Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Madhusudhan Chikkature | 3320 | 33.91% | 2 | 1.06% |
Balaji T K | 859 | 8.77% | 27 | 14.36% |
Andreas Fenkart | 830 | 8.48% | 12 | 6.38% |
Adrian Hunter | 806 | 8.23% | 21 | 11.17% |
Kishon Vijay Abraham I | 753 | 7.69% | 17 | 9.04% |
Russell King | 500 | 5.11% | 4 | 2.13% |
Andy Shevchenko | 472 | 4.82% | 5 | 2.66% |
Denis Karpov | 436 | 4.45% | 5 | 2.66% |
Per Forlin | 314 | 3.21% | 3 | 1.60% |
Rajendra Nayak | 242 | 2.47% | 4 | 2.13% |
Tony Lindgren | 180 | 1.84% | 8 | 4.26% |
Venkatraman Sathiyamoorthy | 141 | 1.44% | 7 | 3.72% |
Hebbar Gururaja | 90 | 0.92% | 1 | 0.53% |
Juha Yrjola | 81 | 0.83% | 1 | 0.53% |
Jarkko Lavinen | 80 | 0.82% | 7 | 3.72% |
Peter Ujfalusi | 72 | 0.74% | 2 | 1.06% |
Nishanth Menon | 68 | 0.69% | 1 | 0.53% |
Jean Pihet | 67 | 0.68% | 2 | 1.06% |
Kim Kyuwon (김규원) | 51 | 0.52% | 1 | 0.53% |
Eliad Peller | 38 | 0.39% | 2 | 1.06% |
Kuninori Morimoto | 36 | 0.37% | 1 | 0.53% |
Kevin Hilman | 28 | 0.29% | 2 | 1.06% |
Neil Brown | 26 | 0.27% | 2 | 1.06% |
David Brownell | 26 | 0.27% | 3 | 1.60% |
Felipe Balbi | 25 | 0.26% | 5 | 2.66% |
Daniel Mack | 21 | 0.21% | 3 | 1.60% |
Ulf Hansson | 18 | 0.18% | 3 | 1.60% |
Ravikumar Kattekola | 17 | 0.17% | 2 | 1.06% |
Paul Walmsley | 17 | 0.17% | 1 | 0.53% |
caihuoqing | 16 | 0.16% | 1 | 0.53% |
Kishore Kadiyala | 16 | 0.16% | 4 | 2.13% |
Jianpeng Ma | 15 | 0.15% | 1 | 0.53% |
Jan Lübbe | 13 | 0.13% | 1 | 0.53% |
Matt Porter | 12 | 0.12% | 1 | 0.53% |
Linus Walleij | 11 | 0.11% | 2 | 1.06% |
Sukumar Ghorai | 10 | 0.10% | 1 | 0.53% |
Sergey Shtylyov | 10 | 0.10% | 1 | 0.53% |
Yang Yingliang | 9 | 0.09% | 1 | 0.53% |
Li Yang | 8 | 0.08% | 1 | 0.53% |
Dan Carpenter | 7 | 0.07% | 1 | 0.53% |
Vignesh R | 6 | 0.06% | 1 | 0.53% |
Russ Dill | 5 | 0.05% | 1 | 0.53% |
Francesco Lavra | 5 | 0.05% | 1 | 0.53% |
Doug Anderson | 5 | 0.05% | 1 | 0.53% |
Yangtao Li | 4 | 0.04% | 1 | 0.53% |
Heiner Kallweit | 4 | 0.04% | 1 | 0.53% |
Rob Herring | 4 | 0.04% | 1 | 0.53% |
Chris Ball | 3 | 0.03% | 2 | 1.06% |
Seungwon Jeon | 2 | 0.02% | 1 | 0.53% |
Kefeng Wang | 2 | 0.02% | 1 | 0.53% |
Will Newton | 2 | 0.02% | 1 | 0.53% |
Arvind Yadav | 1 | 0.01% | 1 | 0.53% |
Grazvydas Ignotas | 1 | 0.01% | 1 | 0.53% |
Yong Zhang | 1 | 0.01% | 1 | 0.53% |
Andreas Kemnade | 1 | 0.01% | 1 | 0.53% |
Martin K. Petersen | 1 | 0.01% | 1 | 0.53% |
Ming Lei | 1 | 0.01% | 1 | 0.53% |
Masanari Iida | 1 | 0.01% | 1 | 0.53% |
Total | 9790 | 188 |
/* * drivers/mmc/host/omap_hsmmc.c * * Driver for OMAP2430/3430 MMC controller. * * Copyright (C) 2007 Texas Instruments. * * Authors: * Syed Mohammed Khasim <x0khasim@ti.com> * Madhusudhan <madhu.cr@ti.com> * Mohit Jalori <mjalori@ti.com> * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/debugfs.h> #include <linux/dmaengine.h> #include <linux/seq_file.h> #include <linux/sizes.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/timer.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_device.h> #include <linux/mmc/host.h> #include <linux/mmc/core.h> #include <linux/mmc/mmc.h> #include <linux/mmc/slot-gpio.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/regulator/consumer.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_runtime.h> #include <linux/pm_wakeirq.h> #include <linux/platform_data/hsmmc-omap.h> /* OMAP HSMMC Host Controller Registers */ #define OMAP_HSMMC_SYSSTATUS 0x0014 #define OMAP_HSMMC_CON 0x002C #define OMAP_HSMMC_SDMASA 0x0100 #define OMAP_HSMMC_BLK 0x0104 #define OMAP_HSMMC_ARG 0x0108 #define OMAP_HSMMC_CMD 0x010C #define OMAP_HSMMC_RSP10 0x0110 #define OMAP_HSMMC_RSP32 0x0114 #define OMAP_HSMMC_RSP54 0x0118 #define OMAP_HSMMC_RSP76 0x011C #define OMAP_HSMMC_DATA 0x0120 #define OMAP_HSMMC_PSTATE 0x0124 #define OMAP_HSMMC_HCTL 0x0128 #define OMAP_HSMMC_SYSCTL 0x012C #define OMAP_HSMMC_STAT 0x0130 #define OMAP_HSMMC_IE 0x0134 #define OMAP_HSMMC_ISE 0x0138 #define OMAP_HSMMC_AC12 0x013C #define OMAP_HSMMC_CAPA 0x0140 #define VS18 (1 << 26) #define VS30 (1 << 25) #define HSS (1 << 21) #define SDVS18 (0x5 << 9) #define SDVS30 (0x6 << 9) #define SDVS33 (0x7 << 9) #define SDVS_MASK 0x00000E00 #define SDVSCLR 0xFFFFF1FF #define SDVSDET 0x00000400 #define AUTOIDLE 0x1 #define SDBP (1 << 8) #define DTO 0xe #define ICE 0x1 #define ICS 0x2 #define CEN (1 << 2) #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */ #define CLKD_MASK 0x0000FFC0 #define CLKD_SHIFT 6 #define DTO_MASK 0x000F0000 #define DTO_SHIFT 16 #define INIT_STREAM (1 << 1) #define ACEN_ACMD23 (2 << 2) #define DP_SELECT (1 << 21) #define DDIR (1 << 4) #define DMAE 0x1 #define MSBS (1 << 5) #define BCE (1 << 1) #define FOUR_BIT (1 << 1) #define HSPE (1 << 2) #define IWE (1 << 24) #define DDR (1 << 19) #define CLKEXTFREE (1 << 16) #define CTPL (1 << 11) #define DW8 (1 << 5) #define OD 0x1 #define STAT_CLEAR 0xFFFFFFFF #define INIT_STREAM_CMD 0x00000000 #define DUAL_VOLT_OCR_BIT 7 #define SRC (1 << 25) #define SRD (1 << 26) #define SOFTRESET (1 << 1) /* PSTATE */ #define DLEV_DAT(x) (1 << (20 + (x))) /* Interrupt masks for IE and ISE register */ #define CC_EN (1 << 0) #define TC_EN (1 << 1) #define BWR_EN (1 << 4) #define BRR_EN (1 << 5) #define CIRQ_EN (1 << 8) #define ERR_EN (1 << 15) #define CTO_EN (1 << 16) #define CCRC_EN (1 << 17) #define CEB_EN (1 << 18) #define CIE_EN (1 << 19) #define DTO_EN (1 << 20) #define DCRC_EN (1 << 21) #define DEB_EN (1 << 22) #define ACE_EN (1 << 24) #define CERR_EN (1 << 28) #define BADA_EN (1 << 29) #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\ DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \ BRR_EN | BWR_EN | TC_EN | CC_EN) #define CNI (1 << 7) #define ACIE (1 << 4) #define ACEB (1 << 3) #define ACCE (1 << 2) #define ACTO (1 << 1) #define ACNE (1 << 0) #define MMC_AUTOSUSPEND_DELAY 100 #define MMC_TIMEOUT_MS 20 /* 20 mSec */ #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */ #define OMAP_MMC_MIN_CLOCK 400000 #define OMAP_MMC_MAX_CLOCK 52000000 #define DRIVER_NAME "omap_hsmmc" /* * One controller can have multiple slots, like on some omap boards using * omap.c controller driver. Luckily this is not currently done on any known * omap_hsmmc.c device. */ #define mmc_pdata(host) host->pdata /* * MMC Host controller read/write API's */ #define OMAP_HSMMC_READ(base, reg) \ __raw_readl((base) + OMAP_HSMMC_##reg) #define OMAP_HSMMC_WRITE(base, reg, val) \ __raw_writel((val), (base) + OMAP_HSMMC_##reg) struct omap_hsmmc_next { unsigned int dma_len; s32 cookie; }; struct omap_hsmmc_host { struct device *dev; struct mmc_host *mmc; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; struct clk *fclk; struct clk *dbclk; struct regulator *pbias; bool pbias_enabled; void __iomem *base; bool vqmmc_enabled; resource_size_t mapbase; spinlock_t irq_lock; /* Prevent races with irq handler */ unsigned int dma_len; unsigned int dma_sg_idx; unsigned char bus_mode; unsigned char power_mode; int suspended; u32 con; u32 hctl; u32 sysctl; u32 capa; int irq; int wake_irq; int use_dma, dma_ch; struct dma_chan *tx_chan; struct dma_chan *rx_chan; int response_busy; int context_loss; int reqs_blocked; int req_in_progress; unsigned long clk_rate; unsigned int flags; #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */ #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */ struct omap_hsmmc_next next_data; struct omap_hsmmc_platform_data *pdata; }; struct omap_mmc_of_data { u32 reg_offset; u8 controller_flags; }; static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host); static int omap_hsmmc_enable_supply(struct mmc_host *mmc) { int ret; struct omap_hsmmc_host *host = mmc_priv(mmc); struct mmc_ios *ios = &mmc->ios; if (!IS_ERR(mmc->supply.vmmc)) { ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (ret) return ret; } /* Enable interface voltage rail, if needed */ if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { ret = regulator_enable(mmc->supply.vqmmc); if (ret) { dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n"); goto err_vqmmc; } host->vqmmc_enabled = true; } return 0; err_vqmmc: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); return ret; } static int omap_hsmmc_disable_supply(struct mmc_host *mmc) { int ret; int status; struct omap_hsmmc_host *host = mmc_priv(mmc); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { ret = regulator_disable(mmc->supply.vqmmc); if (ret) { dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n"); return ret; } host->vqmmc_enabled = false; } if (!IS_ERR(mmc->supply.vmmc)) { ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (ret) goto err_set_ocr; } return 0; err_set_ocr: if (!IS_ERR(mmc->supply.vqmmc)) { status = regulator_enable(mmc->supply.vqmmc); if (status) dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n"); } return ret; } static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on) { int ret; if (IS_ERR(host->pbias)) return 0; if (power_on) { if (!host->pbias_enabled) { ret = regulator_enable(host->pbias); if (ret) { dev_err(host->dev, "pbias reg enable fail\n"); return ret; } host->pbias_enabled = true; } } else { if (host->pbias_enabled) { ret = regulator_disable(host->pbias); if (ret) { dev_err(host->dev, "pbias reg disable fail\n"); return ret; } host->pbias_enabled = false; } } return 0; } static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on) { struct mmc_host *mmc = host->mmc; int ret = 0; /* * If we don't see a Vcc regulator, assume it's a fixed * voltage always-on regulator. */ if (IS_ERR(mmc->supply.vmmc)) return 0; ret = omap_hsmmc_set_pbias(host, false); if (ret) return ret; /* * Assume Vcc regulator is used only to power the card ... OMAP * VDDS is used to power the pins, optionally with a transceiver to * support cards using voltages other than VDDS (1.8V nominal). When a * transceiver is used, DAT3..7 are muxed as transceiver control pins. * * In some cases this regulator won't support enable/disable; * e.g. it's a fixed rail for a WLAN chip. * * In other cases vcc_aux switches interface power. Example, for * eMMC cards it represents VccQ. Sometimes transceivers or SDIO * chips/cards need an interface voltage rail too. */ if (power_on) { ret = omap_hsmmc_enable_supply(mmc); if (ret) return ret; ret = omap_hsmmc_set_pbias(host, true); if (ret) goto err_set_voltage; } else { ret = omap_hsmmc_disable_supply(mmc); if (ret) return ret; } return 0; err_set_voltage: omap_hsmmc_disable_supply(mmc); return ret; } static int omap_hsmmc_disable_boot_regulator(struct regulator *reg) { int ret; if (IS_ERR(reg)) return 0; if (regulator_is_enabled(reg)) { ret = regulator_enable(reg); if (ret) return ret; ret = regulator_disable(reg); if (ret) return ret; } return 0; } static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host) { struct mmc_host *mmc = host->mmc; int ret; /* * disable regulators enabled during boot and get the usecount * right so that regulators can be enabled/disabled by checking * the return value of regulator_is_enabled */ ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc); if (ret) { dev_err(host->dev, "fail to disable boot enabled vmmc reg\n"); return ret; } ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc); if (ret) { dev_err(host->dev, "fail to disable boot enabled vmmc_aux reg\n"); return ret; } ret = omap_hsmmc_disable_boot_regulator(host->pbias); if (ret) { dev_err(host->dev, "failed to disable boot enabled pbias reg\n"); return ret; } return 0; } static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) { int ret; struct mmc_host *mmc = host->mmc; ret = mmc_regulator_get_supply(mmc); if (ret) return ret; /* Allow an aux regulator */ if (IS_ERR(mmc->supply.vqmmc)) { mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux"); if (IS_ERR(mmc->supply.vqmmc)) { ret = PTR_ERR(mmc->supply.vqmmc); if ((ret != -ENODEV) && host->dev->of_node) return ret; dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n", PTR_ERR(mmc->supply.vqmmc)); } } host->pbias = devm_regulator_get_optional(host->dev, "pbias"); if (IS_ERR(host->pbias)) { ret = PTR_ERR(host->pbias); if ((ret != -ENODEV) && host->dev->of_node) { dev_err(host->dev, "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n"); return ret; } dev_dbg(host->dev, "unable to get pbias regulator %ld\n", PTR_ERR(host->pbias)); } /* For eMMC do not power off when not in sleep state */ if (mmc_pdata(host)->no_regulator_off_init) return 0; ret = omap_hsmmc_disable_boot_regulators(host); if (ret) return ret; return 0; } /* * Start clock to the card */ static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host) { OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | CEN); } /* * Stop clock to the card */ static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host) { OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN); if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0) dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n"); } static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host, struct mmc_command *cmd) { u32 irq_mask = INT_EN_MASK; unsigned long flags; if (host->use_dma) irq_mask &= ~(BRR_EN | BWR_EN); /* Disable timeout for erases */ if (cmd->opcode == MMC_ERASE) irq_mask &= ~DTO_EN; spin_lock_irqsave(&host->irq_lock, flags); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); /* latch pending CIRQ, but don't signal MMC core */ if (host->flags & HSMMC_SDIO_IRQ_ENABLED) irq_mask |= CIRQ_EN; OMAP_HSMMC_WRITE(host->base, IE, irq_mask); spin_unlock_irqrestore(&host->irq_lock, flags); } static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host) { u32 irq_mask = 0; unsigned long flags; spin_lock_irqsave(&host->irq_lock, flags); /* no transfer running but need to keep cirq if enabled */ if (host->flags & HSMMC_SDIO_IRQ_ENABLED) irq_mask |= CIRQ_EN; OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); OMAP_HSMMC_WRITE(host->base, IE, irq_mask); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); spin_unlock_irqrestore(&host->irq_lock, flags); } /* Calculate divisor for the given clock frequency */ static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios) { u16 dsor = 0; if (ios->clock) { dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock); if (dsor > CLKD_MAX) dsor = CLKD_MAX; } return dsor; } static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host) { struct mmc_ios *ios = &host->mmc->ios; unsigned long regval; unsigned long timeout; unsigned long clkdiv; dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock); omap_hsmmc_stop_clock(host); regval = OMAP_HSMMC_READ(host->base, SYSCTL); regval = regval & ~(CLKD_MASK | DTO_MASK); clkdiv = calc_divisor(host, ios); regval = regval | (clkdiv << 6) | (DTO << 16); OMAP_HSMMC_WRITE(host->base, SYSCTL, regval); OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | ICE); /* Wait till the ICS bit is set */ timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS && time_before(jiffies, timeout)) cpu_relax(); /* * Enable High-Speed Support * Pre-Requisites * - Controller should support High-Speed-Enable Bit * - Controller should not be using DDR Mode * - Controller should advertise that it supports High Speed * in capabilities register * - MMC/SD clock coming out of controller > 25MHz */ if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) && (ios->timing != MMC_TIMING_MMC_DDR52) && (ios->timing != MMC_TIMING_UHS_DDR50) && ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) { regval = OMAP_HSMMC_READ(host->base, HCTL); if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000) regval |= HSPE; else regval &= ~HSPE; OMAP_HSMMC_WRITE(host->base, HCTL, regval); } omap_hsmmc_start_clock(host); } static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host) { struct mmc_ios *ios = &host->mmc->ios; u32 con; con = OMAP_HSMMC_READ(host->base, CON); if (ios->timing == MMC_TIMING_MMC_DDR52 || ios->timing == MMC_TIMING_UHS_DDR50) con |= DDR; /* configure in DDR mode */ else con &= ~DDR; switch (ios->bus_width) { case MMC_BUS_WIDTH_8: OMAP_HSMMC_WRITE(host->base, CON, con | DW8); break; case MMC_BUS_WIDTH_4: OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT); break; case MMC_BUS_WIDTH_1: OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT); break; } } static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host) { struct mmc_ios *ios = &host->mmc->ios; u32 con; con = OMAP_HSMMC_READ(host->base, CON); if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) OMAP_HSMMC_WRITE(host->base, CON, con | OD); else OMAP_HSMMC_WRITE(host->base, CON, con & ~OD); } #ifdef CONFIG_PM /* * Restore the MMC host context, if it was lost as result of a * power state change. */ static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) { struct mmc_ios *ios = &host->mmc->ios; u32 hctl, capa; unsigned long timeout; if (host->con == OMAP_HSMMC_READ(host->base, CON) && host->hctl == OMAP_HSMMC_READ(host->base, HCTL) && host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) && host->capa == OMAP_HSMMC_READ(host->base, CAPA)) return 0; host->context_loss++; if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { if (host->power_mode != MMC_POWER_OFF && (1 << ios->vdd) <= MMC_VDD_23_24) hctl = SDVS18; else hctl = SDVS30; capa = VS30 | VS18; } else { hctl = SDVS18; capa = VS18; } if (host->mmc->caps & MMC_CAP_SDIO_IRQ) hctl |= IWE; OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | hctl); OMAP_HSMMC_WRITE(host->base, CAPA, OMAP_HSMMC_READ(host->base, CAPA) | capa); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | SDBP); timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP && time_before(jiffies, timeout)) ; OMAP_HSMMC_WRITE(host->base, ISE, 0); OMAP_HSMMC_WRITE(host->base, IE, 0); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); /* Do not initialize card-specific things if the power is off */ if (host->power_mode == MMC_POWER_OFF) goto out; omap_hsmmc_set_bus_width(host); omap_hsmmc_set_clock(host); omap_hsmmc_set_bus_mode(host); out: dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n", host->context_loss); return 0; } /* * Save the MMC host context (store the number of power state changes so far). */ static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) { host->con = OMAP_HSMMC_READ(host->base, CON); host->hctl = OMAP_HSMMC_READ(host->base, HCTL); host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL); host->capa = OMAP_HSMMC_READ(host->base, CAPA); } #else static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) { } #endif /* * Send init stream sequence to card * before sending IDLE command */ static void send_init_stream(struct omap_hsmmc_host *host) { int reg = 0; unsigned long timeout; disable_irq(host->irq); OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); OMAP_HSMMC_WRITE(host->base, CON, OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM); OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD); timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); while ((reg != CC_EN) && time_before(jiffies, timeout)) reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN; OMAP_HSMMC_WRITE(host->base, CON, OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_READ(host->base, STAT); enable_irq(host->irq); } static ssize_t omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); struct omap_hsmmc_host *host = mmc_priv(mmc); return sprintf(buf, "%s\n", mmc_pdata(host)->name); } static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL); /* * Configure the response type and send the cmd. */ static void omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd, struct mmc_data *data) { int cmdreg = 0, resptype = 0, cmdtype = 0; dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n", mmc_hostname(host->mmc), cmd->opcode, cmd->arg); host->cmd = cmd; omap_hsmmc_enable_irq(host, cmd); host->response_busy = 0; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) resptype = 1; else if (cmd->flags & MMC_RSP_BUSY) { resptype = 3; host->response_busy = 1; } else resptype = 2; } /* * Unlike OMAP1 controller, the cmdtype does not seem to be based on * ac, bc, adtc, bcr. Only commands ending an open ended transfer need * a val of 0x3, rest 0x0. */ if (cmd == host->mrq->stop) cmdtype = 0x3; cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22); if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) && host->mrq->sbc) { cmdreg |= ACEN_ACMD23; OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg); } if (data) { cmdreg |= DP_SELECT | MSBS | BCE; if (data->flags & MMC_DATA_READ) cmdreg |= DDIR; else cmdreg &= ~(DDIR); } if (host->use_dma) cmdreg |= DMAE; host->req_in_progress = 1; OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg); OMAP_HSMMC_WRITE(host->base, CMD, cmdreg); } static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host, struct mmc_data *data) { return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan; } static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq) { int dma_ch; unsigned long flags; spin_lock_irqsave(&host->irq_lock, flags); host->req_in_progress = 0; dma_ch = host->dma_ch; spin_unlock_irqrestore(&host->irq_lock, flags); omap_hsmmc_disable_irq(host); /* Do not complete the request if DMA is still in progress */ if (mrq->data && host->use_dma && dma_ch != -1) return; host->mrq = NULL; mmc_request_done(host->mmc, mrq); } /* * Notify the transfer complete to MMC core */ static void omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data) { if (!data) { struct mmc_request *mrq = host->mrq; /* TC before CC from CMD6 - don't know why, but it happens */ if (host->cmd && host->cmd->opcode == 6 && host->response_busy) { host->response_busy = 0; return; } omap_hsmmc_request_done(host, mrq); return; } host->data = NULL; if (!data->error) data->bytes_xfered += data->blocks * (data->blksz); else data->bytes_xfered = 0; if (data->stop && (data->error || !host->mrq->sbc)) omap_hsmmc_start_command(host, data->stop, NULL); else omap_hsmmc_request_done(host, data->mrq); } /* * Notify the core about command completion */ static void omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd) { if (host->mrq->sbc && (host->cmd == host->mrq->sbc) && !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) { host->cmd = NULL; omap_hsmmc_start_dma_transfer(host); omap_hsmmc_start_command(host, host->mrq->cmd, host->mrq->data); return; } host->cmd = NULL; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { /* response type 2 */ cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10); cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32); cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54); cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76); } else { /* response types 1, 1b, 3, 4, 5, 6 */ cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10); } } if ((host->data == NULL && !host->response_busy) || cmd->error) omap_hsmmc_request_done(host, host->mrq); } /* * DMA clean up for command errors */ static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno) { int dma_ch; unsigned long flags; host->data->error = errno; spin_lock_irqsave(&host->irq_lock, flags); dma_ch = host->dma_ch; host->dma_ch = -1; spin_unlock_irqrestore(&host->irq_lock, flags); if (host->use_dma && dma_ch != -1) { struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data); dmaengine_terminate_all(chan); dma_unmap_sg(chan->device->dev, host->data->sg, host->data->sg_len, mmc_get_dma_dir(host->data)); host->data->host_cookie = 0; } host->data = NULL; } /* * Readable error output */ #ifdef CONFIG_MMC_DEBUG static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status) { /* --- means reserved bit without definition at documentation */ static const char *omap_hsmmc_status_bits[] = { "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" , "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI", "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" , "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---" }; char res[256]; char *buf = res; int len, i; len = sprintf(buf, "MMC IRQ 0x%x :", status); buf += len; for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++) if (status & (1 << i)) { len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]); buf += len; } dev_vdbg(mmc_dev(host->mmc), "%s\n", res); } #else static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status) { } #endif /* CONFIG_MMC_DEBUG */ /* * MMC controller internal state machines reset * * Used to reset command or data internal state machines, using respectively * SRC or SRD bit of SYSCTL register * Can be called from interrupt context */ static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host, unsigned long bit) { unsigned long i = 0; unsigned long limit = MMC_TIMEOUT_US; OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | bit); /* * OMAP4 ES2 and greater has an updated reset logic. * Monitor a 0->1 transition first */ if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) { while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit)) && (i++ < limit)) udelay(1); } i = 0; while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) && (i++ < limit)) udelay(1); if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit) dev_err(mmc_dev(host->mmc), "Timeout waiting on controller reset in %s\n", __func__); } static void hsmmc_command_incomplete(struct omap_hsmmc_host *host, int err, int end_cmd) { if (end_cmd) { omap_hsmmc_reset_controller_fsm(host, SRC); if (host->cmd) host->cmd->error = err; } if (host->data) { omap_hsmmc_reset_controller_fsm(host, SRD); omap_hsmmc_dma_cleanup(host, err); } else if (host->mrq && host->mrq->cmd) host->mrq->cmd->error = err; } static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status) { struct mmc_data *data; int end_cmd = 0, end_trans = 0; int error = 0; data = host->data; dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status); if (status & ERR_EN) { omap_hsmmc_dbg_report_irq(host, status); if (status & (CTO_EN | CCRC_EN | CEB_EN)) end_cmd = 1; if (host->data || host->response_busy) { end_trans = !end_cmd; host->response_busy = 0; } if (status & (CTO_EN | DTO_EN)) hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd); else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN | BADA_EN)) hsmmc_command_incomplete(host, -EILSEQ, end_cmd); if (status & ACE_EN) { u32 ac12; ac12 = OMAP_HSMMC_READ(host->base, AC12); if (!(ac12 & ACNE) && host->mrq->sbc) { end_cmd = 1; if (ac12 & ACTO) error = -ETIMEDOUT; else if (ac12 & (ACCE | ACEB | ACIE)) error = -EILSEQ; host->mrq->sbc->error = error; hsmmc_command_incomplete(host, error, end_cmd); } dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12); } } OMAP_HSMMC_WRITE(host->base, STAT, status); if (end_cmd || ((status & CC_EN) && host->cmd)) omap_hsmmc_cmd_done(host, host->cmd); if ((end_trans || (status & TC_EN)) && host->mrq) omap_hsmmc_xfer_done(host, data); } /* * MMC controller IRQ handler */ static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id) { struct omap_hsmmc_host *host = dev_id; int status; status = OMAP_HSMMC_READ(host->base, STAT); while (status & (INT_EN_MASK | CIRQ_EN)) { if (host->req_in_progress) omap_hsmmc_do_irq(host, status); if (status & CIRQ_EN) mmc_signal_sdio_irq(host->mmc); /* Flush posted write */ status = OMAP_HSMMC_READ(host->base, STAT); } return IRQ_HANDLED; } static void set_sd_bus_power(struct omap_hsmmc_host *host) { unsigned long i; OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | SDBP); for (i = 0; i < loops_per_jiffy; i++) { if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP) break; cpu_relax(); } } /* * Switch MMC interface voltage ... only relevant for MMC1. * * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver. * The MMC2 transceiver controls are used instead of DAT4..DAT7. * Some chips, like eMMC ones, use internal transceivers. */ static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd) { u32 reg_val = 0; int ret; /* Disable the clocks */ clk_disable_unprepare(host->dbclk); /* Turn the power off */ ret = omap_hsmmc_set_power(host, 0); /* Turn the power ON with given VDD 1.8 or 3.0v */ if (!ret) ret = omap_hsmmc_set_power(host, 1); clk_prepare_enable(host->dbclk); if (ret != 0) goto err; OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); reg_val = OMAP_HSMMC_READ(host->base, HCTL); /* * If a MMC dual voltage card is detected, the set_ios fn calls * this fn with VDD bit set for 1.8V. Upon card removal from the * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF. * * Cope with a bit of slop in the range ... per data sheets: * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max, * but recommended values are 1.71V to 1.89V * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max, * but recommended values are 2.7V to 3.3V * * Board setup code shouldn't permit anything very out-of-range. * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the * middle range) but VSIM can't power DAT4..DAT7 at more than 3V. */ if ((1 << vdd) <= MMC_VDD_23_24) reg_val |= SDVS18; else reg_val |= SDVS30; OMAP_HSMMC_WRITE(host->base, HCTL, reg_val); set_sd_bus_power(host); return 0; err: dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n"); return ret; } static void omap_hsmmc_dma_callback(void *param) { struct omap_hsmmc_host *host = param; struct dma_chan *chan; struct mmc_data *data; int req_in_progress; spin_lock_irq(&host->irq_lock); if (host->dma_ch < 0) { spin_unlock_irq(&host->irq_lock); return; } data = host->mrq->data; chan = omap_hsmmc_get_dma_chan(host, data); if (!data->host_cookie) dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); req_in_progress = host->req_in_progress; host->dma_ch = -1; spin_unlock_irq(&host->irq_lock); /* If DMA has finished after TC, complete the request */ if (!req_in_progress) { struct mmc_request *mrq = host->mrq; host->mrq = NULL; mmc_request_done(host->mmc, mrq); } } static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host, struct mmc_data *data, struct omap_hsmmc_next *next, struct dma_chan *chan) { int dma_len; if (!next && data->host_cookie && data->host_cookie != host->next_data.cookie) { dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d" " host->next_data.cookie %d\n", __func__, data->host_cookie, host->next_data.cookie); data->host_cookie = 0; } /* Check if next job is already prepared */ if (next || data->host_cookie != host->next_data.cookie) { dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } else { dma_len = host->next_data.dma_len; host->next_data.dma_len = 0; } if (dma_len == 0) return -EINVAL; if (next) { next->dma_len = dma_len; data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie; } else host->dma_len = dma_len; return 0; } /* * Routine to configure and start DMA for the MMC card */ static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host, struct mmc_request *req) { struct dma_async_tx_descriptor *tx; int ret = 0, i; struct mmc_data *data = req->data; struct dma_chan *chan; struct dma_slave_config cfg = { .src_addr = host->mapbase + OMAP_HSMMC_DATA, .dst_addr = host->mapbase + OMAP_HSMMC_DATA, .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .src_maxburst = data->blksz / 4, .dst_maxburst = data->blksz / 4, }; /* Sanity check: all the SG entries must be aligned by block size. */ for (i = 0; i < data->sg_len; i++) { struct scatterlist *sgl; sgl = data->sg + i; if (sgl->length % data->blksz) return -EINVAL; } if ((data->blksz % 4) != 0) /* REVISIT: The MMC buffer increments only when MSB is written. * Return error for blksz which is non multiple of four. */ return -EINVAL; BUG_ON(host->dma_ch != -1); chan = omap_hsmmc_get_dma_chan(host, data); ret = dmaengine_slave_config(chan, &cfg); if (ret) return ret; ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan); if (ret) return ret; tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx) { dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n"); /* FIXME: cleanup */ return -1; } tx->callback = omap_hsmmc_dma_callback; tx->callback_param = host; /* Does not fail */ dmaengine_submit(tx); host->dma_ch = 1; return 0; } static void set_data_timeout(struct omap_hsmmc_host *host, unsigned long long timeout_ns, unsigned int timeout_clks) { unsigned long long timeout = timeout_ns; unsigned int cycle_ns; uint32_t reg, clkd, dto = 0; reg = OMAP_HSMMC_READ(host->base, SYSCTL); clkd = (reg & CLKD_MASK) >> CLKD_SHIFT; if (clkd == 0) clkd = 1; cycle_ns = 1000000000 / (host->clk_rate / clkd); do_div(timeout, cycle_ns); timeout += timeout_clks; if (timeout) { while ((timeout & 0x80000000) == 0) { dto += 1; timeout <<= 1; } dto = 31 - dto; timeout <<= 1; if (timeout && dto) dto += 1; if (dto >= 13) dto -= 13; else dto = 0; if (dto > 14) dto = 14; } reg &= ~DTO_MASK; reg |= dto << DTO_SHIFT; OMAP_HSMMC_WRITE(host->base, SYSCTL, reg); } static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host) { struct mmc_request *req = host->mrq; struct dma_chan *chan; if (!req->data) return; OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz) | (req->data->blocks << 16)); set_data_timeout(host, req->data->timeout_ns, req->data->timeout_clks); chan = omap_hsmmc_get_dma_chan(host, req->data); dma_async_issue_pending(chan); } /* * Configure block length for MMC/SD cards and initiate the transfer. */ static int omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req) { int ret; unsigned long long timeout; host->data = req->data; if (req->data == NULL) { OMAP_HSMMC_WRITE(host->base, BLK, 0); if (req->cmd->flags & MMC_RSP_BUSY) { timeout = req->cmd->busy_timeout * NSEC_PER_MSEC; /* * Set an arbitrary 100ms data timeout for commands with * busy signal and no indication of busy_timeout. */ if (!timeout) timeout = 100000000U; set_data_timeout(host, timeout, 0); } return 0; } if (host->use_dma) { ret = omap_hsmmc_setup_dma_transfer(host, req); if (ret != 0) { dev_err(mmc_dev(host->mmc), "MMC start dma failure\n"); return ret; } } return 0; } static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct omap_hsmmc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (host->use_dma && data->host_cookie) { struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data); dma_unmap_sg(c->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); data->host_cookie = 0; } } static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct omap_hsmmc_host *host = mmc_priv(mmc); if (mrq->data->host_cookie) { mrq->data->host_cookie = 0; return ; } if (host->use_dma) { struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data); if (omap_hsmmc_pre_dma_transfer(host, mrq->data, &host->next_data, c)) mrq->data->host_cookie = 0; } } /* * Request function. for read/write operation */ static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req) { struct omap_hsmmc_host *host = mmc_priv(mmc); int err; BUG_ON(host->req_in_progress); BUG_ON(host->dma_ch != -1); if (host->reqs_blocked) host->reqs_blocked = 0; WARN_ON(host->mrq != NULL); host->mrq = req; host->clk_rate = clk_get_rate(host->fclk); err = omap_hsmmc_prepare_data(host, req); if (err) { req->cmd->error = err; if (req->data) req->data->error = err; host->mrq = NULL; mmc_request_done(mmc, req); return; } if (req->sbc && !(host->flags & AUTO_CMD23)) { omap_hsmmc_start_command(host, req->sbc, NULL); return; } omap_hsmmc_start_dma_transfer(host); omap_hsmmc_start_command(host, req->cmd, req->data); } /* Routine to configure clock values. Exposed API to core */ static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct omap_hsmmc_host *host = mmc_priv(mmc); int do_send_init_stream = 0; if (ios->power_mode != host->power_mode) { switch (ios->power_mode) { case MMC_POWER_OFF: omap_hsmmc_set_power(host, 0); break; case MMC_POWER_UP: omap_hsmmc_set_power(host, 1); break; case MMC_POWER_ON: do_send_init_stream = 1; break; } host->power_mode = ios->power_mode; } /* FIXME: set registers based only on changes to ios */ omap_hsmmc_set_bus_width(host); if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { /* Only MMC1 can interface at 3V without some flavor * of external transceiver; but they all handle 1.8V. */ if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) && (ios->vdd == DUAL_VOLT_OCR_BIT)) { /* * The mmc_select_voltage fn of the core does * not seem to set the power_mode to * MMC_POWER_UP upon recalculating the voltage. * vdd 1.8v. */ if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0) dev_dbg(mmc_dev(host->mmc), "Switch operation failed\n"); } } omap_hsmmc_set_clock(host); if (do_send_init_stream) send_init_stream(host); omap_hsmmc_set_bus_mode(host); } static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct omap_hsmmc_host *host = mmc_priv(mmc); u32 irq_mask, con; unsigned long flags; spin_lock_irqsave(&host->irq_lock, flags); con = OMAP_HSMMC_READ(host->base, CON); irq_mask = OMAP_HSMMC_READ(host->base, ISE); if (enable) { host->flags |= HSMMC_SDIO_IRQ_ENABLED; irq_mask |= CIRQ_EN; con |= CTPL | CLKEXTFREE; } else { host->flags &= ~HSMMC_SDIO_IRQ_ENABLED; irq_mask &= ~CIRQ_EN; con &= ~(CTPL | CLKEXTFREE); } OMAP_HSMMC_WRITE(host->base, CON, con); OMAP_HSMMC_WRITE(host->base, IE, irq_mask); /* * if enable, piggy back detection on current request * but always disable immediately */ if (!host->req_in_progress || !enable) OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); /* flush posted write */ OMAP_HSMMC_READ(host->base, IE); spin_unlock_irqrestore(&host->irq_lock, flags); } static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host) { int ret; /* * For omaps with wake-up path, wakeirq will be irq from pinctrl and * for other omaps, wakeirq will be from GPIO (dat line remuxed to * gpio). wakeirq is needed to detect sdio irq in runtime suspend state * with functional clock disabled. */ if (!host->dev->of_node || !host->wake_irq) return -ENODEV; ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq); if (ret) { dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n"); goto err; } /* * Some omaps don't have wake-up path from deeper idle states * and need to remux SDIO DAT1 to GPIO for wake-up from idle. */ if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) { struct pinctrl *p = devm_pinctrl_get(host->dev); if (IS_ERR(p)) { ret = PTR_ERR(p); goto err_free_irq; } if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) { dev_info(host->dev, "missing idle pinctrl state\n"); devm_pinctrl_put(p); ret = -EINVAL; goto err_free_irq; } devm_pinctrl_put(p); } OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | IWE); return 0; err_free_irq: dev_pm_clear_wake_irq(host->dev); err: dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n"); host->wake_irq = 0; return ret; } static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host) { u32 hctl, capa, value; /* Only MMC1 supports 3.0V */ if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { hctl = SDVS30; capa = VS30 | VS18; } else { hctl = SDVS18; capa = VS18; } value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK; OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl); value = OMAP_HSMMC_READ(host->base, CAPA); OMAP_HSMMC_WRITE(host->base, CAPA, value | capa); /* Set SD bus power bit */ set_sd_bus_power(host); } static int omap_hsmmc_multi_io_quirk(struct mmc_card *card, unsigned int direction, int blk_size) { /* This controller can't do multiblock reads due to hw bugs */ if (direction == MMC_DATA_READ) return 1; return blk_size; } static struct mmc_host_ops omap_hsmmc_ops = { .post_req = omap_hsmmc_post_req, .pre_req = omap_hsmmc_pre_req, .request = omap_hsmmc_request, .set_ios = omap_hsmmc_set_ios, .get_cd = mmc_gpio_get_cd, .get_ro = mmc_gpio_get_ro, .enable_sdio_irq = omap_hsmmc_enable_sdio_irq, }; #ifdef CONFIG_DEBUG_FS static int mmc_regs_show(struct seq_file *s, void *data) { struct mmc_host *mmc = s->private; struct omap_hsmmc_host *host = mmc_priv(mmc); seq_printf(s, "mmc%d:\n", mmc->index); seq_printf(s, "sdio irq mode\t%s\n", (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling"); if (mmc->caps & MMC_CAP_SDIO_IRQ) { seq_printf(s, "sdio irq \t%s\n", (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled" : "disabled"); } seq_printf(s, "ctx_loss:\t%d\n", host->context_loss); pm_runtime_get_sync(host->dev); seq_puts(s, "\nregs:\n"); seq_printf(s, "CON:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, CON)); seq_printf(s, "PSTATE:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, PSTATE)); seq_printf(s, "HCTL:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, HCTL)); seq_printf(s, "SYSCTL:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, SYSCTL)); seq_printf(s, "IE:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, IE)); seq_printf(s, "ISE:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, ISE)); seq_printf(s, "CAPA:\t\t0x%08x\n", OMAP_HSMMC_READ(host->base, CAPA)); pm_runtime_mark_last_busy(host->dev); pm_runtime_put_autosuspend(host->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(mmc_regs); static void omap_hsmmc_debugfs(struct mmc_host *mmc) { if (mmc->debugfs_root) debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root, mmc, &mmc_regs_fops); } #else static void omap_hsmmc_debugfs(struct mmc_host *mmc) { } #endif #ifdef CONFIG_OF static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = { /* See 35xx errata 2.1.1.128 in SPRZ278F */ .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ, }; static const struct omap_mmc_of_data omap4_mmc_of_data = { .reg_offset = 0x100, }; static const struct omap_mmc_of_data am33xx_mmc_of_data = { .reg_offset = 0x100, .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING, }; static const struct of_device_id omap_mmc_of_match[] = { { .compatible = "ti,omap2-hsmmc", }, { .compatible = "ti,omap3-pre-es3-hsmmc", .data = &omap3_pre_es3_mmc_of_data, }, { .compatible = "ti,omap3-hsmmc", }, { .compatible = "ti,omap4-hsmmc", .data = &omap4_mmc_of_data, }, { .compatible = "ti,am33xx-hsmmc", .data = &am33xx_mmc_of_data, }, {}, }; MODULE_DEVICE_TABLE(of, omap_mmc_of_match); static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev) { struct omap_hsmmc_platform_data *pdata, *legacy; struct device_node *np = dev->of_node; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); /* out of memory */ legacy = dev_get_platdata(dev); if (legacy && legacy->name) pdata->name = legacy->name; if (of_property_read_bool(np, "ti,dual-volt")) pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT; if (of_property_read_bool(np, "ti,non-removable")) { pdata->nonremovable = true; pdata->no_regulator_off_init = true; } if (of_property_read_bool(np, "ti,needs-special-reset")) pdata->features |= HSMMC_HAS_UPDATED_RESET; if (of_property_read_bool(np, "ti,needs-special-hs-handling")) pdata->features |= HSMMC_HAS_HSPE_SUPPORT; return pdata; } #else static inline struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev) { return ERR_PTR(-EINVAL); } #endif static int omap_hsmmc_probe(struct platform_device *pdev) { struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data; struct mmc_host *mmc; struct omap_hsmmc_host *host = NULL; struct resource *res; int ret, irq; const struct of_device_id *match; const struct omap_mmc_of_data *data; void __iomem *base; match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev); if (match) { pdata = of_get_hsmmc_pdata(&pdev->dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); if (match->data) { data = match->data; pdata->reg_offset = data->reg_offset; pdata->controller_flags |= data->controller_flags; } } if (pdata == NULL) { dev_err(&pdev->dev, "Platform Data is missing\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto err; } ret = mmc_of_parse(mmc); if (ret) goto err1; host = mmc_priv(mmc); host->mmc = mmc; host->pdata = pdata; host->dev = &pdev->dev; host->use_dma = 1; host->dma_ch = -1; host->irq = irq; host->mapbase = res->start + pdata->reg_offset; host->base = base + pdata->reg_offset; host->power_mode = MMC_POWER_OFF; host->next_data.cookie = 1; host->pbias_enabled = false; host->vqmmc_enabled = false; platform_set_drvdata(pdev, host); if (pdev->dev.of_node) host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1); mmc->ops = &omap_hsmmc_ops; mmc->f_min = OMAP_MMC_MIN_CLOCK; if (pdata->max_freq > 0) mmc->f_max = pdata->max_freq; else if (mmc->f_max == 0) mmc->f_max = OMAP_MMC_MAX_CLOCK; spin_lock_init(&host->irq_lock); host->fclk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(host->fclk)) { ret = PTR_ERR(host->fclk); host->fclk = NULL; goto err1; } if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) { dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n"); omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk; } device_init_wakeup(&pdev->dev, true); pm_runtime_enable(host->dev); pm_runtime_get_sync(host->dev); pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(host->dev); omap_hsmmc_context_save(host); host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck"); /* * MMC can still work without debounce clock. */ if (IS_ERR(host->dbclk)) { host->dbclk = NULL; } else if (clk_prepare_enable(host->dbclk) != 0) { dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n"); host->dbclk = NULL; } /* Set this to a value that allows allocating an entire descriptor * list within a page (zero order allocation). */ mmc->max_segs = 64; mmc->max_blk_size = 512; /* Block Length at max can be 1024 */ mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */ mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23; mmc->caps |= mmc_pdata(host)->caps; if (mmc->caps & MMC_CAP_8_BIT_DATA) mmc->caps |= MMC_CAP_4_BIT_DATA; if (mmc_pdata(host)->nonremovable) mmc->caps |= MMC_CAP_NONREMOVABLE; mmc->pm_caps |= mmc_pdata(host)->pm_caps; omap_hsmmc_conf_bus_power(host); host->rx_chan = dma_request_chan(&pdev->dev, "rx"); if (IS_ERR(host->rx_chan)) { dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n"); ret = PTR_ERR(host->rx_chan); goto err_irq; } host->tx_chan = dma_request_chan(&pdev->dev, "tx"); if (IS_ERR(host->tx_chan)) { dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n"); ret = PTR_ERR(host->tx_chan); goto err_irq; } /* * Limit the maximum segment size to the lower of the request size * and the DMA engine device segment size limits. In reality, with * 32-bit transfers, the DMA engine can do longer segments than this * but there is no way to represent that in the DMA model - if we * increase this figure here, we get warnings from the DMA API debug. */ mmc->max_seg_size = min3(mmc->max_req_size, dma_get_max_seg_size(host->rx_chan->device->dev), dma_get_max_seg_size(host->tx_chan->device->dev)); /* Request IRQ for MMC operations */ ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0, mmc_hostname(mmc), host); if (ret) { dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n"); goto err_irq; } ret = omap_hsmmc_reg_get(host); if (ret) goto err_irq; if (!mmc->ocr_avail) mmc->ocr_avail = mmc_pdata(host)->ocr_mask; omap_hsmmc_disable_irq(host); /* * For now, only support SDIO interrupt if we have a separate * wake-up interrupt configured from device tree. This is because * the wake-up interrupt is needed for idle state and some * platforms need special quirks. And we don't want to add new * legacy mux platform init code callbacks any longer as we * are moving to DT based booting anyways. */ ret = omap_hsmmc_configure_wake_irq(host); if (!ret) mmc->caps |= MMC_CAP_SDIO_IRQ; ret = mmc_add_host(mmc); if (ret) goto err_irq; if (mmc_pdata(host)->name != NULL) { ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name); if (ret < 0) goto err_slot_name; } omap_hsmmc_debugfs(mmc); pm_runtime_mark_last_busy(host->dev); pm_runtime_put_autosuspend(host->dev); return 0; err_slot_name: mmc_remove_host(mmc); err_irq: device_init_wakeup(&pdev->dev, false); if (!IS_ERR_OR_NULL(host->tx_chan)) dma_release_channel(host->tx_chan); if (!IS_ERR_OR_NULL(host->rx_chan)) dma_release_channel(host->rx_chan); pm_runtime_dont_use_autosuspend(host->dev); pm_runtime_put_sync(host->dev); pm_runtime_disable(host->dev); clk_disable_unprepare(host->dbclk); err1: mmc_free_host(mmc); err: return ret; } static int omap_hsmmc_remove(struct platform_device *pdev) { struct omap_hsmmc_host *host = platform_get_drvdata(pdev); pm_runtime_get_sync(host->dev); mmc_remove_host(host->mmc); dma_release_channel(host->tx_chan); dma_release_channel(host->rx_chan); dev_pm_clear_wake_irq(host->dev); pm_runtime_dont_use_autosuspend(host->dev); pm_runtime_put_sync(host->dev); pm_runtime_disable(host->dev); device_init_wakeup(&pdev->dev, false); clk_disable_unprepare(host->dbclk); mmc_free_host(host->mmc); return 0; } #ifdef CONFIG_PM_SLEEP static int omap_hsmmc_suspend(struct device *dev) { struct omap_hsmmc_host *host = dev_get_drvdata(dev); if (!host) return 0; pm_runtime_get_sync(host->dev); if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) { OMAP_HSMMC_WRITE(host->base, ISE, 0); OMAP_HSMMC_WRITE(host->base, IE, 0); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP); } clk_disable_unprepare(host->dbclk); pm_runtime_put_sync(host->dev); return 0; } /* Routine to resume the MMC device */ static int omap_hsmmc_resume(struct device *dev) { struct omap_hsmmc_host *host = dev_get_drvdata(dev); if (!host) return 0; pm_runtime_get_sync(host->dev); clk_prepare_enable(host->dbclk); if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) omap_hsmmc_conf_bus_power(host); pm_runtime_mark_last_busy(host->dev); pm_runtime_put_autosuspend(host->dev); return 0; } #endif #ifdef CONFIG_PM static int omap_hsmmc_runtime_suspend(struct device *dev) { struct omap_hsmmc_host *host; unsigned long flags; int ret = 0; host = dev_get_drvdata(dev); omap_hsmmc_context_save(host); dev_dbg(dev, "disabled\n"); spin_lock_irqsave(&host->irq_lock, flags); if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { /* disable sdio irq handling to prevent race */ OMAP_HSMMC_WRITE(host->base, ISE, 0); OMAP_HSMMC_WRITE(host->base, IE, 0); if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) { /* * dat1 line low, pending sdio irq * race condition: possible irq handler running on * multi-core, abort */ dev_dbg(dev, "pending sdio irq, abort suspend\n"); OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); pm_runtime_mark_last_busy(dev); ret = -EBUSY; goto abort; } pinctrl_pm_select_idle_state(dev); } else { pinctrl_pm_select_idle_state(dev); } abort: spin_unlock_irqrestore(&host->irq_lock, flags); return ret; } static int omap_hsmmc_runtime_resume(struct device *dev) { struct omap_hsmmc_host *host; unsigned long flags; host = dev_get_drvdata(dev); omap_hsmmc_context_restore(host); dev_dbg(dev, "enabled\n"); spin_lock_irqsave(&host->irq_lock, flags); if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { pinctrl_select_default_state(host->dev); /* irq lost, if pinmux incorrect */ OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); } else { pinctrl_select_default_state(host->dev); } spin_unlock_irqrestore(&host->irq_lock, flags); return 0; } #endif static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume) SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL) }; static struct platform_driver omap_hsmmc_driver = { .probe = omap_hsmmc_probe, .remove = omap_hsmmc_remove, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = &omap_hsmmc_dev_pm_ops, .of_match_table = of_match_ptr(omap_mmc_of_match), }, }; module_platform_driver(omap_hsmmc_driver); MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Texas Instruments Inc");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1