Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Huang | 4992 | 99.34% | 1 | 33.33% |
Wei Chen | 24 | 0.48% | 1 | 33.33% |
Harshit Mogalapalli | 9 | 0.18% | 1 | 33.33% |
Total | 5025 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) Sunplus Inc. * Author: Tony Huang <tonyhuang.sunplus@gmail.com> * Author: Li-hao Kuo <lhjeff911@gmail.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/mmc/core.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sdio.h> #include <linux/mmc/slot-gpio.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #define SPMMC_MIN_CLK 400000 #define SPMMC_MAX_CLK 52000000 #define SPMMC_MAX_BLK_COUNT 65536 #define SPMMC_MAX_TUNABLE_DLY 7 #define SPMMC_TIMEOUT_US 500000 #define SPMMC_POLL_DELAY_US 10 #define SPMMC_CARD_MEDIATYPE_SRCDST_REG 0x0000 #define SPMMC_MEDIA_TYPE GENMASK(2, 0) #define SPMMC_DMA_SOURCE GENMASK(6, 4) #define SPMMC_DMA_DESTINATION GENMASK(10, 8) #define SPMMC_MEDIA_NONE 0 #define SPMMC_MEDIA_SD 6 #define SPMMC_MEDIA_MS 7 #define SPMMC_SDRAM_SECTOR_0_SIZE_REG 0x0008 #define SPMMC_DMA_BASE_ADDR_REG 0x000C #define SPMMC_HW_DMA_CTRL_REG 0x0010 #define SPMMC_HW_DMA_RST BIT(9) #define SPMMC_DMAIDLE BIT(10) #define SPMMC_MAX_DMA_MEMORY_SECTORS 8 #define SPMMC_SDRAM_SECTOR_1_ADDR_REG 0x0018 #define SPMMC_SDRAM_SECTOR_1_LENG_REG 0x001C #define SPMMC_SDRAM_SECTOR_2_ADDR_REG 0x0020 #define SPMMC_SDRAM_SECTOR_2_LENG_REG 0x0024 #define SPMMC_SDRAM_SECTOR_3_ADDR_REG 0x0028 #define SPMMC_SDRAM_SECTOR_3_LENG_REG 0x002C #define SPMMC_SDRAM_SECTOR_4_ADDR_REG 0x0030 #define SPMMC_SDRAM_SECTOR_4_LENG_REG 0x0034 #define SPMMC_SDRAM_SECTOR_5_ADDR_REG 0x0038 #define SPMMC_SDRAM_SECTOR_5_LENG_REG 0x003C #define SPMMC_SDRAM_SECTOR_6_ADDR_REG 0x0040 #define SPMMC_SDRAM_SECTOR_6_LENG_REG 0x0044 #define SPMMC_SDRAM_SECTOR_7_ADDR_REG 0x0048 #define SPMMC_SDRAM_SECTOR_7_LENG_REG 0x004C #define SPMMC_SD_INT_REG 0x0088 #define SPMMC_SDINT_SDCMPEN BIT(0) #define SPMMC_SDINT_SDCMP BIT(1) #define SPMMC_SDINT_SDCMPCLR BIT(2) #define SPMMC_SDINT_SDIOEN BIT(3) #define SPMMC_SDINT_SDIO BIT(4) #define SPMMC_SDINT_SDIOCLR BIT(5) #define SPMMC_SD_PAGE_NUM_REG 0x008C #define SPMMC_SD_CONFIG0_REG 0x0090 #define SPMMC_SD_PIO_MODE BIT(0) #define SPMMC_SD_DDR_MODE BIT(1) #define SPMMC_SD_LEN_MODE BIT(2) #define SPMMC_SD_TRANS_MODE GENMASK(5, 4) #define SPMMC_SD_AUTO_RESPONSE BIT(6) #define SPMMC_SD_CMD_DUMMY BIT(7) #define SPMMC_SD_RSP_CHK_EN BIT(8) #define SPMMC_SDIO_MODE BIT(9) #define SPMMC_SD_MMC_MODE BIT(10) #define SPMMC_SD_DATA_WD BIT(11) #define SPMMC_RX4_EN BIT(14) #define SPMMC_SD_RSP_TYPE BIT(15) #define SPMMC_MMC8_EN BIT(18) #define SPMMC_CLOCK_DIVISION GENMASK(31, 20) #define SPMMC_SDIO_CTRL_REG 0x0094 #define SPMMC_INT_MULTI_TRIG BIT(6) #define SPMMC_SD_RST_REG 0x0098 #define SPMMC_SD_CTRL_REG 0x009C #define SPMMC_NEW_COMMAND_TRIGGER BIT(0) #define SPMMC_DUMMY_CLOCK_TRIGGER BIT(1) #define SPMMC_SD_STATUS_REG 0x00A0 #define SPMMC_SDSTATUS_DUMMY_READY BIT(0) #define SPMMC_SDSTATUS_RSP_BUF_FULL BIT(1) #define SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY BIT(2) #define SPMMC_SDSTATUS_RX_DATA_BUF_FULL BIT(3) #define SPMMC_SDSTATUS_CMD_PIN_STATUS BIT(4) #define SPMMC_SDSTATUS_DAT0_PIN_STATUS BIT(5) #define SPMMC_SDSTATUS_RSP_TIMEOUT BIT(6) #define SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT BIT(7) #define SPMMC_SDSTATUS_STB_TIMEOUT BIT(8) #define SPMMC_SDSTATUS_RSP_CRC7_ERROR BIT(9) #define SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR BIT(10) #define SPMMC_SDSTATUS_RDATA_CRC16_ERROR BIT(11) #define SPMMC_SDSTATUS_SUSPEND_STATE_READY BIT(12) #define SPMMC_SDSTATUS_BUSY_CYCLE BIT(13) #define SPMMC_SDSTATUS_DAT1_PIN_STATUS BIT(14) #define SPMMC_SDSTATUS_SD_SENSE_STATUS BIT(15) #define SPMMC_SDSTATUS_BOOT_ACK_TIMEOUT BIT(16) #define SPMMC_SDSTATUS_BOOT_DATA_TIMEOUT BIT(17) #define SPMMC_SDSTATUS_BOOT_ACK_ERROR BIT(18) #define SPMMC_SD_STATE_REG 0x00A4 #define SPMMC_CRCTOKEN_CHECK_RESULT GENMASK(6, 4) #define SPMMC_SDSTATE_ERROR BIT(13) #define SPMMC_SDSTATE_FINISH BIT(14) #define SPMMC_SD_HW_STATE_REG 0x00A8 #define SPMMC_SD_BLOCKSIZE_REG 0x00AC #define SPMMC_SD_CONFIG1_REG 0x00B0 #define SPMMC_TX_DUMMY_NUM GENMASK(8, 0) #define SPMMC_SD_HIGH_SPEED_EN BIT(31) #define SPMMC_SD_TIMING_CONFIG0_REG 0x00B4 #define SPMMC_SD_CLOCK_DELAY GENMASK(2, 0) #define SPMMC_SD_WRITE_DATA_DELAY GENMASK(6, 4) #define SPMMC_SD_WRITE_COMMAND_DELAY GENMASK(10, 8) #define SPMMC_SD_READ_RESPONSE_DELAY GENMASK(14, 12) #define SPMMC_SD_READ_DATA_DELAY GENMASK(18, 16) #define SPMMC_SD_READ_CRC_DELAY GENMASK(22, 20) #define SPMMC_SD_PIODATATX_REG 0x00BC #define SPMMC_SD_PIODATARX_REG 0x00C0 #define SPMMC_SD_CMDBUF0_3_REG 0x00C4 #define SPMMC_SD_CMDBUF4_REG 0x00C8 #define SPMMC_SD_RSPBUF0_3_REG 0x00CC #define SPMMC_SD_RSPBUF4_5_REG 0x00D0 #define SPMMC_MAX_RETRIES (8 * 8) struct spmmc_tuning_info { int enable_tuning; int need_tuning; int retried; /* how many times has been retried */ u32 rd_crc_dly:3; u32 rd_dat_dly:3; u32 rd_rsp_dly:3; u32 wr_cmd_dly:3; u32 wr_dat_dly:3; u32 clk_dly:3; }; #define SPMMC_DMA_MODE 0 #define SPMMC_PIO_MODE 1 struct spmmc_host { void __iomem *base; struct clk *clk; struct reset_control *rstc; struct mmc_host *mmc; struct mmc_request *mrq; /* current mrq */ int irq; int dmapio_mode; struct spmmc_tuning_info tuning_info; int dma_int_threshold; int dma_use_int; }; static inline int spmmc_wait_finish(struct spmmc_host *host) { u32 state; return readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, state, (state & SPMMC_SDSTATE_FINISH), SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US); } static inline int spmmc_wait_sdstatus(struct spmmc_host *host, unsigned int status_bit) { u32 status; return readl_poll_timeout(host->base + SPMMC_SD_STATUS_REG, status, (status & status_bit), SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US); } #define spmmc_wait_rspbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RSP_BUF_FULL) #define spmmc_wait_rxbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RX_DATA_BUF_FULL) #define spmmc_wait_txbuf_empty(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY) static void spmmc_get_rsp(struct spmmc_host *host, struct mmc_command *cmd) { u32 value0_3, value4_5; if (!(cmd->flags & MMC_RSP_PRESENT)) return; if (cmd->flags & MMC_RSP_136) { if (spmmc_wait_rspbuf_full(host)) return; value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG); value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff; cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8); cmd->resp[1] = value4_5 << 24; value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG); value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff; cmd->resp[1] |= value0_3 >> 8; cmd->resp[2] = value0_3 << 24; cmd->resp[2] |= value4_5 << 8; value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG); value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff; cmd->resp[2] |= value0_3 >> 24; cmd->resp[3] = value0_3 << 8; cmd->resp[3] |= value4_5 >> 8; } else { if (spmmc_wait_rspbuf_full(host)) return; value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG); value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff; cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8); cmd->resp[1] = value4_5 << 24; } } static void spmmc_set_bus_clk(struct spmmc_host *host, int clk) { unsigned int clkdiv; int f_min = host->mmc->f_min; int f_max = host->mmc->f_max; u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG); if (clk < f_min) clk = f_min; if (clk > f_max) clk = f_max; clkdiv = (clk_get_rate(host->clk) + clk) / clk - 1; if (clkdiv > 0xfff) clkdiv = 0xfff; value &= ~SPMMC_CLOCK_DIVISION; value |= FIELD_PREP(SPMMC_CLOCK_DIVISION, clkdiv); writel(value, host->base + SPMMC_SD_CONFIG0_REG); } static void spmmc_set_bus_timing(struct spmmc_host *host, unsigned int timing) { u32 value = readl(host->base + SPMMC_SD_CONFIG1_REG); int clkdiv = FIELD_GET(SPMMC_CLOCK_DIVISION, readl(host->base + SPMMC_SD_CONFIG0_REG)); int delay = clkdiv / 2 < 7 ? clkdiv / 2 : 7; int hs_en = 1, ddr_enabled = 0; switch (timing) { case MMC_TIMING_LEGACY: hs_en = 0; break; case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR50: case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: hs_en = 1; break; case MMC_TIMING_UHS_DDR50: ddr_enabled = 1; break; case MMC_TIMING_MMC_DDR52: ddr_enabled = 1; break; default: hs_en = 0; break; } if (hs_en) { value |= SPMMC_SD_HIGH_SPEED_EN; writel(value, host->base + SPMMC_SD_CONFIG1_REG); value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG); value &= ~SPMMC_SD_WRITE_DATA_DELAY; value |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY, delay); value &= ~SPMMC_SD_WRITE_COMMAND_DELAY; value |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY, delay); writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG); } else { value &= ~SPMMC_SD_HIGH_SPEED_EN; writel(value, host->base + SPMMC_SD_CONFIG1_REG); } if (ddr_enabled) { value = readl(host->base + SPMMC_SD_CONFIG0_REG); value |= SPMMC_SD_DDR_MODE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); } else { value = readl(host->base + SPMMC_SD_CONFIG0_REG); value &= ~SPMMC_SD_DDR_MODE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); } } static void spmmc_set_bus_width(struct spmmc_host *host, int width) { u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG); switch (width) { case MMC_BUS_WIDTH_8: value &= ~SPMMC_SD_DATA_WD; value |= SPMMC_MMC8_EN; break; case MMC_BUS_WIDTH_4: value |= SPMMC_SD_DATA_WD; value &= ~SPMMC_MMC8_EN; break; default: value &= ~SPMMC_SD_DATA_WD; value &= ~SPMMC_MMC8_EN; break; } writel(value, host->base + SPMMC_SD_CONFIG0_REG); } /* * select the working mode of controller: sd/sdio/emmc */ static void spmmc_set_sdmmc_mode(struct spmmc_host *host) { u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG); value |= SPMMC_SD_MMC_MODE; value &= ~SPMMC_SDIO_MODE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); } static void spmmc_sw_reset(struct spmmc_host *host) { u32 value; /* * Must reset dma operation first, or it will * be stuck on sd_state == 0x1c00 because of * a controller software reset bug */ value = readl(host->base + SPMMC_HW_DMA_CTRL_REG); value |= SPMMC_DMAIDLE; writel(value, host->base + SPMMC_HW_DMA_CTRL_REG); value &= ~SPMMC_DMAIDLE; writel(value, host->base + SPMMC_HW_DMA_CTRL_REG); value = readl(host->base + SPMMC_HW_DMA_CTRL_REG); value |= SPMMC_HW_DMA_RST; writel(value, host->base + SPMMC_HW_DMA_CTRL_REG); writel(0x7, host->base + SPMMC_SD_RST_REG); readl_poll_timeout_atomic(host->base + SPMMC_SD_HW_STATE_REG, value, !(value & BIT(6)), 1, SPMMC_TIMEOUT_US); } static void spmmc_prepare_cmd(struct spmmc_host *host, struct mmc_command *cmd) { u32 value; /* add start bit, according to spec, command format */ value = ((cmd->opcode | 0x40) << 24) | (cmd->arg >> 8); writel(value, host->base + SPMMC_SD_CMDBUF0_3_REG); writeb(cmd->arg & 0xff, host->base + SPMMC_SD_CMDBUF4_REG); /* disable interrupt if needed */ value = readl(host->base + SPMMC_SD_INT_REG); value |= SPMMC_SDINT_SDCMPCLR; value &= ~SPMMC_SDINT_SDCMPEN; writel(value, host->base + SPMMC_SD_INT_REG); value = readl(host->base + SPMMC_SD_CONFIG0_REG); value &= ~SPMMC_SD_TRANS_MODE; value |= SPMMC_SD_CMD_DUMMY; if (cmd->flags & MMC_RSP_PRESENT) { value |= SPMMC_SD_AUTO_RESPONSE; } else { value &= ~SPMMC_SD_AUTO_RESPONSE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); return; } /* * Currently, host is not capable of checking R2's CRC7, * thus, enable crc7 check only for 48 bit response commands */ if (cmd->flags & MMC_RSP_CRC && !(cmd->flags & MMC_RSP_136)) value |= SPMMC_SD_RSP_CHK_EN; else value &= ~SPMMC_SD_RSP_CHK_EN; if (cmd->flags & MMC_RSP_136) value |= SPMMC_SD_RSP_TYPE; else value &= ~SPMMC_SD_RSP_TYPE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); } static void spmmc_prepare_data(struct spmmc_host *host, struct mmc_data *data) { u32 value, srcdst; writel(data->blocks - 1, host->base + SPMMC_SD_PAGE_NUM_REG); writel(data->blksz - 1, host->base + SPMMC_SD_BLOCKSIZE_REG); value = readl(host->base + SPMMC_SD_CONFIG0_REG); if (data->flags & MMC_DATA_READ) { value &= ~SPMMC_SD_TRANS_MODE; value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 2); value &= ~SPMMC_SD_AUTO_RESPONSE; value &= ~SPMMC_SD_CMD_DUMMY; srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); srcdst &= ~SPMMC_DMA_SOURCE; srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x2); srcdst &= ~SPMMC_DMA_DESTINATION; srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x1); writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); } else { value &= ~SPMMC_SD_TRANS_MODE; value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 1); srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); srcdst &= ~SPMMC_DMA_SOURCE; srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x1); srcdst &= ~SPMMC_DMA_DESTINATION; srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x2); writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); } value |= SPMMC_SD_LEN_MODE; if (host->dmapio_mode == SPMMC_DMA_MODE) { struct scatterlist *sg; dma_addr_t dma_addr; unsigned int dma_size; int i, count = 1; count = dma_map_sg(host->mmc->parent, data->sg, data->sg_len, mmc_get_dma_dir(data)); if (!count || count > SPMMC_MAX_DMA_MEMORY_SECTORS) { data->error = -EINVAL; return; } for_each_sg(data->sg, sg, count, i) { dma_addr = sg_dma_address(sg); dma_size = sg_dma_len(sg) / data->blksz - 1; if (i == 0) { writel(dma_addr, host->base + SPMMC_DMA_BASE_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_0_SIZE_REG); } else if (i == 1) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_1_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_1_LENG_REG); } else if (i == 2) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_2_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_2_LENG_REG); } else if (i == 3) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_3_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_3_LENG_REG); } else if (i == 4) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_4_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_4_LENG_REG); } else if (i == 5) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_5_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_5_LENG_REG); } else if (i == 6) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_6_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_6_LENG_REG); } else if (i == 7) { writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_7_ADDR_REG); writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_7_LENG_REG); } } value &= ~SPMMC_SD_PIO_MODE; writel(value, host->base + SPMMC_SD_CONFIG0_REG); /* enable interrupt if needed */ if (data->blksz * data->blocks > host->dma_int_threshold) { host->dma_use_int = 1; value = readl(host->base + SPMMC_SD_INT_REG); value &= ~SPMMC_SDINT_SDCMPEN; value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 1); /* sdcmpen */ writel(value, host->base + SPMMC_SD_INT_REG); } } else { value |= SPMMC_SD_PIO_MODE; value |= SPMMC_RX4_EN; writel(value, host->base + SPMMC_SD_CONFIG0_REG); } } static inline void spmmc_trigger_transaction(struct spmmc_host *host) { u32 value = readl(host->base + SPMMC_SD_CTRL_REG); value |= SPMMC_NEW_COMMAND_TRIGGER; writel(value, host->base + SPMMC_SD_CTRL_REG); } static void spmmc_send_stop_cmd(struct spmmc_host *host) { struct mmc_command stop = {}; u32 value; stop.opcode = MMC_STOP_TRANSMISSION; stop.arg = 0; stop.flags = MMC_RSP_R1B; spmmc_prepare_cmd(host, &stop); value = readl(host->base + SPMMC_SD_INT_REG); value &= ~SPMMC_SDINT_SDCMPEN; value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 0); writel(value, host->base + SPMMC_SD_INT_REG); spmmc_trigger_transaction(host); readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, value, (value & SPMMC_SDSTATE_FINISH), 1, SPMMC_TIMEOUT_US); } static int spmmc_check_error(struct spmmc_host *host, struct mmc_request *mrq) { int ret = 0; struct mmc_command *cmd = mrq->cmd; struct mmc_data *data = mrq->data; u32 value = readl(host->base + SPMMC_SD_STATE_REG); u32 crc_token = FIELD_GET(SPMMC_CRCTOKEN_CHECK_RESULT, value); if (value & SPMMC_SDSTATE_ERROR) { u32 timing_cfg0 = 0; value = readl(host->base + SPMMC_SD_STATUS_REG); if (host->tuning_info.enable_tuning) { timing_cfg0 = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG); host->tuning_info.rd_crc_dly = FIELD_GET(SPMMC_SD_READ_CRC_DELAY, timing_cfg0); host->tuning_info.rd_dat_dly = FIELD_GET(SPMMC_SD_READ_DATA_DELAY, timing_cfg0); host->tuning_info.rd_rsp_dly = FIELD_GET(SPMMC_SD_READ_RESPONSE_DELAY, timing_cfg0); host->tuning_info.wr_cmd_dly = FIELD_GET(SPMMC_SD_WRITE_COMMAND_DELAY, timing_cfg0); host->tuning_info.wr_dat_dly = FIELD_GET(SPMMC_SD_WRITE_DATA_DELAY, timing_cfg0); } if (value & SPMMC_SDSTATUS_RSP_TIMEOUT) { ret = -ETIMEDOUT; host->tuning_info.wr_cmd_dly++; } else if (value & SPMMC_SDSTATUS_RSP_CRC7_ERROR) { ret = -EILSEQ; host->tuning_info.rd_rsp_dly++; } else if (data) { if ((value & SPMMC_SDSTATUS_STB_TIMEOUT)) { ret = -ETIMEDOUT; host->tuning_info.rd_dat_dly++; } else if (value & SPMMC_SDSTATUS_RDATA_CRC16_ERROR) { ret = -EILSEQ; host->tuning_info.rd_dat_dly++; } else if (value & SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT) { ret = -ETIMEDOUT; host->tuning_info.rd_crc_dly++; } else if (value & SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR) { ret = -EILSEQ; if (crc_token == 0x5) host->tuning_info.wr_dat_dly++; else host->tuning_info.rd_crc_dly++; } } cmd->error = ret; if (data) { data->error = ret; data->bytes_xfered = 0; } if (!host->tuning_info.need_tuning && host->tuning_info.enable_tuning) cmd->retries = SPMMC_MAX_RETRIES; spmmc_sw_reset(host); if (host->tuning_info.enable_tuning) { timing_cfg0 &= ~SPMMC_SD_READ_CRC_DELAY; timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, host->tuning_info.rd_crc_dly); timing_cfg0 &= ~SPMMC_SD_READ_DATA_DELAY; timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, host->tuning_info.rd_dat_dly); timing_cfg0 &= ~SPMMC_SD_READ_RESPONSE_DELAY; timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, host->tuning_info.rd_rsp_dly); timing_cfg0 &= ~SPMMC_SD_WRITE_COMMAND_DELAY; timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY, host->tuning_info.wr_cmd_dly); timing_cfg0 &= ~SPMMC_SD_WRITE_DATA_DELAY; timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY, host->tuning_info.wr_dat_dly); writel(timing_cfg0, host->base + SPMMC_SD_TIMING_CONFIG0_REG); } } else if (data) { data->error = 0; data->bytes_xfered = data->blocks * data->blksz; } host->tuning_info.need_tuning = ret; return ret; } /* * the strategy is: * 1. if several continuous delays are acceptable, we choose a middle one; * 2. otherwise, we choose the first one. */ static inline int spmmc_find_best_delay(u8 candidate_dly) { int f, w, value; if (!candidate_dly) return 0; f = ffs(candidate_dly) - 1; w = hweight8(candidate_dly); value = ((1 << w) - 1) << f; if (0xff == (value & ~candidate_dly)) return (f + w / 2); else return (f); } static void spmmc_xfer_data_pio(struct spmmc_host *host, struct mmc_data *data) { u32 *buf; int data_left = data->blocks * data->blksz; int consumed, remain; struct sg_mapping_iter sg_miter; unsigned int flags = 0; if (data->flags & MMC_DATA_WRITE) flags |= SG_MITER_FROM_SG; else flags |= SG_MITER_TO_SG; sg_miter_start(&sg_miter, data->sg, data->sg_len, flags); while (data_left > 0) { consumed = 0; if (!sg_miter_next(&sg_miter)) break; buf = sg_miter.addr; remain = sg_miter.length; do { if (data->flags & MMC_DATA_WRITE) { if (spmmc_wait_txbuf_empty(host)) goto done; writel(*buf, host->base + SPMMC_SD_PIODATATX_REG); } else { if (spmmc_wait_rxbuf_full(host)) goto done; *buf = readl(host->base + SPMMC_SD_PIODATARX_REG); } buf++; /* tx/rx 4 bytes one time in pio mode */ consumed += 4; remain -= 4; } while (remain); sg_miter.consumed = consumed; data_left -= consumed; } done: sg_miter_stop(&sg_miter); } static void spmmc_controller_init(struct spmmc_host *host) { u32 value; int ret = reset_control_assert(host->rstc); if (!ret) { usleep_range(1000, 1250); ret = reset_control_deassert(host->rstc); } value = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); value &= ~SPMMC_MEDIA_TYPE; value |= FIELD_PREP(SPMMC_MEDIA_TYPE, SPMMC_MEDIA_SD); writel(value, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG); } /* * 1. unmap scatterlist if needed; * 2. get response & check error conditions; * 3. notify mmc layer the request is done */ static void spmmc_finish_request(struct spmmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd; struct mmc_data *data; if (!mrq) return; cmd = mrq->cmd; data = mrq->data; if (data && SPMMC_DMA_MODE == host->dmapio_mode) { dma_unmap_sg(host->mmc->parent, data->sg, data->sg_len, mmc_get_dma_dir(data)); host->dma_use_int = 0; } spmmc_get_rsp(host, cmd); spmmc_check_error(host, mrq); if (mrq->stop) spmmc_send_stop_cmd(host); host->mrq = NULL; mmc_request_done(host->mmc, mrq); } /* Interrupt Service Routine */ static irqreturn_t spmmc_irq(int irq, void *dev_id) { struct spmmc_host *host = dev_id; u32 value = readl(host->base + SPMMC_SD_INT_REG); if ((value & SPMMC_SDINT_SDCMP) && (value & SPMMC_SDINT_SDCMPEN)) { value &= ~SPMMC_SDINT_SDCMPEN; value |= SPMMC_SDINT_SDCMPCLR; writel(value, host->base + SPMMC_SD_INT_REG); return IRQ_WAKE_THREAD; } return IRQ_HANDLED; } static void spmmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct spmmc_host *host = mmc_priv(mmc); struct mmc_data *data; struct mmc_command *cmd; host->mrq = mrq; data = mrq->data; cmd = mrq->cmd; spmmc_prepare_cmd(host, cmd); /* we need manually read response R2. */ if (cmd->flags & MMC_RSP_136) { spmmc_trigger_transaction(host); spmmc_get_rsp(host, cmd); spmmc_wait_finish(host); spmmc_check_error(host, mrq); host->mrq = NULL; mmc_request_done(host->mmc, mrq); } else { if (data) spmmc_prepare_data(host, data); if (host->dmapio_mode == SPMMC_PIO_MODE && data) { u32 value; /* pio data transfer do not use interrupt */ value = readl(host->base + SPMMC_SD_INT_REG); value &= ~SPMMC_SDINT_SDCMPEN; writel(value, host->base + SPMMC_SD_INT_REG); spmmc_trigger_transaction(host); spmmc_xfer_data_pio(host, data); spmmc_wait_finish(host); spmmc_finish_request(host, mrq); } else { if (host->dma_use_int) { spmmc_trigger_transaction(host); } else { spmmc_trigger_transaction(host); spmmc_wait_finish(host); spmmc_finish_request(host, mrq); } } } } static void spmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct spmmc_host *host = (struct spmmc_host *)mmc_priv(mmc); spmmc_set_bus_clk(host, ios->clock); spmmc_set_bus_timing(host, ios->timing); spmmc_set_bus_width(host, ios->bus_width); /* ensure mode is correct, because we might have hw reset the controller */ spmmc_set_sdmmc_mode(host); } /* * Return values for the get_cd callback should be: * 0 for a absent card * 1 for a present card * -ENOSYS when not supported (equal to NULL callback) * or a negative errno value when something bad happened */ static int spmmc_get_cd(struct mmc_host *mmc) { int ret = 0; if (mmc_can_gpio_cd(mmc)) ret = mmc_gpio_get_cd(mmc); if (ret < 0) ret = 0; return ret; } static int spmmc_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct spmmc_host *host = mmc_priv(mmc); u8 smpl_dly = 0, candidate_dly = 0; u32 value; host->tuning_info.enable_tuning = 0; do { value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG); value &= ~SPMMC_SD_READ_RESPONSE_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly); value &= ~SPMMC_SD_READ_DATA_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly); value &= ~SPMMC_SD_READ_CRC_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly); writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG); if (!mmc_send_tuning(mmc, opcode, NULL)) { candidate_dly |= (1 << smpl_dly); break; } } while (smpl_dly++ <= SPMMC_MAX_TUNABLE_DLY); host->tuning_info.enable_tuning = 1; if (candidate_dly) { smpl_dly = spmmc_find_best_delay(candidate_dly); value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG); value &= ~SPMMC_SD_READ_RESPONSE_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly); value &= ~SPMMC_SD_READ_DATA_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly); value &= ~SPMMC_SD_READ_CRC_DELAY; value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly); writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG); return 0; } return -EIO; } static const struct mmc_host_ops spmmc_ops = { .request = spmmc_request, .set_ios = spmmc_set_ios, .get_cd = spmmc_get_cd, .execute_tuning = spmmc_execute_tuning, }; static irqreturn_t spmmc_func_finish_req(int irq, void *dev_id) { struct spmmc_host *host = dev_id; spmmc_finish_request(host, host->mrq); return IRQ_HANDLED; } static int spmmc_drv_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct resource *res; struct spmmc_host *host; int ret = 0; mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct spmmc_host)); if (!mmc) return -ENOMEM; host = mmc_priv(mmc); host->mmc = mmc; host->dmapio_mode = SPMMC_DMA_MODE; host->dma_int_threshold = 1024; host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(host->base)) return PTR_ERR(host->base); host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(host->clk), "clk get fail\n"); host->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(host->rstc)) return dev_err_probe(&pdev->dev, PTR_ERR(host->rstc), "rst get fail\n"); host->irq = platform_get_irq(pdev, 0); if (host->irq <= 0) return host->irq; ret = devm_request_threaded_irq(&pdev->dev, host->irq, spmmc_irq, spmmc_func_finish_req, IRQF_SHARED, NULL, host); if (ret) return ret; ret = clk_prepare_enable(host->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to enable clk\n"); ret = mmc_of_parse(mmc); if (ret) goto clk_disable; mmc->ops = &spmmc_ops; mmc->f_min = SPMMC_MIN_CLK; if (mmc->f_max > SPMMC_MAX_CLK) mmc->f_max = SPMMC_MAX_CLK; ret = mmc_regulator_get_supply(mmc); if (ret) goto clk_disable; if (!mmc->ocr_avail) mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_seg_size = SPMMC_MAX_BLK_COUNT * 512; mmc->max_segs = SPMMC_MAX_DMA_MEMORY_SECTORS; mmc->max_req_size = SPMMC_MAX_BLK_COUNT * 512; mmc->max_blk_size = 512; mmc->max_blk_count = SPMMC_MAX_BLK_COUNT; dev_set_drvdata(&pdev->dev, host); spmmc_controller_init(host); spmmc_set_sdmmc_mode(host); host->tuning_info.enable_tuning = 1; pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = mmc_add_host(mmc); if (ret) goto pm_disable; return 0; pm_disable: pm_runtime_disable(&pdev->dev); clk_disable: clk_disable_unprepare(host->clk); return ret; } static int spmmc_drv_remove(struct platform_device *dev) { struct spmmc_host *host = platform_get_drvdata(dev); mmc_remove_host(host->mmc); pm_runtime_get_sync(&dev->dev); clk_disable_unprepare(host->clk); pm_runtime_put_noidle(&dev->dev); pm_runtime_disable(&dev->dev); platform_set_drvdata(dev, NULL); return 0; } static int spmmc_pm_runtime_suspend(struct device *dev) { struct spmmc_host *host; host = dev_get_drvdata(dev); clk_disable_unprepare(host->clk); return 0; } static int spmmc_pm_runtime_resume(struct device *dev) { struct spmmc_host *host; host = dev_get_drvdata(dev); return clk_prepare_enable(host->clk); } static DEFINE_RUNTIME_DEV_PM_OPS(spmmc_pm_ops, spmmc_pm_runtime_suspend, spmmc_pm_runtime_resume, NULL); static const struct of_device_id spmmc_of_table[] = { { .compatible = "sunplus,sp7021-mmc", }, {/* sentinel */} }; MODULE_DEVICE_TABLE(of, spmmc_of_table); static struct platform_driver spmmc_driver = { .probe = spmmc_drv_probe, .remove = spmmc_drv_remove, .driver = { .name = "spmmc", .pm = pm_ptr(&spmmc_pm_ops), .of_match_table = spmmc_of_table, }, }; module_platform_driver(spmmc_driver); MODULE_AUTHOR("Tony Huang <tonyhuang.sunplus@gmail.com>"); MODULE_AUTHOR("Li-hao Kuo <lhjeff911@gmail.com>"); MODULE_DESCRIPTION("Sunplus MMC controller driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1