_init_table(sg, sg_len);

	return sg;
}

static void mmc_queue_setup_discard(struct request_queue *q,
				    struct mmc_card *card)
{
	unsigned max_discard;

	max_discard = mmc_calc_max_discard(card);
	if (!max_discard)
		return;

	blk_queue_max_discard_sectors(q, max_discard);
	q->limits.discard_granularity = card->pref_erase << 9;
	/* granularity must not be greater than max. discard */
	if (card->pref_erase > max_discard)
		q->limits.discard_granularity = SECTOR_SIZE;
	if (mmc_can_secure_erase_trim(card))
		blk_queue_max_secure_erase_sectors(q, max_discard);
	if (mmc_can_trim(card) && card->erased_byte == 0)
		blk_queue_max_write_zeroes_sectors(q, max_discard);
}

static unsigned short mmc_get_max_segments(struct mmc_host *host)
{
	return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
					 host->max_segs;
}

static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
			       unsigned int hctx_idx, unsigned int numa_node)
{
	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
	struct mmc_queue *mq = set->driver_data;
	struct mmc_card *card = mq->card;
	struct mmc_host *host = card->host;

	mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL);
	if (!mq_rq->sg)
		return -ENOMEM;

	return 0;
}

static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
				unsigned int hctx_idx)
{
	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);

	kfree(mq_rq->sg);
	mq_rq->sg = NULL;
}

static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
				    const struct blk_mq_queue_data *bd)
{
	struct request *req = bd->rq;
	struct request_queue *q = req->q;
	struct mmc_queue *mq = q->queuedata;
	struct mmc_card *card = mq->card;
	struct mmc_host *host = card->host;
	enum mmc_issue_type issue_type;
	enum mmc_issued issued;
	bool get_card, cqe_retune_ok;
	blk_status_t ret;

	if (mmc_card_removed(mq->card)) {
		req->rq_flags |= RQF_QUIET;
		return BLK_STS_IOERR;
	}

	issue_type = mmc_issue_type(mq, req);

	spin_lock_irq(&mq->lock);

	if (mq->recovery_needed || mq->busy) {
		spin_unlock_irq(&mq->lock);
		return BLK_STS_RESOURCE;
	}

	switch (issue_type) {
	case MMC_ISSUE_DCMD:
		if (mmc_cqe_dcmd_busy(mq)) {
			mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
			spin_unlock_irq(&mq->lock);
			return BLK_STS_RESOURCE;
		}
		break;
	case MMC_ISSUE_ASYNC:
		/*
		 * For MMC host software queue, we only allow 2 requests in
		 * flight to avoid a long latency.
		 */
		if (host->hsq_enabled && mq->in_flight[issue_type] > 2) {
			spin_unlock_irq(&mq->lock);
			return BLK_STS_RESOURCE;
		}
		break;
	default:
		/*
		 * Timeouts are handled by mmc core, and we don't have a host
		 * API to abort requests, so we can't handle the timeout anyway.
		 * However, when the timeout happens, blk_mq_complete_request()
		 * no longer works (to stop the request disappearing under us).
		 * To avoid racing with that, set a large timeout.
		 */
		req->timeout = 600 * HZ;
		break;
	}

	/* Parallel dispatch of requests is not supported at the moment */
	mq->busy = true;

	mq->in_flight[issue_type] += 1;
	get_card = (mmc_tot_in_flight(mq) == 1);
	cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);

	spin_unlock_irq(&mq->lock);

	if (!(req->rq_flags & RQF_DONTPREP)) {
		req_to_mmc_queue_req(req)->retries = 0;
		req->rq_flags |= RQF_DONTPREP;
	}

	if (get_card)
		mmc_get_card(card, &mq->ctx);

	if (host->cqe_enabled) {
		host->retune_now = host->need_retune && cqe_retune_ok &&
				   !host->hold_retune;
	}

	blk_mq_start_request(req);

	issued = mmc_blk_mq_issue_rq(mq, req);

	switch (issued) {
	case MMC_REQ_BUSY:
		ret = BLK_STS_RESOURCE;
		break;
	case MMC_REQ_FAILED_TO_START:
		ret = BLK_STS_IOERR;
		break;
	default:
		ret = BLK_STS_OK;
		break;
	}

	if (issued != MMC_REQ_STARTED) {
		bool put_card = false;

		spin_lock_irq(&mq->lock);
		mq->in_flight[issue_type] -= 1;
		if (mmc_tot_in_flight(mq) == 0)
			put_card = true;
		mq->busy = false;
		spin_unlock_irq(&mq->lock);
		if (put_card)
			mmc_put_card(card, &mq->ctx);
	} else {
		WRITE_ONCE(mq->busy, false);
	}

	return ret;
}

static const struct blk_mq_ops mmc_mq_ops = {
	.queue_rq	= mmc_mq_queue_rq,
	.init_request	= mmc_mq_init_request,
	.exit_request	= mmc_mq_exit_request,
	.complete	= mmc_blk_mq_complete,
	.timeout	= mmc_mq_timed_out,
};

static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card)
{
	struct mmc_host *host = card->host;
	unsigned block_size = 512;

	blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue);
	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue);
	if (mmc_can_erase(card))
		mmc_queue_setup_discard(mq->queue, card);

	if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask)
		blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH);
	blk_queue_max_hw_sectors(mq->queue,
		min(host->max_blk_count, host->max_req_size / 512));
	if (host->can_dma_map_merge)
		WARN(!blk_queue_can_use_dma_map_merging(mq->queue,
							mmc_dev(host)),
		     "merging was advertised but not possible");
	blk_queue_max_segments(mq->queue, mmc_get_max_segments(host));

	if (mmc_card_mmc(card) && card->ext_csd.data_sector_size) {
		block_size = card->ext_csd.data_sector_size;
		WARN_ON(block_size != 512 && block_size != 4096);
	}

	blk_queue_logical_block_size(mq->queue, block_size);
	/*
	 * After blk_queue_can_use_dma_map_merging() was called with succeed,
	 * since it calls blk_queue_virt_boundary(), the mmc should not call
	 * both blk_queue_max_segment_size().
	 */
	if (!host->can_dma_map_merge)
		blk_queue_max_segment_size(mq->queue,
			round_down(host->max_seg_size, block_size));

	dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));

	INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
	INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);

	mutex_init(&mq->complete_lock);

	init_waitqueue_head(&mq->wait);

	mmc_crypto_setup_queue(mq->queue, host);
}

static inline bool mmc_merge_capable(struct mmc_host *host)
{
	return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
}

/* Set queue depth to get a reasonable value for q->nr_requests */
#define MMC_QUEUE_DEPTH 64

/**
 * mmc_init_queue - initialise a queue structure.
 * @mq: mmc queue
 * @card: mmc card to attach this queue
 *
 * Initialise a MMC card request queue.
 */
struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card)
{
	struct mmc_host *host = card->host;
	struct gendisk *disk;
	int ret;

	mq->card = card;
	
	spin_lock_init(&mq->lock);

	memset(&mq->tag_set, 0, sizeof(mq->tag_set));
	mq->tag_set.ops = &mmc_mq_ops;
	/*
	 * The queue depth for CQE must match the hardware because the request
	 * tag is used to index the hardware queue.
	 */
	if (host->cqe_enabled && !host->hsq_enabled)
		mq->tag_set.queue_depth =
			min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
	else
		mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
	mq->tag_set.numa_node = NUMA_NO_NODE;
	mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
	mq->tag_set.nr_hw_queues = 1;
	mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
	mq->tag_set.driver_data = mq;

	/*
	 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
	 * the host->can_dma_map_merge should be set before to get max_segs
	 * from mmc_get_max_segments().
	 */
	if (mmc_merge_capable(host) &&
	    host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
	    dma_get_merge_boundary(mmc_dev(host)))
		host->can_dma_map_merge = 1;
	else
		host->can_dma_map_merge = 0;

	ret = blk_mq_alloc_tag_set(&mq->tag_set);
	if (ret)
		return ERR_PTR(ret);
		

	disk = blk_mq_alloc_disk(&mq->tag_set, mq);
	if (IS_ERR(disk)) {
		blk_mq_free_tag_set(&mq->tag_set);
		return disk;
	}
	mq->queue = disk->queue;

	if (mmc_host_is_spi(host) && host->use_spi_crc)
		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, mq->queue);
	blk_queue_rq_timeout(mq->queue, 60 * HZ);

	mmc_setup_queue(mq, card);
	return disk;
}

void mmc_queue_suspend(struct mmc_queue *mq)
{
	blk_mq_quiesce_queue(mq->queue);

	/*
	 * The host remains claimed while there are outstanding requests, so
	 * simply claiming and releasing here ensures there are none.
	 */
	mmc_claim_host(mq->card->host);
	mmc_release_host(mq->card->host);
}

void mmc_queue_resume(struct mmc_queue *mq)
{
	blk_mq_unquiesce_queue(mq->queue);
}

void mmc_cleanup_queue(struct mmc_queue *mq)
{
	struct request_queue *q = mq->queue;

	/*
	 * The legacy code handled the possibility of being suspended,
	 * so do that here too.
	 */
	if (blk_queue_quiesced(q))
		blk_mq_unquiesce_queue(q);

	/*
	 * If the recovery completes the last (and only remaining) request in
	 * the queue, and the card has been removed, we could end up here with
	 * the recovery not quite finished yet, so cancel it.
	 */
	cancel_work_sync(&mq->recovery_work);

	blk_mq_free_tag_set(&mq->tag_set);

	/*
	 * A request can be completed before the next request, potentially
	 * leaving a complete_work with nothing to do. Such a work item might
	 * still be queued at this point. Flush it.
	 */
	flush_work(&mq->complete_work);

	mq->card = NULL;
}

/*
 * Prepare the sg list(s) to be handed of to the host driver
 */
unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
{
	struct request *req = mmc_queue_req_to_req(mqrq);

	return blk_rq_map_sg(mq->queue, req, mqrq->sg);
}