Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sowjanya Komatineni | 2660 | 32.45% | 12 | 11.01% |
Aapo Vienamo | 1794 | 21.89% | 20 | 18.35% |
Olof Johansson | 768 | 9.37% | 1 | 0.92% |
Lucas Stach | 526 | 6.42% | 6 | 5.50% |
Stephen Warren | 377 | 4.60% | 4 | 3.67% |
Thierry Reding | 319 | 3.89% | 7 | 6.42% |
pshete | 243 | 2.96% | 5 | 4.59% |
Dmitry Osipenko | 229 | 2.79% | 3 | 2.75% |
Aniruddha Tvs Rao | 186 | 2.27% | 2 | 1.83% |
Shawn Guo | 171 | 2.09% | 1 | 0.92% |
Pavan Kunapuli | 159 | 1.94% | 2 | 1.83% |
Nicolin Chen | 134 | 1.63% | 1 | 0.92% |
JiSheng Zhang | 116 | 1.42% | 2 | 1.83% |
Andrew Bresticker | 76 | 0.93% | 2 | 1.83% |
Rhyland Klein | 72 | 0.88% | 2 | 1.83% |
Grant C. Likely | 63 | 0.77% | 1 | 0.92% |
Jon Hunter | 61 | 0.74% | 2 | 1.83% |
Russell King | 41 | 0.50% | 4 | 3.67% |
Kevin Hao | 36 | 0.44% | 1 | 0.92% |
Richard Röjfors | 31 | 0.38% | 1 | 0.92% |
Mylène Josserand | 30 | 0.37% | 1 | 0.92% |
Simon Baatz | 12 | 0.15% | 1 | 0.92% |
Joseph Lo | 11 | 0.13% | 2 | 1.83% |
Lars-Peter Clausen | 11 | 0.13% | 2 | 1.83% |
Ulf Hansson | 9 | 0.11% | 2 | 1.83% |
Wolfram Sang | 8 | 0.10% | 2 | 1.83% |
Krzysztof Kozlowski | 6 | 0.07% | 1 | 0.92% |
Manuel Lauss | 5 | 0.06% | 1 | 0.92% |
Doug Anderson | 5 | 0.06% | 1 | 0.92% |
Stefan Agner | 5 | 0.06% | 2 | 1.83% |
Michał Mirosław | 5 | 0.06% | 2 | 1.83% |
ChanWoo Lee | 4 | 0.05% | 1 | 0.92% |
Brian Norris | 4 | 0.05% | 1 | 0.92% |
Anton Vorontsov | 3 | 0.04% | 1 | 0.92% |
Dan Carpenter | 3 | 0.04% | 1 | 0.92% |
Bean Huo | 3 | 0.04% | 1 | 0.92% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.92% |
Paul Gortmaker | 2 | 0.02% | 1 | 0.92% |
Axel Lin | 1 | 0.01% | 1 | 0.92% |
Philipp Zabel | 1 | 0.01% | 1 | 0.92% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.92% |
Christian Daudt | 1 | 0.01% | 1 | 0.92% |
Prashant Gaikwad | 1 | 0.01% | 1 | 0.92% |
Yue haibing | 1 | 0.01% | 1 | 0.92% |
Total | 8196 | 109 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Google, Inc. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iommu.h> #include <linux/iopoll.h> #include <linux/ktime.h> #include <linux/mmc/card.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/slot-gpio.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <soc/tegra/common.h> #include "sdhci-cqhci.h" #include "sdhci-pltfm.h" #include "cqhci.h" /* Tegra SDHOST controller vendor register definitions */ #define SDHCI_TEGRA_VENDOR_CLOCK_CTRL 0x100 #define SDHCI_CLOCK_CTRL_TAP_MASK 0x00ff0000 #define SDHCI_CLOCK_CTRL_TAP_SHIFT 16 #define SDHCI_CLOCK_CTRL_TRIM_MASK 0x1f000000 #define SDHCI_CLOCK_CTRL_TRIM_SHIFT 24 #define SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE BIT(5) #define SDHCI_CLOCK_CTRL_PADPIPE_CLKEN_OVERRIDE BIT(3) #define SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE BIT(2) #define SDHCI_TEGRA_VENDOR_SYS_SW_CTRL 0x104 #define SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE BIT(31) #define SDHCI_TEGRA_VENDOR_CAP_OVERRIDES 0x10c #define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK 0x00003f00 #define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT 8 #define SDHCI_TEGRA_VENDOR_MISC_CTRL 0x120 #define SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT BIT(0) #define SDHCI_MISC_CTRL_ENABLE_SDR104 0x8 #define SDHCI_MISC_CTRL_ENABLE_SDR50 0x10 #define SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 0x20 #define SDHCI_MISC_CTRL_ENABLE_DDR50 0x200 #define SDHCI_TEGRA_VENDOR_DLLCAL_CFG 0x1b0 #define SDHCI_TEGRA_DLLCAL_CALIBRATE BIT(31) #define SDHCI_TEGRA_VENDOR_DLLCAL_STA 0x1bc #define SDHCI_TEGRA_DLLCAL_STA_ACTIVE BIT(31) #define SDHCI_VNDR_TUN_CTRL0_0 0x1c0 #define SDHCI_VNDR_TUN_CTRL0_TUN_HW_TAP 0x20000 #define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK 0x03fc0000 #define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT 18 #define SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK 0x00001fc0 #define SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT 6 #define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK 0x000e000 #define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT 13 #define TRIES_128 2 #define TRIES_256 4 #define SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK 0x7 #define SDHCI_TEGRA_VNDR_TUN_CTRL1_0 0x1c4 #define SDHCI_TEGRA_VNDR_TUN_STATUS0 0x1C8 #define SDHCI_TEGRA_VNDR_TUN_STATUS1 0x1CC #define SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK 0xFF #define SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT 0x8 #define TUNING_WORD_BIT_SIZE 32 #define SDHCI_TEGRA_AUTO_CAL_CONFIG 0x1e4 #define SDHCI_AUTO_CAL_START BIT(31) #define SDHCI_AUTO_CAL_ENABLE BIT(29) #define SDHCI_AUTO_CAL_PDPU_OFFSET_MASK 0x0000ffff #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL 0x1e0 #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK 0x0000000f #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL 0x7 #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD BIT(31) #define SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK 0x07FFF000 #define SDHCI_TEGRA_AUTO_CAL_STATUS 0x1ec #define SDHCI_TEGRA_AUTO_CAL_ACTIVE BIT(31) #define SDHCI_TEGRA_CIF2AXI_CTRL_0 0x1fc #define NVQUIRK_FORCE_SDHCI_SPEC_200 BIT(0) #define NVQUIRK_ENABLE_BLOCK_GAP_DET BIT(1) #define NVQUIRK_ENABLE_SDHCI_SPEC_300 BIT(2) #define NVQUIRK_ENABLE_SDR50 BIT(3) #define NVQUIRK_ENABLE_SDR104 BIT(4) #define NVQUIRK_ENABLE_DDR50 BIT(5) /* * HAS_PADCALIB NVQUIRK is for SoC's supporting auto calibration of pads * drive strength. */ #define NVQUIRK_HAS_PADCALIB BIT(6) /* * NEEDS_PAD_CONTROL NVQUIRK is for SoC's having separate 3V3 and 1V8 pads. * 3V3/1V8 pad selection happens through pinctrl state selection depending * on the signaling mode. */ #define NVQUIRK_NEEDS_PAD_CONTROL BIT(7) #define NVQUIRK_DIS_CARD_CLK_CONFIG_TAP BIT(8) #define NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING BIT(9) /* * NVQUIRK_HAS_TMCLK is for SoC's having separate timeout clock for Tegra * SDMMC hardware data timeout. */ #define NVQUIRK_HAS_TMCLK BIT(10) #define NVQUIRK_HAS_ANDROID_GPT_SECTOR BIT(11) #define NVQUIRK_PROGRAM_STREAMID BIT(12) /* SDMMC CQE Base Address for Tegra Host Ver 4.1 and Higher */ #define SDHCI_TEGRA_CQE_BASE_ADDR 0xF000 #define SDHCI_TEGRA_CQE_TRNS_MODE (SDHCI_TRNS_MULTI | \ SDHCI_TRNS_BLK_CNT_EN | \ SDHCI_TRNS_DMA) struct sdhci_tegra_soc_data { const struct sdhci_pltfm_data *pdata; u64 dma_mask; u32 nvquirks; u8 min_tap_delay; u8 max_tap_delay; }; /* Magic pull up and pull down pad calibration offsets */ struct sdhci_tegra_autocal_offsets { u32 pull_up_3v3; u32 pull_down_3v3; u32 pull_up_3v3_timeout; u32 pull_down_3v3_timeout; u32 pull_up_1v8; u32 pull_down_1v8; u32 pull_up_1v8_timeout; u32 pull_down_1v8_timeout; u32 pull_up_sdr104; u32 pull_down_sdr104; u32 pull_up_hs400; u32 pull_down_hs400; }; struct sdhci_tegra { const struct sdhci_tegra_soc_data *soc_data; struct gpio_desc *power_gpio; struct clk *tmclk; bool ddr_signaling; bool pad_calib_required; bool pad_control_available; struct reset_control *rst; struct pinctrl *pinctrl_sdmmc; struct pinctrl_state *pinctrl_state_3v3; struct pinctrl_state *pinctrl_state_1v8; struct pinctrl_state *pinctrl_state_3v3_drv; struct pinctrl_state *pinctrl_state_1v8_drv; struct sdhci_tegra_autocal_offsets autocal_offsets; ktime_t last_calib; u32 default_tap; u32 default_trim; u32 dqs_trim; bool enable_hwcq; unsigned long curr_clk_rate; u8 tuned_tap_delay; u32 stream_id; }; static u16 tegra_sdhci_readw(struct sdhci_host *host, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; if (unlikely((soc_data->nvquirks & NVQUIRK_FORCE_SDHCI_SPEC_200) && (reg == SDHCI_HOST_VERSION))) { /* Erratum: Version register is invalid in HW. */ return SDHCI_SPEC_200; } return readw(host->ioaddr + reg); } static void tegra_sdhci_writew(struct sdhci_host *host, u16 val, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); switch (reg) { case SDHCI_TRANSFER_MODE: /* * Postpone this write, we must do it together with a * command write that is down below. */ pltfm_host->xfer_mode_shadow = val; return; case SDHCI_COMMAND: writel((val << 16) | pltfm_host->xfer_mode_shadow, host->ioaddr + SDHCI_TRANSFER_MODE); return; } writew(val, host->ioaddr + reg); } static void tegra_sdhci_writel(struct sdhci_host *host, u32 val, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; /* Seems like we're getting spurious timeout and crc errors, so * disable signalling of them. In case of real errors software * timers should take care of eventually detecting them. */ if (unlikely(reg == SDHCI_SIGNAL_ENABLE)) val &= ~(SDHCI_INT_TIMEOUT|SDHCI_INT_CRC); writel(val, host->ioaddr + reg); if (unlikely((soc_data->nvquirks & NVQUIRK_ENABLE_BLOCK_GAP_DET) && (reg == SDHCI_INT_ENABLE))) { /* Erratum: Must enable block gap interrupt detection */ u8 gap_ctrl = readb(host->ioaddr + SDHCI_BLOCK_GAP_CONTROL); if (val & SDHCI_INT_CARD_INT) gap_ctrl |= 0x8; else gap_ctrl &= ~0x8; writeb(gap_ctrl, host->ioaddr + SDHCI_BLOCK_GAP_CONTROL); } } static bool tegra_sdhci_configure_card_clk(struct sdhci_host *host, bool enable) { bool status; u32 reg; reg = sdhci_readw(host, SDHCI_CLOCK_CONTROL); status = !!(reg & SDHCI_CLOCK_CARD_EN); if (status == enable) return status; if (enable) reg |= SDHCI_CLOCK_CARD_EN; else reg &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL); return status; } static void tegra210_sdhci_writew(struct sdhci_host *host, u16 val, int reg) { bool is_tuning_cmd = 0; bool clk_enabled; if (reg == SDHCI_COMMAND) is_tuning_cmd = mmc_op_tuning(SDHCI_GET_CMD(val)); if (is_tuning_cmd) clk_enabled = tegra_sdhci_configure_card_clk(host, 0); writew(val, host->ioaddr + reg); if (is_tuning_cmd) { udelay(1); sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); tegra_sdhci_configure_card_clk(host, clk_enabled); } } static unsigned int tegra_sdhci_get_ro(struct sdhci_host *host) { /* * Write-enable shall be assumed if GPIO is missing in a board's * device-tree because SDHCI's WRITE_PROTECT bit doesn't work on * Tegra. */ return mmc_gpio_get_ro(host->mmc); } static bool tegra_sdhci_is_pad_and_regulator_valid(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int has_1v8, has_3v3; /* * The SoCs which have NVQUIRK_NEEDS_PAD_CONTROL require software pad * voltage configuration in order to perform voltage switching. This * means that valid pinctrl info is required on SDHCI instances capable * of performing voltage switching. Whether or not an SDHCI instance is * capable of voltage switching is determined based on the regulator. */ if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL)) return true; if (IS_ERR(host->mmc->supply.vqmmc)) return false; has_1v8 = regulator_is_supported_voltage(host->mmc->supply.vqmmc, 1700000, 1950000); has_3v3 = regulator_is_supported_voltage(host->mmc->supply.vqmmc, 2700000, 3600000); if (has_1v8 == 1 && has_3v3 == 1) return tegra_host->pad_control_available; /* Fixed voltage, no pad control required. */ return true; } static void tegra_sdhci_set_tap(struct sdhci_host *host, unsigned int tap) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; bool card_clk_enabled = false; u32 reg; /* * Touching the tap values is a bit tricky on some SoC generations. * The quirk enables a workaround for a glitch that sometimes occurs if * the tap values are changed. */ if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP) card_clk_enabled = tegra_sdhci_configure_card_clk(host, false); reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); reg &= ~SDHCI_CLOCK_CTRL_TAP_MASK; reg |= tap << SDHCI_CLOCK_CTRL_TAP_SHIFT; sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP && card_clk_enabled) { udelay(1); sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); tegra_sdhci_configure_card_clk(host, card_clk_enabled); } } static void tegra_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; u32 misc_ctrl, clk_ctrl, pad_ctrl; sdhci_and_cqhci_reset(host, mask); if (!(mask & SDHCI_RESET_ALL)) return; tegra_sdhci_set_tap(host, tegra_host->default_tap); misc_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL); clk_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); misc_ctrl &= ~(SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 | SDHCI_MISC_CTRL_ENABLE_SDR50 | SDHCI_MISC_CTRL_ENABLE_DDR50 | SDHCI_MISC_CTRL_ENABLE_SDR104); clk_ctrl &= ~(SDHCI_CLOCK_CTRL_TRIM_MASK | SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE); if (tegra_sdhci_is_pad_and_regulator_valid(host)) { /* Erratum: Enable SDHCI spec v3.00 support */ if (soc_data->nvquirks & NVQUIRK_ENABLE_SDHCI_SPEC_300) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300; /* Advertise UHS modes as supported by host */ if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR50; if (soc_data->nvquirks & NVQUIRK_ENABLE_DDR50) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_DDR50; if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR104) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR104; if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50) clk_ctrl |= SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE; } clk_ctrl |= tegra_host->default_trim << SDHCI_CLOCK_CTRL_TRIM_SHIFT; sdhci_writel(host, misc_ctrl, SDHCI_TEGRA_VENDOR_MISC_CTRL); sdhci_writel(host, clk_ctrl, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) { pad_ctrl = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); pad_ctrl &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK; pad_ctrl |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL; sdhci_writel(host, pad_ctrl, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); tegra_host->pad_calib_required = true; } tegra_host->ddr_signaling = false; } static void tegra_sdhci_configure_cal_pad(struct sdhci_host *host, bool enable) { u32 val; /* * Enable or disable the additional I/O pad used by the drive strength * calibration process. */ val = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); if (enable) val |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD; else val &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD; sdhci_writel(host, val, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); if (enable) usleep_range(1, 2); } static void tegra_sdhci_set_pad_autocal_offset(struct sdhci_host *host, u16 pdpu) { u32 reg; reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg &= ~SDHCI_AUTO_CAL_PDPU_OFFSET_MASK; reg |= pdpu; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); } static int tegra_sdhci_set_padctrl(struct sdhci_host *host, int voltage, bool state_drvupdn) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct sdhci_tegra_autocal_offsets *offsets = &tegra_host->autocal_offsets; struct pinctrl_state *pinctrl_drvupdn = NULL; int ret = 0; u8 drvup = 0, drvdn = 0; u32 reg; if (!state_drvupdn) { /* PADS Drive Strength */ if (voltage == MMC_SIGNAL_VOLTAGE_180) { if (tegra_host->pinctrl_state_1v8_drv) { pinctrl_drvupdn = tegra_host->pinctrl_state_1v8_drv; } else { drvup = offsets->pull_up_1v8_timeout; drvdn = offsets->pull_down_1v8_timeout; } } else { if (tegra_host->pinctrl_state_3v3_drv) { pinctrl_drvupdn = tegra_host->pinctrl_state_3v3_drv; } else { drvup = offsets->pull_up_3v3_timeout; drvdn = offsets->pull_down_3v3_timeout; } } if (pinctrl_drvupdn != NULL) { ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc, pinctrl_drvupdn); if (ret < 0) dev_err(mmc_dev(host->mmc), "failed pads drvupdn, ret: %d\n", ret); } else if ((drvup) || (drvdn)) { reg = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); reg &= ~SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK; reg |= (drvup << 20) | (drvdn << 12); sdhci_writel(host, reg, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); } } else { /* Dual Voltage PADS Voltage selection */ if (!tegra_host->pad_control_available) return 0; if (voltage == MMC_SIGNAL_VOLTAGE_180) { ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc, tegra_host->pinctrl_state_1v8); if (ret < 0) dev_err(mmc_dev(host->mmc), "setting 1.8V failed, ret: %d\n", ret); } else { ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc, tegra_host->pinctrl_state_3v3); if (ret < 0) dev_err(mmc_dev(host->mmc), "setting 3.3V failed, ret: %d\n", ret); } } return ret; } static void tegra_sdhci_pad_autocalib(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct sdhci_tegra_autocal_offsets offsets = tegra_host->autocal_offsets; struct mmc_ios *ios = &host->mmc->ios; bool card_clk_enabled; u16 pdpu; u32 reg; int ret; switch (ios->timing) { case MMC_TIMING_UHS_SDR104: pdpu = offsets.pull_down_sdr104 << 8 | offsets.pull_up_sdr104; break; case MMC_TIMING_MMC_HS400: pdpu = offsets.pull_down_hs400 << 8 | offsets.pull_up_hs400; break; default: if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) pdpu = offsets.pull_down_1v8 << 8 | offsets.pull_up_1v8; else pdpu = offsets.pull_down_3v3 << 8 | offsets.pull_up_3v3; } /* Set initial offset before auto-calibration */ tegra_sdhci_set_pad_autocal_offset(host, pdpu); card_clk_enabled = tegra_sdhci_configure_card_clk(host, false); tegra_sdhci_configure_cal_pad(host, true); reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg |= SDHCI_AUTO_CAL_ENABLE | SDHCI_AUTO_CAL_START; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); usleep_range(1, 2); /* 10 ms timeout */ ret = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_AUTO_CAL_STATUS, reg, !(reg & SDHCI_TEGRA_AUTO_CAL_ACTIVE), 1000, 10000); tegra_sdhci_configure_cal_pad(host, false); tegra_sdhci_configure_card_clk(host, card_clk_enabled); if (ret) { dev_err(mmc_dev(host->mmc), "Pad autocal timed out\n"); /* Disable automatic cal and use fixed Drive Strengths */ reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg &= ~SDHCI_AUTO_CAL_ENABLE; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, false); if (ret < 0) dev_err(mmc_dev(host->mmc), "Setting drive strengths failed: %d\n", ret); } } static void tegra_sdhci_parse_pad_autocal_dt(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct sdhci_tegra_autocal_offsets *autocal = &tegra_host->autocal_offsets; int err; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-3v3", &autocal->pull_up_3v3); if (err) autocal->pull_up_3v3 = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-3v3", &autocal->pull_down_3v3); if (err) autocal->pull_down_3v3 = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-1v8", &autocal->pull_up_1v8); if (err) autocal->pull_up_1v8 = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-1v8", &autocal->pull_down_1v8); if (err) autocal->pull_down_1v8 = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-sdr104", &autocal->pull_up_sdr104); if (err) autocal->pull_up_sdr104 = autocal->pull_up_1v8; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-sdr104", &autocal->pull_down_sdr104); if (err) autocal->pull_down_sdr104 = autocal->pull_down_1v8; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-hs400", &autocal->pull_up_hs400); if (err) autocal->pull_up_hs400 = autocal->pull_up_1v8; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-hs400", &autocal->pull_down_hs400); if (err) autocal->pull_down_hs400 = autocal->pull_down_1v8; /* * Different fail-safe drive strength values based on the signaling * voltage are applicable for SoCs supporting 3V3 and 1V8 pad controls. * So, avoid reading below device tree properties for SoCs that don't * have NVQUIRK_NEEDS_PAD_CONTROL. */ if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL)) return; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-3v3-timeout", &autocal->pull_up_3v3_timeout); if (err) { if (!IS_ERR(tegra_host->pinctrl_state_3v3) && (tegra_host->pinctrl_state_3v3_drv == NULL)) pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n", mmc_hostname(host->mmc)); autocal->pull_up_3v3_timeout = 0; } err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-3v3-timeout", &autocal->pull_down_3v3_timeout); if (err) { if (!IS_ERR(tegra_host->pinctrl_state_3v3) && (tegra_host->pinctrl_state_3v3_drv == NULL)) pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n", mmc_hostname(host->mmc)); autocal->pull_down_3v3_timeout = 0; } err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-up-offset-1v8-timeout", &autocal->pull_up_1v8_timeout); if (err) { if (!IS_ERR(tegra_host->pinctrl_state_1v8) && (tegra_host->pinctrl_state_1v8_drv == NULL)) pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n", mmc_hostname(host->mmc)); autocal->pull_up_1v8_timeout = 0; } err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,pad-autocal-pull-down-offset-1v8-timeout", &autocal->pull_down_1v8_timeout); if (err) { if (!IS_ERR(tegra_host->pinctrl_state_1v8) && (tegra_host->pinctrl_state_1v8_drv == NULL)) pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n", mmc_hostname(host->mmc)); autocal->pull_down_1v8_timeout = 0; } } static void tegra_sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); ktime_t since_calib = ktime_sub(ktime_get(), tegra_host->last_calib); /* 100 ms calibration interval is specified in the TRM */ if (ktime_to_ms(since_calib) > 100) { tegra_sdhci_pad_autocalib(host); tegra_host->last_calib = ktime_get(); } sdhci_request(mmc, mrq); } static void tegra_sdhci_parse_tap_and_trim(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int err; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-tap", &tegra_host->default_tap); if (err) tegra_host->default_tap = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-trim", &tegra_host->default_trim); if (err) tegra_host->default_trim = 0; err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,dqs-trim", &tegra_host->dqs_trim); if (err) tegra_host->dqs_trim = 0x11; } static void tegra_sdhci_parse_dt(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); if (device_property_read_bool(mmc_dev(host->mmc), "supports-cqe")) tegra_host->enable_hwcq = true; else tegra_host->enable_hwcq = false; tegra_sdhci_parse_pad_autocal_dt(host); tegra_sdhci_parse_tap_and_trim(host); } static void tegra_sdhci_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct device *dev = mmc_dev(host->mmc); unsigned long host_clk; int err; if (!clock) return sdhci_set_clock(host, clock); /* * In DDR50/52 modes the Tegra SDHCI controllers require the SDHCI * divider to be configured to divided the host clock by two. The SDHCI * clock divider is calculated as part of sdhci_set_clock() by * sdhci_calc_clk(). The divider is calculated from host->max_clk and * the requested clock rate. * * By setting the host->max_clk to clock * 2 the divider calculation * will always result in the correct value for DDR50/52 modes, * regardless of clock rate rounding, which may happen if the value * from clk_get_rate() is used. */ host_clk = tegra_host->ddr_signaling ? clock * 2 : clock; err = dev_pm_opp_set_rate(dev, host_clk); if (err) dev_err(dev, "failed to set clk rate to %luHz: %d\n", host_clk, err); tegra_host->curr_clk_rate = clk_get_rate(pltfm_host->clk); if (tegra_host->ddr_signaling) host->max_clk = host_clk; else host->max_clk = clk_get_rate(pltfm_host->clk); sdhci_set_clock(host, clock); if (tegra_host->pad_calib_required) { tegra_sdhci_pad_autocalib(host); tegra_host->pad_calib_required = false; } } static void tegra_sdhci_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u32 val; val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL); if (ios->enhanced_strobe) { val |= SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE; /* * When CMD13 is sent from mmc_select_hs400es() after * switching to HS400ES mode, the bus is operating at * either MMC_HIGH_26_MAX_DTR or MMC_HIGH_52_MAX_DTR. * To meet Tegra SDHCI requirement at HS400ES mode, force SDHCI * interface clock to MMC_HS200_MAX_DTR (200 MHz) so that host * controller CAR clock and the interface clock are rate matched. */ tegra_sdhci_set_clock(host, MMC_HS200_MAX_DTR); } else { val &= ~SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE; } sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL); } static unsigned int tegra_sdhci_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); return clk_round_rate(pltfm_host->clk, UINT_MAX); } static void tegra_sdhci_set_dqs_trim(struct sdhci_host *host, u8 trim) { u32 val; val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES); val &= ~SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK; val |= trim << SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT; sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES); } static void tegra_sdhci_hs400_dll_cal(struct sdhci_host *host) { u32 reg; int err; reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_DLLCAL_CFG); reg |= SDHCI_TEGRA_DLLCAL_CALIBRATE; sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_DLLCAL_CFG); /* 1 ms sleep, 5 ms timeout */ err = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_VENDOR_DLLCAL_STA, reg, !(reg & SDHCI_TEGRA_DLLCAL_STA_ACTIVE), 1000, 5000); if (err) dev_err(mmc_dev(host->mmc), "HS400 delay line calibration timed out\n"); } static void tegra_sdhci_tap_correction(struct sdhci_host *host, u8 thd_up, u8 thd_low, u8 fixed_tap) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); u32 val, tun_status; u8 word, bit, edge1, tap, window; bool tap_result; bool start_fail = false; bool start_pass = false; bool end_pass = false; bool first_fail = false; bool first_pass = false; u8 start_pass_tap = 0; u8 end_pass_tap = 0; u8 first_fail_tap = 0; u8 first_pass_tap = 0; u8 total_tuning_words = host->tuning_loop_count / TUNING_WORD_BIT_SIZE; /* * Read auto-tuned results and extract good valid passing window by * filtering out un-wanted bubble/partial/merged windows. */ for (word = 0; word < total_tuning_words; word++) { val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0); val &= ~SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK; val |= word; sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0); tun_status = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS0); bit = 0; while (bit < TUNING_WORD_BIT_SIZE) { tap = word * TUNING_WORD_BIT_SIZE + bit; tap_result = tun_status & (1 << bit); if (!tap_result && !start_fail) { start_fail = true; if (!first_fail) { first_fail_tap = tap; first_fail = true; } } else if (tap_result && start_fail && !start_pass) { start_pass_tap = tap; start_pass = true; if (!first_pass) { first_pass_tap = tap; first_pass = true; } } else if (!tap_result && start_fail && start_pass && !end_pass) { end_pass_tap = tap - 1; end_pass = true; } else if (tap_result && start_pass && start_fail && end_pass) { window = end_pass_tap - start_pass_tap; /* discard merged window and bubble window */ if (window >= thd_up || window < thd_low) { start_pass_tap = tap; end_pass = false; } else { /* set tap at middle of valid window */ tap = start_pass_tap + window / 2; tegra_host->tuned_tap_delay = tap; return; } } bit++; } } if (!first_fail) { WARN(1, "no edge detected, continue with hw tuned delay.\n"); } else if (first_pass) { /* set tap location at fixed tap relative to the first edge */ edge1 = first_fail_tap + (first_pass_tap - first_fail_tap) / 2; if (edge1 - 1 > fixed_tap) tegra_host->tuned_tap_delay = edge1 - fixed_tap; else tegra_host->tuned_tap_delay = edge1 + fixed_tap; } } static void tegra_sdhci_post_tuning(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; u32 avg_tap_dly, val, min_tap_dly, max_tap_dly; u8 fixed_tap, start_tap, end_tap, window_width; u8 thdupper, thdlower; u8 num_iter; u32 clk_rate_mhz, period_ps, bestcase, worstcase; /* retain HW tuned tap to use incase if no correction is needed */ val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); tegra_host->tuned_tap_delay = (val & SDHCI_CLOCK_CTRL_TAP_MASK) >> SDHCI_CLOCK_CTRL_TAP_SHIFT; if (soc_data->min_tap_delay && soc_data->max_tap_delay) { min_tap_dly = soc_data->min_tap_delay; max_tap_dly = soc_data->max_tap_delay; clk_rate_mhz = tegra_host->curr_clk_rate / USEC_PER_SEC; period_ps = USEC_PER_SEC / clk_rate_mhz; bestcase = period_ps / min_tap_dly; worstcase = period_ps / max_tap_dly; /* * Upper and Lower bound thresholds used to detect merged and * bubble windows */ thdupper = (2 * worstcase + bestcase) / 2; thdlower = worstcase / 4; /* * fixed tap is used when HW tuning result contains single edge * and tap is set at fixed tap delay relative to the first edge */ avg_tap_dly = (period_ps * 2) / (min_tap_dly + max_tap_dly); fixed_tap = avg_tap_dly / 2; val = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS1); start_tap = val & SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK; end_tap = (val >> SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT) & SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK; window_width = end_tap - start_tap; num_iter = host->tuning_loop_count; /* * partial window includes edges of the tuning range. * merged window includes more taps so window width is higher * than upper threshold. */ if (start_tap == 0 || (end_tap == (num_iter - 1)) || (end_tap == num_iter - 2) || window_width >= thdupper) { pr_debug("%s: Apply tuning correction\n", mmc_hostname(host->mmc)); tegra_sdhci_tap_correction(host, thdupper, thdlower, fixed_tap); } } tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay); } static int tegra_sdhci_execute_hw_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); int err; err = sdhci_execute_tuning(mmc, opcode); if (!err && !host->tuning_err) tegra_sdhci_post_tuning(host); return err; } static void tegra_sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); bool set_default_tap = false; bool set_dqs_trim = false; bool do_hs400_dll_cal = false; u8 iter = TRIES_256; u32 val; tegra_host->ddr_signaling = false; switch (timing) { case MMC_TIMING_UHS_SDR50: break; case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* Don't set default tap on tunable modes. */ iter = TRIES_128; break; case MMC_TIMING_MMC_HS400: set_dqs_trim = true; do_hs400_dll_cal = true; iter = TRIES_128; break; case MMC_TIMING_MMC_DDR52: case MMC_TIMING_UHS_DDR50: tegra_host->ddr_signaling = true; set_default_tap = true; break; default: set_default_tap = true; break; } val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0); val &= ~(SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK | SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK | SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK); val |= (iter << SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT | 0 << SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT | 1 << SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT); sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0); sdhci_writel(host, 0, SDHCI_TEGRA_VNDR_TUN_CTRL1_0); host->tuning_loop_count = (iter == TRIES_128) ? 128 : 256; sdhci_set_uhs_signaling(host, timing); tegra_sdhci_pad_autocalib(host); if (tegra_host->tuned_tap_delay && !set_default_tap) tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay); else tegra_sdhci_set_tap(host, tegra_host->default_tap); if (set_dqs_trim) tegra_sdhci_set_dqs_trim(host, tegra_host->dqs_trim); if (do_hs400_dll_cal) tegra_sdhci_hs400_dll_cal(host); } static int tegra_sdhci_execute_tuning(struct sdhci_host *host, u32 opcode) { unsigned int min, max; /* * Start search for minimum tap value at 10, as smaller values are * may wrongly be reported as working but fail at higher speeds, * according to the TRM. */ min = 10; while (min < 255) { tegra_sdhci_set_tap(host, min); if (!mmc_send_tuning(host->mmc, opcode, NULL)) break; min++; } /* Find the maximum tap value that still passes. */ max = min + 1; while (max < 255) { tegra_sdhci_set_tap(host, max); if (mmc_send_tuning(host->mmc, opcode, NULL)) { max--; break; } max++; } /* The TRM states the ideal tap value is at 75% in the passing range. */ tegra_sdhci_set_tap(host, min + ((max - min) * 3 / 4)); return mmc_send_tuning(host->mmc, opcode, NULL); } static int sdhci_tegra_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int ret = 0; if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) { ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true); if (ret < 0) return ret; ret = sdhci_start_signal_voltage_switch(mmc, ios); } else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) { ret = sdhci_start_signal_voltage_switch(mmc, ios); if (ret < 0) return ret; ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true); } if (tegra_host->pad_calib_required) tegra_sdhci_pad_autocalib(host); return ret; } static int tegra_sdhci_init_pinctrl_info(struct device *dev, struct sdhci_tegra *tegra_host) { tegra_host->pinctrl_sdmmc = devm_pinctrl_get(dev); if (IS_ERR(tegra_host->pinctrl_sdmmc)) { dev_dbg(dev, "No pinctrl info, err: %ld\n", PTR_ERR(tegra_host->pinctrl_sdmmc)); return -1; } tegra_host->pinctrl_state_1v8_drv = pinctrl_lookup_state( tegra_host->pinctrl_sdmmc, "sdmmc-1v8-drv"); if (IS_ERR(tegra_host->pinctrl_state_1v8_drv)) { if (PTR_ERR(tegra_host->pinctrl_state_1v8_drv) == -ENODEV) tegra_host->pinctrl_state_1v8_drv = NULL; } tegra_host->pinctrl_state_3v3_drv = pinctrl_lookup_state( tegra_host->pinctrl_sdmmc, "sdmmc-3v3-drv"); if (IS_ERR(tegra_host->pinctrl_state_3v3_drv)) { if (PTR_ERR(tegra_host->pinctrl_state_3v3_drv) == -ENODEV) tegra_host->pinctrl_state_3v3_drv = NULL; } tegra_host->pinctrl_state_3v3 = pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-3v3"); if (IS_ERR(tegra_host->pinctrl_state_3v3)) { dev_warn(dev, "Missing 3.3V pad state, err: %ld\n", PTR_ERR(tegra_host->pinctrl_state_3v3)); return -1; } tegra_host->pinctrl_state_1v8 = pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-1v8"); if (IS_ERR(tegra_host->pinctrl_state_1v8)) { dev_warn(dev, "Missing 1.8V pad state, err: %ld\n", PTR_ERR(tegra_host->pinctrl_state_1v8)); return -1; } tegra_host->pad_control_available = true; return 0; } static void tegra_sdhci_voltage_switch(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) tegra_host->pad_calib_required = true; } static void tegra_cqhci_writel(struct cqhci_host *cq_host, u32 val, int reg) { struct mmc_host *mmc = cq_host->mmc; struct sdhci_host *host = mmc_priv(mmc); u8 ctrl; ktime_t timeout; bool timed_out; /* * During CQE resume/unhalt, CQHCI driver unhalts CQE prior to * cqhci_host_ops enable where SDHCI DMA and BLOCK_SIZE registers need * to be re-configured. * Tegra CQHCI/SDHCI prevents write access to block size register when * CQE is unhalted. So handling CQE resume sequence here to configure * SDHCI block registers prior to exiting CQE halt state. */ if (reg == CQHCI_CTL && !(val & CQHCI_HALT) && cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT) { sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE); sdhci_cqe_enable(mmc); writel(val, cq_host->mmio + reg); timeout = ktime_add_us(ktime_get(), 50); while (1) { timed_out = ktime_compare(ktime_get(), timeout) > 0; ctrl = cqhci_readl(cq_host, CQHCI_CTL); if (!(ctrl & CQHCI_HALT) || timed_out) break; } /* * CQE usually resumes very quick, but incase if Tegra CQE * doesn't resume retry unhalt. */ if (timed_out) writel(val, cq_host->mmio + reg); } else { writel(val, cq_host->mmio + reg); } } static void sdhci_tegra_update_dcmd_desc(struct mmc_host *mmc, struct mmc_request *mrq, u64 *data) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(mmc_priv(mmc)); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; if (soc_data->nvquirks & NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING && mrq->cmd->flags & MMC_RSP_R1B) *data |= CQHCI_CMD_TIMING(1); } static void sdhci_tegra_cqe_enable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; struct sdhci_host *host = mmc_priv(mmc); u32 val; /* * Tegra CQHCI/SDMMC design prevents write access to sdhci block size * register when CQE is enabled and unhalted. * CQHCI driver enables CQE prior to activation, so disable CQE before * programming block size in sdhci controller and enable it back. */ if (!cq_host->activated) { val = cqhci_readl(cq_host, CQHCI_CFG); if (val & CQHCI_ENABLE) cqhci_writel(cq_host, (val & ~CQHCI_ENABLE), CQHCI_CFG); sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE); sdhci_cqe_enable(mmc); if (val & CQHCI_ENABLE) cqhci_writel(cq_host, val, CQHCI_CFG); } /* * CMD CRC errors are seen sometimes with some eMMC devices when status * command is sent during transfer of last data block which is the * default case as send status command block counter (CBC) is 1. * Recommended fix to set CBC to 0 allowing send status command only * when data lines are idle. */ val = cqhci_readl(cq_host, CQHCI_SSC1); val &= ~CQHCI_SSC1_CBC_MASK; cqhci_writel(cq_host, val, CQHCI_SSC1); } static void sdhci_tegra_dumpregs(struct mmc_host *mmc) { sdhci_dumpregs(mmc_priv(mmc)); } static u32 sdhci_tegra_cqhci_irq(struct sdhci_host *host, u32 intmask) { int cmd_error = 0; int data_error = 0; if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) return intmask; cqhci_irq(host->mmc, intmask, cmd_error, data_error); return 0; } static void tegra_sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) { u32 val; /* * HW busy detection timeout is based on programmed data timeout * counter and maximum supported timeout is 11s which may not be * enough for long operations like cache flush, sleep awake, erase. * * ERASE_TIMEOUT_LIMIT bit of VENDOR_MISC_CTRL register allows * host controller to wait for busy state until the card is busy * without HW timeout. * * So, use infinite busy wait mode for operations that may take * more than maximum HW busy timeout of 11s otherwise use finite * busy wait mode. */ val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL); if (cmd && cmd->busy_timeout >= 11 * MSEC_PER_SEC) val |= SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT; else val &= ~SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT; sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_MISC_CTRL); __sdhci_set_timeout(host, cmd); } static void sdhci_tegra_cqe_pre_enable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; u32 reg; reg = cqhci_readl(cq_host, CQHCI_CFG); reg |= CQHCI_ENABLE; cqhci_writel(cq_host, reg, CQHCI_CFG); } static void sdhci_tegra_cqe_post_disable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; struct sdhci_host *host = mmc_priv(mmc); u32 reg; reg = cqhci_readl(cq_host, CQHCI_CFG); reg &= ~CQHCI_ENABLE; cqhci_writel(cq_host, reg, CQHCI_CFG); sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE); } static const struct cqhci_host_ops sdhci_tegra_cqhci_ops = { .write_l = tegra_cqhci_writel, .enable = sdhci_tegra_cqe_enable, .disable = sdhci_cqe_disable, .dumpregs = sdhci_tegra_dumpregs, .update_dcmd_desc = sdhci_tegra_update_dcmd_desc, .pre_enable = sdhci_tegra_cqe_pre_enable, .post_disable = sdhci_tegra_cqe_post_disable, }; static int tegra_sdhci_set_dma_mask(struct sdhci_host *host) { struct sdhci_pltfm_host *platform = sdhci_priv(host); struct sdhci_tegra *tegra = sdhci_pltfm_priv(platform); const struct sdhci_tegra_soc_data *soc = tegra->soc_data; struct device *dev = mmc_dev(host->mmc); if (soc->dma_mask) return dma_set_mask_and_coherent(dev, soc->dma_mask); return 0; } static const struct sdhci_ops tegra_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_dma_mask = tegra_sdhci_set_dma_mask, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .platform_execute_tuning = tegra_sdhci_execute_tuning, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra20_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .ops = &tegra_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra20 = { .pdata = &sdhci_tegra20_pdata, .dma_mask = DMA_BIT_MASK(32), .nvquirks = NVQUIRK_FORCE_SDHCI_SPEC_200 | NVQUIRK_HAS_ANDROID_GPT_SECTOR | NVQUIRK_ENABLE_BLOCK_GAP_DET, }; static const struct sdhci_pltfm_data sdhci_tegra30_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_BROKEN_HS200 | /* * Auto-CMD23 leads to "Got command interrupt 0x00010000 even * though no command operation was in progress." * * The exact reason is unknown, as the same hardware seems * to support Auto CMD23 on a downstream 3.1 kernel. */ SDHCI_QUIRK2_ACMD23_BROKEN, .ops = &tegra_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra30 = { .pdata = &sdhci_tegra30_pdata, .dma_mask = DMA_BIT_MASK(32), .nvquirks = NVQUIRK_ENABLE_SDHCI_SPEC_300 | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_HAS_ANDROID_GPT_SECTOR | NVQUIRK_HAS_PADCALIB, }; static const struct sdhci_ops tegra114_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_w = tegra_sdhci_writew, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_dma_mask = tegra_sdhci_set_dma_mask, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .platform_execute_tuning = tegra_sdhci_execute_tuning, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra114_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &tegra114_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra114 = { .pdata = &sdhci_tegra114_pdata, .dma_mask = DMA_BIT_MASK(32), .nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR, }; static const struct sdhci_pltfm_data sdhci_tegra124_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &tegra114_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra124 = { .pdata = &sdhci_tegra124_pdata, .dma_mask = DMA_BIT_MASK(34), .nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR, }; static const struct sdhci_ops tegra210_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_w = tegra210_sdhci_writew, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_dma_mask = tegra_sdhci_set_dma_mask, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, .set_timeout = tegra_sdhci_set_timeout, }; static const struct sdhci_pltfm_data sdhci_tegra210_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &tegra210_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra210 = { .pdata = &sdhci_tegra210_pdata, .dma_mask = DMA_BIT_MASK(34), .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_HAS_TMCLK, .min_tap_delay = 106, .max_tap_delay = 185, }; static const struct sdhci_ops tegra186_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_dma_mask = tegra_sdhci_set_dma_mask, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, .irq = sdhci_tegra_cqhci_irq, .set_timeout = tegra_sdhci_set_timeout, }; static const struct sdhci_pltfm_data sdhci_tegra186_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_ISSUE_CMD_DAT_RESET_TOGETHER, .ops = &tegra186_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra186 = { .pdata = &sdhci_tegra186_pdata, .dma_mask = DMA_BIT_MASK(40), .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_HAS_TMCLK | NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING, .min_tap_delay = 84, .max_tap_delay = 136, }; static const struct sdhci_tegra_soc_data soc_data_tegra194 = { .pdata = &sdhci_tegra186_pdata, .dma_mask = DMA_BIT_MASK(39), .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_HAS_TMCLK, .min_tap_delay = 96, .max_tap_delay = 139, }; static const struct sdhci_tegra_soc_data soc_data_tegra234 = { .pdata = &sdhci_tegra186_pdata, .dma_mask = DMA_BIT_MASK(39), .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_PROGRAM_STREAMID | NVQUIRK_HAS_TMCLK, .min_tap_delay = 95, .max_tap_delay = 111, }; static const struct of_device_id sdhci_tegra_dt_match[] = { { .compatible = "nvidia,tegra234-sdhci", .data = &soc_data_tegra234 }, { .compatible = "nvidia,tegra194-sdhci", .data = &soc_data_tegra194 }, { .compatible = "nvidia,tegra186-sdhci", .data = &soc_data_tegra186 }, { .compatible = "nvidia,tegra210-sdhci", .data = &soc_data_tegra210 }, { .compatible = "nvidia,tegra124-sdhci", .data = &soc_data_tegra124 }, { .compatible = "nvidia,tegra114-sdhci", .data = &soc_data_tegra114 }, { .compatible = "nvidia,tegra30-sdhci", .data = &soc_data_tegra30 }, { .compatible = "nvidia,tegra20-sdhci", .data = &soc_data_tegra20 }, {} }; MODULE_DEVICE_TABLE(of, sdhci_tegra_dt_match); static int sdhci_tegra_add_host(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct cqhci_host *cq_host; bool dma64; int ret; if (!tegra_host->enable_hwcq) return sdhci_add_host(host); sdhci_enable_v4_mode(host); ret = sdhci_setup_host(host); if (ret) return ret; host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; cq_host = devm_kzalloc(mmc_dev(host->mmc), sizeof(*cq_host), GFP_KERNEL); if (!cq_host) { ret = -ENOMEM; goto cleanup; } cq_host->mmio = host->ioaddr + SDHCI_TEGRA_CQE_BASE_ADDR; cq_host->ops = &sdhci_tegra_cqhci_ops; dma64 = host->flags & SDHCI_USE_64_BIT_DMA; if (dma64) cq_host->caps |= CQHCI_TASK_DESC_SZ_128; ret = cqhci_init(cq_host, host->mmc, dma64); if (ret) goto cleanup; ret = __sdhci_add_host(host); if (ret) goto cleanup; return 0; cleanup: sdhci_cleanup_host(host); return ret; } /* Program MC streamID for DMA transfers */ static void sdhci_tegra_program_stream_id(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); if (tegra_host->soc_data->nvquirks & NVQUIRK_PROGRAM_STREAMID) { tegra_sdhci_writel(host, FIELD_PREP(GENMASK(15, 8), tegra_host->stream_id) | FIELD_PREP(GENMASK(7, 0), tegra_host->stream_id), SDHCI_TEGRA_CIF2AXI_CTRL_0); } } static int sdhci_tegra_probe(struct platform_device *pdev) { const struct sdhci_tegra_soc_data *soc_data; struct sdhci_host *host; struct sdhci_pltfm_host *pltfm_host; struct sdhci_tegra *tegra_host; struct clk *clk; int rc; soc_data = of_device_get_match_data(&pdev->dev); if (!soc_data) return -EINVAL; host = sdhci_pltfm_init(pdev, soc_data->pdata, sizeof(*tegra_host)); if (IS_ERR(host)) return PTR_ERR(host); pltfm_host = sdhci_priv(host); tegra_host = sdhci_pltfm_priv(pltfm_host); tegra_host->ddr_signaling = false; tegra_host->pad_calib_required = false; tegra_host->pad_control_available = false; tegra_host->soc_data = soc_data; if (soc_data->nvquirks & NVQUIRK_HAS_ANDROID_GPT_SECTOR) host->mmc->caps2 |= MMC_CAP2_ALT_GPT_TEGRA; if (soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL) { rc = tegra_sdhci_init_pinctrl_info(&pdev->dev, tegra_host); if (rc == 0) host->mmc_host_ops.start_signal_voltage_switch = sdhci_tegra_start_signal_voltage_switch; } /* Hook to periodically rerun pad calibration */ if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) host->mmc_host_ops.request = tegra_sdhci_request; host->mmc_host_ops.hs400_enhanced_strobe = tegra_sdhci_hs400_enhanced_strobe; if (!host->ops->platform_execute_tuning) host->mmc_host_ops.execute_tuning = tegra_sdhci_execute_hw_tuning; rc = mmc_of_parse(host->mmc); if (rc) goto err_parse_dt; if (tegra_host->soc_data->nvquirks & NVQUIRK_ENABLE_DDR50) host->mmc->caps |= MMC_CAP_1_8V_DDR; /* HW busy detection is supported, but R1B responses are required. */ host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; /* GPIO CD can be set as a wakeup source */ host->mmc->caps |= MMC_CAP_CD_WAKE; tegra_sdhci_parse_dt(host); if (tegra_host->soc_data->nvquirks & NVQUIRK_PROGRAM_STREAMID && !tegra_dev_iommu_get_stream_id(&pdev->dev, &tegra_host->stream_id)) { dev_warn(mmc_dev(host->mmc), "missing IOMMU stream ID\n"); tegra_host->stream_id = 0x7f; } tegra_host->power_gpio = devm_gpiod_get_optional(&pdev->dev, "power", GPIOD_OUT_HIGH); if (IS_ERR(tegra_host->power_gpio)) { rc = PTR_ERR(tegra_host->power_gpio); goto err_power_req; } /* * Tegra210 has a separate SDMMC_LEGACY_TM clock used for host * timeout clock and SW can choose TMCLK or SDCLK for hardware * data timeout through the bit USE_TMCLK_FOR_DATA_TIMEOUT of * the register SDHCI_TEGRA_VENDOR_SYS_SW_CTRL. * * USE_TMCLK_FOR_DATA_TIMEOUT bit default is set to 1 and SDMMC uses * 12Mhz TMCLK which is advertised in host capability register. * With TMCLK of 12Mhz provides maximum data timeout period that can * be achieved is 11s better than using SDCLK for data timeout. * * So, TMCLK is set to 12Mhz and kept enabled all the time on SoC's * supporting separate TMCLK. */ if (soc_data->nvquirks & NVQUIRK_HAS_TMCLK) { clk = devm_clk_get(&pdev->dev, "tmclk"); if (IS_ERR(clk)) { rc = PTR_ERR(clk); if (rc == -EPROBE_DEFER) goto err_power_req; dev_warn(&pdev->dev, "failed to get tmclk: %d\n", rc); clk = NULL; } clk_set_rate(clk, 12000000); rc = clk_prepare_enable(clk); if (rc) { dev_err(&pdev->dev, "failed to enable tmclk: %d\n", rc); goto err_power_req; } tegra_host->tmclk = clk; } clk = devm_clk_get(mmc_dev(host->mmc), NULL); if (IS_ERR(clk)) { rc = dev_err_probe(&pdev->dev, PTR_ERR(clk), "failed to get clock\n"); goto err_clk_get; } pltfm_host->clk = clk; tegra_host->rst = devm_reset_control_get_exclusive(&pdev->dev, "sdhci"); if (IS_ERR(tegra_host->rst)) { rc = PTR_ERR(tegra_host->rst); dev_err(&pdev->dev, "failed to get reset control: %d\n", rc); goto err_rst_get; } rc = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); if (rc) goto err_rst_get; pm_runtime_enable(&pdev->dev); rc = pm_runtime_resume_and_get(&pdev->dev); if (rc) goto err_pm_get; rc = reset_control_assert(tegra_host->rst); if (rc) goto err_rst_assert; usleep_range(2000, 4000); rc = reset_control_deassert(tegra_host->rst); if (rc) goto err_rst_assert; usleep_range(2000, 4000); rc = sdhci_tegra_add_host(host); if (rc) goto err_add_host; sdhci_tegra_program_stream_id(host); return 0; err_add_host: reset_control_assert(tegra_host->rst); err_rst_assert: pm_runtime_put_sync_suspend(&pdev->dev); err_pm_get: pm_runtime_disable(&pdev->dev); err_rst_get: err_clk_get: clk_disable_unprepare(tegra_host->tmclk); err_power_req: err_parse_dt: sdhci_pltfm_free(pdev); return rc; } static int sdhci_tegra_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); sdhci_remove_host(host, 0); reset_control_assert(tegra_host->rst); usleep_range(2000, 4000); pm_runtime_put_sync_suspend(&pdev->dev); pm_runtime_force_suspend(&pdev->dev); clk_disable_unprepare(tegra_host->tmclk); sdhci_pltfm_free(pdev); return 0; } static int __maybe_unused sdhci_tegra_runtime_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); clk_disable_unprepare(pltfm_host->clk); return 0; } static int __maybe_unused sdhci_tegra_runtime_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); return clk_prepare_enable(pltfm_host->clk); } #ifdef CONFIG_PM_SLEEP static int sdhci_tegra_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); int ret; if (host->mmc->caps2 & MMC_CAP2_CQE) { ret = cqhci_suspend(host->mmc); if (ret) return ret; } ret = sdhci_suspend_host(host); if (ret) { cqhci_resume(host->mmc); return ret; } ret = pm_runtime_force_suspend(dev); if (ret) { sdhci_resume_host(host); cqhci_resume(host->mmc); return ret; } return mmc_gpio_set_cd_wake(host->mmc, true); } static int sdhci_tegra_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); int ret; ret = mmc_gpio_set_cd_wake(host->mmc, false); if (ret) return ret; ret = pm_runtime_force_resume(dev); if (ret) return ret; sdhci_tegra_program_stream_id(host); ret = sdhci_resume_host(host); if (ret) goto disable_clk; if (host->mmc->caps2 & MMC_CAP2_CQE) { ret = cqhci_resume(host->mmc); if (ret) goto suspend_host; } return 0; suspend_host: sdhci_suspend_host(host); disable_clk: pm_runtime_force_suspend(dev); return ret; } #endif static const struct dev_pm_ops sdhci_tegra_dev_pm_ops = { SET_RUNTIME_PM_OPS(sdhci_tegra_runtime_suspend, sdhci_tegra_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(sdhci_tegra_suspend, sdhci_tegra_resume) }; static struct platform_driver sdhci_tegra_driver = { .driver = { .name = "sdhci-tegra", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = sdhci_tegra_dt_match, .pm = &sdhci_tegra_dev_pm_ops, }, .probe = sdhci_tegra_probe, .remove = sdhci_tegra_remove, }; module_platform_driver(sdhci_tegra_driver); MODULE_DESCRIPTION("SDHCI driver for Tegra"); MODULE_AUTHOR("Google, Inc."); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1